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ABSTRACT
Recommender systems objectives can be broadly characterized as
modeling user preferences over short- or long-term time horizon. A
large body of previous research studied long-term recommendation
through dimensionality reduction techniques applied to the his-
torical user-item interactions. A recently introduced session-based
recommendation setting highlighted the importance of modeling
short-term user preferences. In this task, Recurrent Neural Net-
works (RNN) have shown to be successful at capturing the nuances
of user’s interactions within a short time window. In this paper,
we evaluate RNN-based models on both short-term and long-term
recommendation tasks. Our experimental results suggest that RNNs
are capable of predicting immediate as well as distant user inter-
actions. We also find the best performing configuration to be a
stacked RNN with layer normalization and tied item embeddings.
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1 INTRODUCTION
In this work, we consider recommender systems from the perspec-
tive of temporal user preferences. We consider two groups of tasks:

• long-term prediction (what the user will do at a longer time
horizon),

• short-term prediction (what item the user is going to interact
with next).

Previous research has extensively studied modeling of long-term
user interests [9, 17]. The primary approach in this task aims at

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
RecSys ’18, 2nd-7th October 2018, Vancouver, Canada
© 2018 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06.
https://doi.org/10.475/123_4

capturing the latent user preferences by learning a low-dimensional
representation from historical user-item interactions. Long-term
prediction has also been a focus of multiple competitions where
the tasks consisted of predicting the items that will eventually be
bought or booked by a user [1, 3].

Recently, predicting short-term user interests have been studied
in the context of session-based recommendation [10, 23]. Hidasi et
al. [10] focused on the next item prediction task and successfully ap-
plied a RNN model in this setting. RNN model learns a fine-grained
representation of user recent activity that allows it to predict the
immediate user interaction. In follow-up works, multiple extensions
to [10] have been proposed, namely, item content modeling [11]
and context modeling [8].

Quadrana et al. [21] showed that short-term prediction can be
enhanced by considering longer sequences of interactions. In par-
ticular, authors proposed a Hierarchical RNN constituted of two
Gated Recurrent Units (GRU) [5]. The first one is used to predict
the next item that will be seen by the user during the session. The
second one is responsible for modeling information across user
sessions and keeping track of user’s interest over time.

Hierarchical architectures have also shown promising results
in other application domains. For example, authors in [6] pro-
posed the Hierarchical Multiscale Recurrent Neural Network (HM-
RNN) model that automatically learns a hierarchical structure of
sequences of natural text. This model aims at learning a high level
representation of the sequence in a unsupervised way to allow to
capture the long-term dependencies between words.

In this paper, we are interested in evaluating RNN-basedmethods
on both short-term and long-term recommendation tasks. Similar
to [7], we measure the Recall@K metric at varying number of steps
in the user sequence depending on the task.

We perform experiments on two real-world datasets contain-
ing user browsing activity on e-commerce websites. We evaluate
multiple RNN architectures, including the GRU architecture and
multi-layer hierarchical approaches, against non-RNN baselines. To
achieve the best results, we also experimented with improvements
suggested in RNN research, namely, layer normalization [2] and
tied embedding matrix for input and output layers [14].

From our experiments, we found that the best configuration is a
stacked GRU model with layer normalization and tied item embed-
ding matrix. This model consistently achieves the best performance
on both short-term and long-term recommendation tasks across
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datasets. In our experiments, a more complicated HM-RNN archi-
tecture is inferior to a one layer GRU with layer normalization. Our
experimental results also confirm previous findings of [19] that a
simple baseline based on co-occurrence can achieve comparable
performances to a GRU model, especially on short sequences.

To summarize, our contributions are as follows:

• We evaluate state-of-the-art RNN architectures on short-
term and long-term recommendation tasks,

• We show that using state-of-the-art techniques, namely,
layer normalization or tying the input embedding matrix
for the output module, consistently improves the short-term
and long-term performance,

• We achieve further improvements using a 2-layers GRU RNN,
especially on long sequences.

The rest of the paper is organized as follows. In Section 2 we
present an overview of previous research related to our work. Next,
in Section 3 we describe our sequence modeling approach and the
evaluation metrics for short-term and long-term tasks. In Section 4
we present and discuss the results of our experiments. We conclude
in Section 5 and give directions for future research.

2 RELATEDWORK
2.1 RNNs for short-term prediction
The problem of session-based recommendations has been first in-
troduced by Hidasi et al. [10]. Authors showed that the GRU archi-
tecture [5] significantly outperforms non-sequential baselines on
the next item prediction task. To allow efficient training, they pro-
posed to use session-parallel mini-batches and a ranking loss with
mini-batch based output sampling. [23] used data augmentation to
further improve RNN performance. They also suggested to use item
embeddings as a prediction target to reduce output dimensionality
and training time.

Quadrana et al. [21] proposed an hierarchical RNN-based archi-
tecture that improves next item prediction by modeling longer se-
quences of interactions. Similarly to short-term and long-term user
profile, the proposed Hierarchical RNN computes within-session
and between-session user representations.

Further improvements to next item prediction have been archived
in [22]. Authors proposed to combine an RNN short-term predic-
tion with long-term static user and item features computed using a
feed-forward neural network. A similar idea described in [24] em-
ploys an RNN to produce an embedding of the sequence of events
(contextual information) that is then aggregated with the current
item embedding to produce the next item recommendation.

2.2 Long and short-term interests
Several works proposed to leverage both long-term and short-term
user interests. In [16] authors showed that some models based only
on short-term intentions (the latest interactions) already constitute
very strong baselines, but better performance can be achieved by
combining them with long-term user profiles. In this research direc-
tion, [25] proposed a recommender system based on graphs and a
new algorithm to balance between users’ long-term and short-term
preferences.

Ourwork is closely related to the study of Devooght and Bersini [7].
In this work, authors benchmarked several models on various met-
rics to assess their short and long-term performances. In particular,
they showed that RNNs are well suited for short-term recommen-
dation. In addition, they proposed multiple techniques, namely
dropout, sequence shuffling and the hinge loss with several targets,
to improve RNNs performances on long-term recommendations.
Our work is different mainly in the evaluation procedure and the
long-term metric definition. Devooght and Bersini [7] computed
their long-term metric by splitting the test sequences in two halves:
the prediction based on the first half was evaluated against items in
the second half. In our work, we propose to add a parameter that
controls the number of future items to predict and we evaluate the
predictions after each possible time-step in the test set. This method-
ology allows to fully benefit from all the data in the test set and
closer reflects the production setting where items are recommended
throughout the user session, even after the first interaction.

2.3 Hierarchical and multi-scale RNN
Hierarchical and multi-scale RNN models are motivated by the
problem of vanishing gradient which prevents RNNs from captur-
ing long term dependencies [4]. Hierarchical RNN [12] was an early
attempt to solve the vanishing gradient issue with a hierarchical
structure. It uses units with different time scales and delayed connec-
tions. Clockwork RNN [18] is similar to [12] and splits the hidden
state into several modules, each having its own update frequency.
Each module is only connected to slower modules. HM-RNN has
been proposed in [6] and is able to learn the hierarchy of the data. It
consists of stacked RNN layers and boundary variables controlling
when each layer should be updated with three operations: COPY,
UPDATE and FLUSH.

3 PROPOSED APPROACH
This section is organized as follows. First, we describe the RNN
model in application to sequential recommendation task. Next, we
introduce techniques that improve the performance of RNN models.
Finally, we present the metrics that we use to assess the model
performances on short-term and long-term recommendation tasks.

3.1 Setup
Given a sequence of items X = {xt }, t = 0..T , the recommendation
objective is to predict the likely continuations of the sequence.
Each item xt ∈ RNO is represented by a one-hot encoded vector of
dimension NO , where NO is the number of items.

The joint probability of the sequence P(X ) can be decomposed
using a chain rule:

P(X ) = P(x0,x1, ...,xT )

=

T∏
i=1

P(xi |xi<t )
(1)

The task is then reduced to the task of predicting the next item
given the history of the past interactions. In the following, we will
model P(xi |xi<t ) using an RNN.
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3.2 Model
The RNN model consists of three modules: an input module that
computes a dense embedding from the one-hot encoded input, a
recurrent module that models the sequence of embedded items
and an output module that computes the final prediction from the
sequence representation. We provide detailed description of each
module below.

3.2.1 Input module. The input module maps the one-hot input
representation xt into a dense embedding et :

et = fin (xt ), (2)

where et ∈ RNE and NE is the size of the embedding vector.
In our experiments, we used a simple linear projection.

3.2.2 Recurrent module. The recurrent module models the se-
quence of items. It updates the sequence representation using previ-
ous sequence representation and the current item embedding given
by the input module:

ht = fr ec (et ,ht−1), (3)

where ht ∈ RNH and NH is the number of dimensions in sequence
representation.

We experimented with different variations of the recurrent mod-
ule that we describe below.

GRU [5]. GRU adds a gating mechanism to the vanilla RNN in
order to cope with the vanishing gradient issue [4]. Gates control
the amount of information that must be incorporated in the hidden
state as well as a mechanism to forget what has been previously
stored in the state. Equations describing the dynamics of the GRU
are as follows:

rt = σ (W r
e et +W

r
h ht−1)

h̃t = tanh (W h
e et +W

h
h (rt ⊙ ht−1))

zt = σ (W z
e et +W

z
h ht−1)

ht = (1 − zt ) ⊙ ht−1 + zt ⊙ h̃t ,

(4)

where rt ∈ RNH is the reset gate, zt ∈ RNH is the update gate,
h̃ ∈ RNH is the candidate sequence representation,W r

e ,W h
e and

W z
e areNH ×NE weight matrices andW r

h ,W
h
h andW z

h areNH ×NH
weight matrices. σ and tanh denote respectively the sigmoid and
the hyperbolic tangent function. ⊙ denotes element-wise product.

Stacked RNN. Similar to feed-forward neural networks, we can
increase the depth of a recurrent neural network by adding more
layers. In stacked RNN, the output of the lower-level recurrent
module is used as the input to the higher-level recurrent module.
For prediction, the output of the highest-level recurrent module is
used.

HM-LSTM [6]. HM-LSTM is an HM-RNN with a LSTM [13] up-
date rule. HM-LSTM can be seen as a variant of a stacked LSTM
where the higher layers are updated only once every few time steps.
In contrast to previous works on multi-scale RNN [12, 18], the up-
date rate of the different layers is not fixed in advance. Instead, the
hierarchical structure is automatically inferred using the joint learn-
ing. The update of higher level representations is controlled by the
boundaries. Boundaries are Bernoulli random variables that decide

whether to perform three different operations: COPY, UPDATE and
FLUSH.

3.2.3 Output module. The output module computes the unor-
malized predictions of the next item based on the updated sequence
embedding given by the recurrent module.

ot = fout (ht ), (5)
with ot ∈ RN0 , NO is the number of items.

In our experiments we used two different output modules. The
first one consists of a simple linear projection: ot = WOht . The
second one is also a linear projection, but the projection matrix
WO is tied with the input embedding matrixWI : ot =WT

I ht . This
technique has been proposed in [14].

The softmax function is applied to the output of the output
module to obtain a probability distribution over items:
p(xt |x<t ) = So f tmax(ot )

=

[
exp(o1t )∑No
i=0 exp(o

i
t )
,

exp(o2t )∑No
i=0 exp(o

i
t )
, ...,

exp(oNo
t )∑No

i=0 exp(o
i
t )

]
(6)

3.3 Optimization objective
The output of the network at a given time step t is an estimation of
the probability distribution over items for the time step t + 1. We
want this distribution to be close to the data distribution. Therefore,
we minimize the negative log likelihood of the data distribution
under the model:

Loss = −
Ns∑
i=1

T (i )∑
t=1

loд(p(x (i)t |x (i)<t )), (7)

where Ns is the number of sequences in the dataset, T (i) is the size
of the ith sequence, and x (i)t is the item t of sequence i .

We trained the RNN models jointly (the item embeddingsWI
are not pre-trained) and the parameters were learned using Back
Propagation Through Time [20].

3.4 Model improvements
3.4.1 Layer Normalization [2]. Normalization techniques like

Batch Normalization [15] have been proven to be beneficial for
training of deep neural networks. Layer normalization is another
normalization technique that normalizes neuron activations across
layer. It is well suited for RNN models as it does not require to com-
pute per time step statistics. [2] showed that layer normalization
helps to stabilize the hidden state dynamic of RNNs and tends to
reduce the training time, especially on long sequences and small
batches. Browsing history datasets can potentially contain very
long sequences (see Section 4.3) and a large input space that require
the use of a small batch size for practical reasons (e.g., memory con-
straints). Therefore, we experiment by applying layer normalization
to our proposed model.

3.4.2 Tied embedding matrix. [14] proposed to tie the input
embedding matrix to the output projection layer. It constrains the
model to provide close predictions when items are similar in terms
of embedding. In addition to improved performance, this technique
also greatly reduces the number of parameters. This is particularly
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important when the item space is large as in our experimental
datasets (see Section 4).

3.5 Long and short-term metrics
3.5.1 Definition. To assess the model performance on short-

term and long-term recommendation tasks, we extend the Recall@K
metric by adding a parameter N that controls the number of fu-
ture items taken into account to compute the set of relevant items.
Recall@K,N is therefore the proportion of items that have been
observed during the next N steps and that appear in the top K list
of predicted items. More formally:

Recall@K =
|Sr ec ∩ Sr el |

|Sr el |
(8)

where Sr ec is the set of recommended items (top K recommen-
dations) and Sr el is the set of relevant items. In Recall@K,N the
set of relevant items Sr el consists of the next N observed items
in the sequence. Usually in sequential recommendation, the set of
relevant items consist of only one element – the next observed item.
This corresponds to a particular case of our metric where N = 1.
To simplify notations, we use the Recall@K to denote Recall@K,1
when there is no ambiguity.

3.5.2 Evaluation on long-term metrics. The Recall@K,N metric
requires prediction of the next N items in the sequence. We use a
method similar to [7] that consists of taking top K predictions of
the next item. The set of predicted items therefore consists of the
top K most probable items in the prediction of the next item, and
the set of relevant items is the list of the next N observed items.

4 EXPERIMENTS
We benchmarked multiple RNN architectures presented in Sec-
tion 3.2.2 on the sequential recommendation task and studied the
impact of techniques presented in Section 3.4 on both short-term
and long-term recommendation.

The rest of this section is organized as follows. First, we present
the baselines and datasets that we used for our experiments. Then
we detail the configurations of models and the choice of hyper-
parameters. Finally, we discuss the results.

4.1 Baselines
We used the following baselines:

• POP. Recommends items based on their frequencies. Despite
its simplicity, it can sometimes be a strong baseline depend-
ing on the nature of the data. Often in recommendation, only
a few items account for the most of interactions. For example,
in Figure 1 we see that only 2 ∼ 3% of items account for 50%
of the interactions in our experimental datasets.

• Item-KNN. Predictions of the next item are based on item
similarities with the current item. Similarity between two
items is defined as the number of co-occurrences of the
items in a sequence divided by the product of their respective
frequencies. Item-KNNwas the best baseline reported in [10].

• CoEvent MF. Uses matrix factorization to compute the pre-
dictions of the next item given the current one. xt+1 =
UTVxt withU and V real matrices of dimensions NI × NE .

Figure 1: Cumulative proportion of items in experimental
datasets. Only 2 ∼3% of distinct items account for 50% of in-
teractions.

4.2 Metrics
As presented in Section 3.5, we use the Recall@K metric with a
parameter N that controls for the size of the sliding window used
to get the list of relevant items for each recommendation. We used
different values for N : N = 1 assesses a model ability to predict
the next item (short-term recommendation), and N = 20 or N = 5
(depending of the dataset) assesses a model ability to predict items
what will eventually be seen in the future (long-term recommenda-
tion). We used K = 20, meaning that the top 20 most probable items
according to the models are used as predicted items and compared
to the set of relevant items in a recall metric.

4.3 Datasets
We experimented on two datasets.

4.3.1 Yoochoose. The first dataset is the publicly available Yoo-
Choose dataset, introduced for the RecSys challenge 2015 [3]. It is
a collection of sessions of user clicks and purchases on multiple
e-commerce websites over a period of 6 months from April 2014 till
September 2014. Each user session forms a separate sequence and
users are not identifiable between sessions. We follow the setup
proposed in [10]. We use only the clicks of the training set and
the element_id feature which is the identifier of the item that has
been clicked. We filtered out sessions with only one click. The ses-
sions of the last two weeks are used for the validation set and test
set respectively. The rest of the dataset (∼ 6 months) is used for
the training set. Items not present in the training set have been
removed.

4.3.2 Internal dataset. The second dataset is a proprietary dataset
consisting of browsing activity on multiple of e-commerce websites.
It contains of 1 910 177 sequences collected during a period of 3
months. We used a 80/10/10 split to build respectively the training
set, the validation set and the testing set. Each user is randomly
assigned to one of these sets. Sequences with only one item have
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been filtered out and we kept only the last 40 items in each se-
quence. This dataset is referred to as Internal dataset in the rest of
the paper.

Table 1: Datasets statistics.

Dataset Yoochoose Internal

Sequences 7 438 177 1 910 177
Events 31 708 408 36 547 161

Distinct items 37 483 208 418

4.3.3 Dataset comparison. The two datasets differ in a way that
one is a dataset of sessions (a user can only be identified across a
single session) and the other contains browsing histories of users
across multiple sessions, yielding longer sequences.

Table 1 presents statistics of both datasets. Internal dataset is
more challenging as it contains about 5 times more distinct items
and approximatively the same number of events. We can also see in
Table 1 that in terms of item distribution the internal dataset shows
a heavier tail. The distribution of sequence length is also different
(see Figure 2) with internal dataset containing longer sequences.

Figure 2: Sequence length distribution. In Yoochoose dataset,
sequences contain up to 200 items, but we cut the long tail
for readability. In Internal dataset, we keep only the last 40
items of each sequences, that explains the high number of
sequences with 40 items. Best seen in color.

4.4 Hyper parameters
We train our models using gradient Backpropagation Through
Time [20] and the Adam algorithm [2] with a decreasing learning
rate (LR) following a polynomial decay. The hyper parameters are
the same for all models and are presented in Table 2. We use the
same number of hidden dimensions NH as in [8, 10]. The batch size
is set to 128 for practical reasons (memory constraint).

4.5 Results
Tables 4 presents the performance of the benchmarked models and
the baselines on both short-term and long-term metrics. In Table 5,

Table 2: Hyper parameters.

Parameter Value

Start LR 0.01
End LR 0.001

Decay power 0.5
LR steps 50000

NE 100
NH 100

Batch size 128

Table 3: Number of parameters.

Model Yoochoose Internal

CoEvent MF 7.5 M 41.6 M
CoEvent MF + RE 3.75 M 20.8 M

GRU 7.6 M 41.7 M
GRU + RE 3.8 M 20.9 M
GRU + LN 7.6 M 41.7 M

GRU + RE + LN 3.8 M 20.9 M
Stacked GRU + RE + LN 3.9 M 21 M
HM-LSTM + RE + LN 4 M 21.1 M

we present the break-down of the Recall@20 metric by sequence
length. We use the best baseline to compute the uplift.

Long-term metrics (Recall@20,5 and Recall@20,20) assess abil-
ity to predict the next N items. In order to better understand the
contribution of each future item to the metrics, we computed the
Recall@20 for each future time steps using the predictions of the
next item. The results are presented in Figure 3.

In the following, we discuss the results and summarize our find-
ings.

4.5.1 Analysis. We observe that the results on both datasets
are consistent. The confidence intervals in Tables 4 and 5 for the
Yoochoose dataset are wider than for the internal dataset. This is
due to the smaller test set in Yoochoose dataset: only 1 week of
data is used, which account for 173K sessions.

Co-event baseline based on matrix factorization outperforms
Item-KNN baseline, that is reported as the best baseline in [10]. On
a short-term metric, CoEvent MF also achieved comparable results
with a vanilla GRU model. This is particularly notable on small
sequences of size up to 5 items (see Table 5) where the uplift of
GRU model only represents 0.3% on Yoochoose dataset and 1% on
internal dataset. We confirm previous finding of [19] and conclude
that CoEvent MF baseline is suitable for applications where user
sequences are short.

On long-term metric, GRU achieved more significant uplifts.
Indeed, we can see in Figure 3 that the uplift provided by the GRU
over the CoEvent MF baseline is only of 2.4% for the next item
prediction, but it is significantly larger (up to 6.8%) for the prediction
of the future items.

We find that the HM-LSTM performs worse than a single layer
GRU on both our datasets and metrics. This is not surprising on
Yoochoose dataset as the majority of sequences consists of only of
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(a) Recall@20 on future time steps

(b) Recall@20 uplift over CoEvent MF baseline on future time steps

Figure 3: Recall@20 evaluated on each future time step on
Internal dataset. Timestep=0 corresponds to the prediction
of the next item measured by Recall@20,1 in Table 4. Best
seen in color.

a few items. However, on Internal dataset we expect this model to
discover the hierarchical structure of user sequences and provide
relevant recommendations based on high-level user representation.
This model is also harder to train since it involves discrete variables
and requires to use estimators of the gradient. We believe that this
can be the reason why we did not archive satisfactory results with
this model.

4.5.2 Layer normalization and tying the input embedding matrix
in output module improves performance. We can see in Table 4 that
both techniques presented in Section 3.4 improved performance
on both datasets and metrics. Our best results were obtained by
combining both techniques. The improvement is obtained on the
training task (next item prediction) measured by the Recall@20,1

Table 4: Results on short-term and long-term metrics. Up-
lifts in percents over the best baseline with a 95% confidence
interval are in parenthesis. LN denotes the layer normaliza-
tion. REmeans that the input embeddingmatrix is tied with
the outputmodule. N controls the number of future items to
be predicted.

.

Model Recall@20,N=1 Recall@20,N=5

POP 0.005 0.005
Item-KNN 0.505 0.405
CoEvent MF 0.645 0.438

CoEvent MF + RE 0.647 0.447

GRU 0.654 (1.1 ± 1.4%) 0.463 (3.6 ± 3.0%)
GRU + RE 0.675 (4.3 ± 1.2%) 0.481 (7.6 ± 3.2%)
GRU + LN 0.687 (6.2 ± 1.3%) 0.490 (9.6 ± 3.2%)

GRU + RE + LN 0.689 (6.5 ± 1.3%) 0.493 (10.3 ± 3.4%)
Stacked GRU + RE + LN 0.691 (6.8 ± 1.3%) 0.495 (10.7 ± 3.4%)
HM-LSTM + RE + LN 0.682 (5.4 ± 1.4%) 0.489 (9.4 ± 3.6%)

(a) Yoochoose

Model Recall@20,N=1 Recall@20,N=20

POP 0.054 0.032
CoEvent MF 0.465 0.143

CoEvent MF + RE 0.430 0.117

GRU 0.476 (2.4 ± 0.3%) 0.155 (8.4 ± 0.7%)
GRU + RE 0.490 (5.4 ± 0.3%) 0.158 (10.5 ± 0.6%)
GRU + LN 0.519 (11.6 ± 0.3%) 0.169 (18.2 ± 0.6%)

GRU + RE + LN 0.527 (13.3 ± 0.3%) 0.172 (20.3 ± 0.7%)
Stacked GRU + RE + LN 0.533 (14.6 ± 0.3%) 0.174 (21.7 ± 0.7%)
HM-LSTM + RE + LN 0.519 (11.6 ± 0.2%) 0.166 (16.1 ± 0.7%)

(b) Internal

metric, as well as on a long-term term metric. We hypothesize that
these techniques help building a better user representation that
results in more accurate predictions for future events (see Figure 3).

Layer normalization seems to be particularly useful on long
sequences. Indeed, as we can see in Table 5, the uplift on small
sequences is only of 3.7% and 7.5% on Yoochoose and Internal
datasets respectively, but accounts for 10.6% and 11.5% on long
sequences.

Tying the embedding matrix in the input module also allows
to greatly reduce the number of parameters (see Table 3). Indeed,
the input and output projection layers account for most of the
parameters. Dividing by two the number of those parameters results
in a more memory efficient training.

4.5.3 Adding a second GRU layer improves performance on long
sequences. Adding another layer of GRU slightly improves perfor-
mance. We note that the longer is the sequence, the bigger the uplift
that we observe. On very small sequences (length is less than 5),
the effect of adding another layer is negligible and even slightly
deteriorate results on Yoochoose dataset. We conclude that stacked
RNN architecture is beneficial for long sequences.
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Table 5: Break-down on sequence length of uplift in Re-
call@20 over the best baseline with a 95% confidence inter-
val. LN denotes the layer normalization. RE means that the
input embedding matrix is tied with the output module.

Session length buckets [2-5] [6-25] [26-200]

Best baseline Recall@20 0.671 0.641 0.575

GRU 0.3 ± 1.6% 1.4 ± 1.9% 0.2 ± 7.3 %
GRU + RE 2.7 ± 1.6% 4.5 ± 2.0% 6.6 ± 7.7 %
GRU + LN 3.7 ± 1.5% 7.2 ± 1.7% 10.6 ± 9.0 %

GRU + RE + LN 4 ± 1.5% 7.5 ± 1.9% 11 ± 8.6 %
Stacked GRU + RE + LN 3.6 ± 1.6% 8.4 ± 1.9% 12.2 ± 8.7 %
HM-LSTM + RE + LN 3 ± 1.5% 6.2 ± 2.0 % 9.4 ± 8.8%

(a) Yoochoose

Sequence length buckets [2-5] [6-25] [26-40]

Best baseline Recall@20 0.480 0.477 0.460

GRU 1.0 ± 0.9% 4.2 ± 0.4% 1.3 ± 0.4%
GRU + RE 6.0 ± 0.9% 7.5 ± 0.4% 4.1 ± 0.5%
GRU + LN 7.5 ± 0.9% 12.6 ± 0.4% 11.5 ± 0.4%

GRU + RE + LN 10.0 ± 0.9% 14.3 ± 0.4% 12.8 ± 0.4%
Stacked GRU + RE + LN 10.4 ± 0.9% 15.5 ± 0.4% 14.3 ± 0.4%
HM-LSTM + RE + LN 9.4 ± 0.9% 12.6 ± 0.3% 11.1 ± 0.4%

(b) Internal

5 CONCLUSION AND FUTUREWORK
In this paper, we study the use of recurrent neural networks for
the task of sequential recommendation. We benchmark several
models on both short-term and long-term recommendation tasks.
We confirm previous findings showing that matrix factorization
method provides a strong baseline, especially on datasets of short
sequences. Using state-of-the-art techniques (layer normalization,
shared input/output matrix) we improve the RNN performances on
both short-term and long-term metrics. Best results are obtained
by staking another RNN layer with notable improvements on long
sequences.

As a future work, we plan to study sequence-to-sequence tech-
niques for the next N items prediction task. We also plan to perform
experiments on more recommendation datasets.
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