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A Declarative Rendering Model for Multiclass Density Maps
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Fig. 1: Design alternatives for a four-class density map.1 shows small multiples where each density map is individually presented
with a unique color;2 stacks the density maps and blends the color at each pixel;3 shows the color of the pixel with the highest
density; 4 - 6 use regular and irregular weaving patterns;7 shows a contour plot for each class; and8 – 14 use rebinning (binning
and aggregation over the density maps) with tiles produced by a random Vorono�̈ tessellation. The aggregated values are rendered in
8 with a �at color showing the highest density,9 with hatching,10 with proportional bars,11 with regular weaving,12 with a dot

density plot,13 with bar-chart glyphs, and14 with circle sizes.

Abstract —Multiclass maps are scatterplots, multidimensional projections, or thematic geographic maps where data points have a
categorical attribute in addition to two quantitative attributes. This categorical attribute is often rendered using shape or color, which
does not scale when overplotting occurs. When the number of data points increases, multiclass maps must resort to data aggregation
to remain readable. We present multiclass density maps: multiple 2D histograms computed for each of the category values. Multiclass
density maps are meant as a building block to improve the expressiveness and scalability of multiclass map visualization. In this
article, we �rst present a short survey of aggregated multiclass maps, mainly from cartography. We then introduce a declarative
model—a simple yet expressive JSON grammar associated with visual semantics—that speci�es a wide design space of visualizations
for multiclass density maps. Our declarative model is expressive and can be ef�ciently implemented in visualization front-ends such as
modern web browsers. Furthermore, it can be recon�gured dynamically to support data exploration tasks without recomputing the raw
data. Finally, we demonstrate how our model can be used to reproduce examples from the past and support exploring data at scale.

Index Terms —Scalability, multiclass scatterplots, density maps, aggregation, declarative speci�cation, visualization grammar

1 INTRODUCTION

In this article, we are interested in methods to increase the scalability
and expressiveness of2D multiclass maps(i.e., visual representations
of data that consist of two quantitative attributes, which are mapped
to (x;y), and one categorical attribute). 2D multiclass maps include
scatterplots, multidimensional projections, and thematic geographic
maps, altogether calledmaps. These maps are supported by all the
multidimensional data visualization and cartographic systems, attesting
their popularity and effectiveness. In nonaggregated maps, the categori-
cal attribute is depicted using a categorical visual variable at each point,
such as color or shape. However, when the number of points increases,
the maps become unreadable because of excessive overplotting, which
can result from structural properties of the data (e.g., multiple points
being heavily clustered), or simply because of the sheer number of
points.
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Massive datasets suitable to be visualized as multiclass maps are
easily available, for example, theRTI U.S. Synthetic Household Popu-
lation™ [50] containing one point per person in the United States (300
million) with their age, sex, race, income, and house location. Large
multiclass maps can also be easily generated by computing the projec-
tion of millions of multidimensional multiclass points using modern
scalable projection systems [39,48].

To scale scatterplots, several approaches have been proposed, such
as adaptive opacity [15, 30, 32] and aggregation [13, 53]. However,
adaptive opacity does not scale well with the number of categories
since multiple categorical colors become ambiguous when blended,
and aggregation methods such as density plots are limited to purely
bivariate quantitative data. Few techniques have been described to
support the visualization of aggregated multiclass maps, and to our
knowledge, no system supports their visualization in a �exible way.

In this article, we present a declarative model to specifymulticlass
density maps, multiple density plots with different classes, applicable
to an arbitrary number of points. Our contributions are:

• a review of visualization techniques for multiclass density maps,
• a conceptual model for describing a wide range of visualizations

of multiclass density maps, and
• a concise declarative grammar and its interpreter to specify their

rendering.
Our model relies on the creation of multiple aggregateddata buffers

by visualization library back-ends, while a front-end system (e.g., a
web browser) allows interactively con�guring and combining the data



buffers to create visualizations. The model enables many types of inter-
active recon�gurations of the rendering pipeline, thanks to the speed
of the modern front-ends, without reviewing the raw data. Providing
a clean conceptual model supporting ef�cient implementations will
improve the exploration of multiclass maps at scale. It will also al-
low visualization systems to implement an effective separation in their
pipeline between data aggregation and the rendering of aggregated data
for greater richness and scalability of multiclass data visualization.

2 RELATED WORK

Several articles [13,23,31,53] address the problem of scaling the visu-
alization of multiclass maps. We identi�ed three facets of scalability:

• data sizerelated to the number of data points and categories,
• perceptual processingrelated to the ability to perform some tasks

ef�ciently given adata size, and
• computation speedrelated to the time to compute an image from

a visualization technique given adata size.
Ideally, we want visualization techniques to support large data sizes

(100 million points or more with tens of categories or more) while
allowing performing important perceptual tasks quickly, and preferably
with a high computational speed to allow interactive exploration, im-
plying a refresh rate between 25 ms to 10 s, depending on the type of
interaction [34,44]. However, managing large data sizes while allowing
effective perceptual processing is already a challenge, and our goal is
to design a model that can improve all the three facets of scalability.

2.1 Tasks

Multiclass maps, such as scatterplots, multidimensional projections,
and thematic geographic maps, are used to perform several important
tasks, reviewed in multiple articles. Munzner presents a generic frame-
work for tasks [35] where she distinguishesactionsandtargets. She
lists three categories of actions useful on most visualizations and four
categories of targets. Her framework can be applied to every visualiza-
tion technique, but the list of actions and targets can also be specialized,
depending on the particular visualization techniques and application
domains. Specializing Munzner's framework for scatterplots, Sarikaya
and Gleicher [42] de�ne a taxonomy with 12 tasks, sorted in three
categories:object-centric, browsing, andaggregate-level.

For maps, Roth [41] also adds speci�c actions and targets such as
rank, associate, delineate, reexpress (changing the assignment of visual
properties and layout), arrange, sequence, resymbolize, overlay, and
reproject. For dimensionality reduction, the literature is more dispersed.
Most of the articles mention visualizing class separation and class
quality (e.g., [3]), but more elaborate studies such as Brehmer et al. [8]
distinguish two categories of task sequences:Dimension-Orientedand
Cluster-Oriented. The cluster-oriented tasks are speci�cally related to
multiclass maps. Aupetit [2] mentioned more subtle tasks related to
distinguishing data outliers vs. projection artifacts; they imply visual
relations between objects and clusters. In addition, many tasks related
to multiclass maps involve comparisons, mentioned in tasks 10–12 of
Sarikaya and Gleicher [42] and also studied by Gleicher [18].

To sum up, when the data size increases, visualizations cannot clearly
show all the individual points. Therefore, tasks related to objects/points
become impossible unless a small and useful subset of important points
can be selected and clearly visualized. In addition, comparison tasks
can be performed over the cross product of objects or groups, and
related to values, locations, distributions, classes, and other meaningful
concepts. Therefore, it is unlikely that one visualization technique will
allow performing all the possible comparisons ef�ciently.

2.2 Nonaggregate Methods

When the amount of overplotting is limited, several effective techniques
have been introduced, such as jittering [24] or using alpha blending,
sometimes with adaptive opacity [15,30,32]. Jittering requires empty
areas to spread crowded points; therefore, it does not scale when over-
plotting happens on large areas. For alpha blending, when multiple
colored points are drawn on top of each other using transparency, their
colors are blended, and it becomes dif�cult to even perceive if one

category is present at all, except for the speci�c case of two or three
classes with a well-chosen colormap [29,49].

Chen et al. [12] have recently introduced animation to alleviate
overdraw in multiclass scatterplot matrices (SPLOMs). They animate
the drawing order of the points to help the user see every point at any
position by watching it for a suf�cient time. However, that technique
is also limited by the time to animate the whole dataset. The authors
mention an animation speed up to 800 rows per second, which would
take hours or days to run through millions of points. Even if the user
was willing to spend time watching the animation, previous studies
have shown that visual statistics can only be done over short periods [1].

When the number of data points increases, a seemingly simple solu-
tion consists insamplingpoints to limit overplotting. While uniform
sampling is easy and fast to perform, it produces artifacts that are dif�-
cult to interpret cognitively [5,28]. If density signi�cantly varies (e.g.,
population maps), some regions of the map become empty, while others
remain crowded. Thus, many areas are hard to analyze. More complex
sampling methods have been studied; they are still computationally
expensive [5] and produce artifacts that are challenging to interpret.

2.3 Aggregate Methods

For situations where a few regions are overplotted but others are sparse
or empty, Mayora and Gleicher have designed Splatterplots [31] that
replace dense regions with covering polygons, show individual points
in sparse regions, and increase the visibility of outliers. Still, when
the number of categories and the overall density increase, Splatterplots
degrade since �lled contours cover most of the visualization.

When the number of points signi�cantly exceeds the number of
pixels, it becomes technically impossible to distinguish the individual
points, to perceive their density, or to see what categories are present at
any pixel. All the techniques described before fall short: jittering cannot
be used because there is no extra space to spread the high-density areas;
alpha blending is limited to a few layers of overplotting and, even then,
does not allow distinguishing clearly what colors have been mixed; and
Splatterplots cover the whole display with �lled contours.

To visualize maps of larger datasets, a few models have been pro-
posed.The Grammar of Graphics[54] provides a general model for
visualization where scalability is addressed through “statistical meth-
ods,” includingbinningwith summary statisticsandsmoothing. How-
ever, it does not speci�cally address the problem of multiclass maps.
Wickham [53] describes a framework to achieve scalability calledbin-
summarise-smooth(BSS). It starts from a dataset with two quantitative
variables, bins them, computes a simple aggregation statistics on the
bins such ascount, and then applies a smoothing function before ren-
dering the results on the screen. Wickham insists on many important
details that need to come with this pipeline, such as the management
of outliers and uncertainties. However, his framework is limited to
bivariate data, not multiclass.

Cottam et al. describe a similar framework calledAbstract Ren-
dering[13,23] (AR) made of four stages:select, info, aggregate, and
transfer. The selectfunction is equivalent to thebin stage of BSS,
but in a speci�c case where each bin is rectangular and aligned with
screen pixels. While BSS is based on standard aggregation statistics
where a bin contains a single value, AR extends the concept of bin to
compound values, including RGB colors, list of categories, or reference
to programming objects; these values are extracted from the data with
theinfo function. Therefore, theaggregatefunctions are more diverse
than thesummarisestep in BSS.

Various visualization methods have been used to visualize multiclass
maps. One of the most widely used methods is color mixing where
each class is assigned a unique color, and the colors are mixed at each
point of a map by mixing depending on the density as in Fig. 2a. Color
mixing can be extended to more classes; for example, Slingsby et
al. [45] uses seven unique colors to represent different classes.Contour
plotscan be used to visualize multiclass data when the data is smooth
enough to avoid too many tangled lines [31]. Ware introducesTexton
maps[52] where “texton shapes” are overlaid on a colored density map
to show a second class, although with a limited spatial resolution for the
texton shapes. Miller introducesAttribute Blocks[33] where multiple



(a) Support for Democratic vs. Republican
candidates in 2008 [46].

(b) Percentage of high school graduates, of college grad-
uates, and median house income in 2009 [22].

(c) Number of workers per sector of economy (primary,
secondary, tertiary) in 1954 by Bertin [4].

(d) Detail of a map of New-York City showing the distri-
bution of nationalities across districts in 1890 [25,40].

(e) Six socioeconomic indicators in each of
the twelve Midwestern US states [19].

(f) Detail of a map showing average sales per farm
for each US state in 1919, 1924, and 1929 [10].

Fig. 2: Examples of multiclass density maps. Various techniques have been used to visualize multiclass density maps, such as bivariate (a) and
trivariate (b) maps, exhaustive maps [4] (c), hatching (d), weaving (e), and glyphs (f).

density maps are computed, one per class, and assigned a categorical
color (a hue). The visualization space is then segmented by a grid with
each cell showing one of the density maps. Similar to Attribute Blocks,
Weaving[19] has been designed to visualize multiclass data over choro-
pleth maps (Fig. 2e). One colored choropleth map is created for each
class, and the �nal image is composed by stacking the choropleth maps
using a regular grid where each cell shows a density map of a randomly
chosen class. Superimposing symbols (or,glyphs) on a map is also
commonly used to visualize multiclass data in cartography (Fig. 2f).
For example, Brewer and Compbell [9] introduce varied point sym-
bols, such as a pie chart with two wedges, to visualize bivariate data
on maps. As follow up studies, Nelson evaluates the performance of
those symbols [36], and Lamb [26] presents a layout algorithm that
automatically removes the overlap between the symbols. Finally,dot
distribution maps(or dot density maps) [17] look similar to sampling,
but they generate a random uniform pattern over aggregated areas to
convey density (Fig. 1-12). Each dot represents a constant number of
data points, and the user needs to remember that meaning.

To summarize, various techniques have been proposed in the litera-
ture and visualization packages for multiclass maps. However, to deal
with the large number of tasks the user may want to do with this type
of maps, having a unifying conceptual model that can describe those
methods and realize new promising methods is required.

3 EXAMPLES FROM CARTOGRAPHY

In this section, we discuss a few representative examples of multiclass
density maps, shown in Fig. 2. Our visualizations are taken from car-
tography, because this signi�cant discipline often needed to visualize
multiclass density data, so it has rich examples. However, as we dis-
cussed before, multiclass density maps do not need to be cartographic.
For example, they can include the combinations of multiple scatterplots
showing abstract data [12].

The �rst example by David B. Sparks [46] shows data from the
2008 Cooperative Congressional Election Study (CCES), where 30,000
randomly-sampled US residents were asked to report their support for

Democratic vs. Republican candidates (Fig. 2a). Areas with strong
Democratic and Republican support are in blue and red, respectively. In
addition, colors in densely populated areas are highly saturated, while
areas with low population density appear “washed out.” While the
divergent red-blue scale does not encode density information (but a
mean response on a seven-point scale), this map can alternatively be
seen as a mixture of two density maps: one showing the density of
Democratic supporters (and encoded on a white-blue scale) and one
showing the density of Republican supporters (and encoded on a white-
red scale). Therefore, this map can be conceptually seen as a multiclass
density map with two classes.

The second example is a US map by Gregory Hubacek [22], showing
the percentage of high school graduates (in magenta), college graduates
(in yellow), and the median house income (in cyan) in 2009. The legend
uses small multiples, a simple and common technique for multiclass
density maps. The large map combines the three maps using subtractive
color blending (e.g., as when stacking colored �lters on a white surface).
Regions that are high in all three indicators are black, while regions
that are high in only one or two of the indicators have a recognizable
color. Even though the third class (median house income) does not
involve density data, the same technique can in principle be used to
produce pure multiclass density maps with three classes.

The two maps of France in Fig. 2c are obtained from Jacques Bertin's
bookSemiology of Graphics[4]. Both maps show the number of French
workers per geographic department in 1954, broken down into three
economic sectors: the primary (agriculture), the secondary (industry),
and the tertiary (commerce, transports, services). In the left map, the
sectors are encoded in yellow (I), red (II), and black (III). In the right
map, they are encoded in cyan (I), magenta (II), and black (III). While
the left map only shows proportions, the right map shows absolute
counts. Bertin called these maps “exhaustive maps” [4]. Following our
terminology, they are multiclass density maps with three classes. These
designs provide a good overview of the data, and likely better support
local comparisons and value retrieval than the two previous designs.

Fig. 2d illustrates an even older example of a multiclass density



map. It is a portion of a map showing the distribution of nationalities
in New-York City in 1890 [25,40]. Each nationality is encoded with a
speci�c texture, as explained in the legend underneath. Each sanitary
district is �lled with textured bands whose widths map to the proportion
of nationalities within the district. Thus, districts with less diversity
(e.g., 17thD) appear visually homogeneous, while districts with more
diversity (e.g., 15thA) exhibit complex patterns. Although the encoding
may appear overwhelming, this multiclass density map manages to
show as many as ten classes, without the use of color. It is analogous
to the left map from Bertin in Fig. 2c, except the orientation of bands is
varied across districts to make boundaries more prominent.

The choropleth map in Fig. 2e shows six socioeconomic indicators
measured in each of the twelve Midwestern US states [19]. Each
indicator has a color scale, as shown by the legend underneath. Each
state blends the six color scales using the recently introducedcolor
weavingtechnique [19], where colors are displayed side by side in a
high-frequency texture. The state of Kansas (on the bottom left) appears
dark because it is high in all six indicators, while the state of Minnesota
(second on the top) is high in the number of high-school graduates (dark
cyan dots) but relatively low in other indicators. A study has suggested
that color weaving facilitates value retrieval from individual channels
compared with color blending, as used in Fig. 2b [19].

Fig. 2f is an example of what Robert L. Harris calls “symbols on
maps” in his illustrative reference on information graphics [20]. This
map shows the average sales per farm through cooperative associations
for each of the US States in 1919, 1924, and 1929 [10]. If the quantity
shown was density information (e.g., population density), this map
would be a multiclass density map with three classes (i.e., one class
for each year). In this article, we will use the term “glyph” to refer to
such miniature visualizations. In his bookSemiology of Graphics[4],
Bertin advises against using glyph maps because they typically provide
poor overviews and make it hard to perceptually separate the channels
(compare with Fig. 2c, for example). However, Bertin only focuses on
showing a few channels (typically three), while visualizations such as
in Fig. 2f can be easily extended to many more channels.

4 THE CLASS BUFFER MODEL

In this section, we introduce a declarative model that covers a large
design space of multiclass density maps. It originated from our col-
lection of real examples of multiclass density maps from cartography,
information visualization, and infographics, such as the ones described
in the previous section. Reviewing the examples, we found that most
examples could be expressed with theClass Buffer idiom, particularly
used in a previous study [12]; we use that idiom as the building block
for our model.

Our implementation of the model de�nes an expressive visualization
grammar for multiclass density maps using the JSON data-interchange
format. Such speci�cations can be ef�ciently interpreted and rendered
in visualization front-ends such as modern web browsers. Our model
consists of six stages (see Fig. 3):

1. Binning. The initial data table is split into as manydata buffers
as classes. A data buffer is essentially a 2D histogram that counts
and bins all data cases of a particular class. This step is performed
by the back-end of the visualization system, which sends the data
buffers to the front-end visualization engine.

2. Preprocessing. Once in the front-end, the data buffers undergo
optional preprocessing operations such as Gaussian smoothing.

3. Styling: The data buffers are then transformed intoclass buffers.
A class buffer is a data buffer augmented with visual properties,
such as a class-speci�c color.

4. Rebinning. The grid used by class buffers is partitioned intotiles,
and for each tile, anaggregated countis computed for each class
and stored in adata vector. Aggregated counts are then converted
into normalized counts.

5. Assembly. The assembly stage turns tiles and normalized counts
into a singledensity map image. Several types of assembly op-
erations are possible, namely,masking, mixing, hatching, and
generating glyphs.

6. Rendering. This �nal stage renders the density map image on top
of a background image, also adding decorations and annotations
(landmarks, axis, legend, etc.) to make the visualization easier to
read and interpret.

Each of the six stages is described in more detail below. We assume
we start from a tabular datasetT with three attributes(Q1;Q2;C), with
Q1 andQ2 being two quantitative attributes andC being a categorical
attribute withN possibleclassesC = f c1;c2; � � � ;cNg. We further as-
sume that (Q1, Q2) use a 2D position encoding (i.e.,Q1 is mapped to
thex axis andQ2 is mapped to they axis in the �nal visualization).

4.1 Binning

The Class Buffer model is designed to scale multiclass scatterplots
while supporting responsive interactions at the user interface level. To
this end, we start by preprocessing the raw data so that multiclass
density maps can be later rendered in interactive time.

In the binning stage (Fig. 3-1), the initial data tableT = ( Q1;Q2;C)
is split intoN data buffers Bi2 [1���N]. A data buffer is aW � H scalar
matrix that discretizes the domain of(Q1;Q2) into a regular grid and
stores the number of data cases that fall into each cell (which we refer
to ascounts). Data buffers are class-speci�c, so one data buffer is
created for each of theN classes inC. In other words, each data buffer
Bi stores a 2D histogram for the subset of the data that veri�esC = i.

We refer to a cell in a data buffer as abinned pixel. The granularity
of the binning (i.e., the choice of values forW andH) typically depends
on the required rendering resolution for the �nal visualization. Natu-
rally, larger values forW andH allow for a higher rendering quality at
the cost of bigger buffer sizes.

In a Class Buffer model implementation, the binning stage is ex-
pected to occur of�ine on a back-end server or to use precomputed tiles
for fast rendering [27]. This stage can also be progressively carried
out [16]. Since binning is independently done for each class, it can be
very ef�ciently parallelized with modern hardware such as GPUs and
multicore CPUs. In addition, the data buffers can be compressed before
they are sent to a browser; by default, our implementation sends 16-bits
deep grayscale PNG images that are supported by all web browsers,
and where each pixel corresponds to a binned pixel in a data buffer.
The size of the data buffers can be adapted to the network bandwidth,
screen resolution, and processing power of the machine managing the
front-end visualization and interaction. All computation and rendition
at the later stages occur on the front-end.

Note that the set of data buffers can also be seen as a 2DN-variate
dataset where each of theW � H cells hasN density values, one per
class. In cartography, maps are often referred with their number of
variates; for example, Fig. 2b is a trivariate map (i.e., three classes).

4.2 Preprocessing

The preprocessing stage applies optional transformations to theN data
buffers. Possible transformations are �ltering out classes (e.g., ignoring
the data buffer of the “mouse” class as in Fig. 3-2), combining two or
multiple buffers into a single data buffer, and normalizing where the
counts in each data buffer are divided by the sum of the counts. Our
current implementation supports smoothing (i.e., the application of a
Gaussian kernel of arbitrary size) (see Fig. 6a for an example). Accord-
ing to Wickham, “Smoothing is an important step because it allows us
to resolve problems with excessive variability in the summaries” [53].
The outcome of this process still consists ofN data buffers, but the
counts can possibly take noninteger values.

4.3 Styling

The styling stage (Fig. 3-3) constructsN class buffers, one per class.
A class buffer is a data buffer that has been assigned visual properties
that will be used in the later stages of the rendering pipeline. These
visual properties include, for example:



Fig. 3: The six stages of the Class Buffer model.

• acolor that will determine the color scale used to visually represent
the class (see Fig. 1);

• a hatchingangle, in case hatching is used (see Fig. 1-9 );
• a scalethat will be used to transform the counts before encoding

them visually (e.g., linear scale, log scale, or square-root scale).
All these visual properties are speci�ed on the front-end using a

grammar that will be detailed in Sect. 4.8. All the visual properties
have default values. For example, by default, we assign a color from
ColorBrewer's qualitative color scales [21] to each class buffer. How-
ever, controlling the color assignment is often important, as in Fig. 2-a
where the parties have well-known colors. Besides channel-speci�c
visual properties, this declarative grammar contains information on
data buffers (e.g., a URI to data buffers on a server) and speci�es global
options for the pipeline (e.g., how color scales should be blended or
how tiles should be de�ned for the next stage).

4.4 Rebinning

The rebinning stage (Fig. 3-4) �rst partitions theW � H grid into M
tiles. A tile is a set of cells in theW � H grid, and the set of all tiles is
referred to as atiling . Tilings are de�ned such that there is no overlap
between tiles and the union of all tiles is the wholeW � H grid. The
simplest tiling ispixel tiling , where each tile consists of a single cell
of theW � H grid (i.e.,M = W � H). Other tilings contain tiles that
span multiple cells. Such tilings can be either regular (e.g., a set of
2� 2 rectangles as in Fig. 3-4) or irregular (e.g., regions in a choropleth
map). Fig. 1-8 – 14 are examples of irregular tilings, while Fig. 1-1 – 3

use pixel tiling. Tiles can be de�ned based on geometrical primitives
or using the URI of a TopoJSON [6] speci�cation to de�ne geographic
administrative boundaries for choropleth maps.

After a tiling has been constructed, the rebinning process creates and
assigns adata vector to each of theM tiles. A data vector is a vector
of lengthN that stores a count for each class, called theaggregated
count. That is, all binned pixels from classi that belong to the tilet
are aggregated into a single value and stored in theith element of the
data vector oft. Possible aggregate functions includesum(i.e., the
counts of the binned pixels are summed),min, mean, max, anddensity
(sum divided by area). Again, counts can take noninteger values. When
pixel tiling is used, aggregation amounts to simply copying counts from
binned pixels into data vectors.

Finally, the rebinning stage virtually normalizes all aggregated
counts between 0 and 1, according to the options assigned during
the styling stage (e.g., using a linear, log, square root, or equi-depth
histogram scale). These counts are callednormalized counts. Con-
cretely, it de�nes a scale object that maps the range of counts to[0;1].
This scale object is later reused for the legend.

4.5 Assembly

The assembly stage (Fig. 3-5) turns the tiles and data vectors into an
image with an opacity (alpha) channel, which we refer to as adensity
map image. Much of the visualization process occurs in this stage.

There are four broad types of assembly operations: masking, mixing,
hatching, and generating glyphs.

The �rst type of assembly operation,masking, assigns a mask to
each of theN class buffers. A mask is aW � H grid of opacity values,
and theN masks are de�ned so that the sum of opacity values across all
classes is 1 for each of the pixels. Then each tile is renderedN times
with a uniform color. The color corresponds to the color previously
assigned to the class in the styling stage, and its opacity is set to the
normalized count stored in the data vector. TheN tiles are �nally
alpha-blended using the opacity values stored in the masks. Masks are
essentially used for producingweavingpatterns, such as illustrated in
Fig. 1- 4 – 6 . In these examples, the mask opacity values are either 0 or
1, and the masks are used to de�ne “patches.” Patches can be polygons,
such as triangles, rectangles (Fig. 1-4 ), or hexagons (Fig. 1-5 ). They
can be randomly assigned to class buffers (Fig. 1-6 ) or follow a regular
pattern (Fig. 1-4 ). Weaving guarantees that each pixel in the density
map image is assigned a unique class. When no masking is speci�ed,
con�icts can be resolved using other types of assembly operations.

The mixing operation combines tiles by blending them. Similar
to masking, each tile is renderedN times, again with a uniform color
corresponding to the class and an opacity value equal to the normalized
count. However, the colors are mixed across the entire tile instead of
being masked. A straightforward mixing approach consists inaverag-
ing all colors (see Fig. 1-2 for an example). Other mixing methods
can be used; for example,additive mixingsums each RGB channel
of theN colors, thus generating bright colors for high-density regions.
Multiplicative mixingdoes the opposite, yielding dark colors for high-
density regions (see Fig. 6b for an example). It is also possible to take a
winner-takes-allapproach, where only the class with the highest count
is chosen (see Fig. 1-8 for an example). Finally, we also de�ne a
loser-takes-allapproach, where only the class with the lowest nonzero
count is chosen, but its color intensity is inverted; low color values
become vivid. This mixing method can boost the visibility of outliers.

Tiles can also be rendered with ahatching operation, which �lls
each tile with evenly spaced lines. Typically, normalized count is en-
coded with line thickness, while class is encoded using line orientation,
color, or texture. The hatches can be combined across classes either
by stacking them side by side within each tile (as in Fig. 2c-left) or by
superimposing them (as in Fig. 1-10).

Finally, tiles can be rendered using a more conventional visualization
pipeline, i.e., bygenerating glyphs. Glyphs are miniature visualiza-
tions that encode allN normalized counts in the data vector and are
typically displayed at the center of each tile. For example, in Fig. 1-13 ,
a bar chart is placed inside each tile, conveying the density for each
class. Meanwhile, Fig. 1-14 uses a “punchcard” style, where densities
are mapped to circle radii. In our implementation, all such glyphs
can be speci�ed in Vega-Lite [43], a high-level JSON grammar for
visualization. Note that �nding a “good” location for the glyphs is not
always trivial. We currently compute the largest rectangle in polygon
for each tile and place the glyph at the center of that rectangle.



The assembly operation is optional. When no assembly operation
has been speci�ed, each tile is rendered using a uniform translucent
color as previously described, and the process outputsN density map
images instead of a single one, leaving the con�ict resolution to the
�nal rendering stage.

4.6 Rendering

The �nal rendering stage turns the density map image(s) into a �nal
image that can be directly displayed on the screen (Fig. 3-6). In case
the classes were already assembled in the previous stage, the density
map image is simply rendered on a background. The background color
de�nes the lower end of the color scales used in the �nal visualiza-
tion. For example, a white background produces color scales where
zero or minimum density is mapped to white (as in Fig. 1). While
backgrounds can be uniform, they can also consist of cartographic
backgrounds that provide extra annotations such as city locations and
names. Alternatively, annotations can be rendered on top of the density
map image. The rendering stage augments the rendered density maps
with any extra visual element necessary to improve readability and
interpretability. This stage is responsible for rendering optional contour
plots (see Fig. 1-7 ), tile boundaries, thex andy axes, and the legend
(discussed in more detail in the next section). Finally, it decides on
where to render the density map image and at what scale (e.g., in case
of pixel magni�cation). In the case of multiple density map images
(i.e., no assembly), each density map image is rendered at different
locations (i.e., asmall multiplesapproach, see Fig. 1-1 ).

4.7 Legends

To be usable, a multiclass density map needs a legend. Our current
implementation of the Class Buffer model automatically generates
simple legends (Fig. 4). Our legends consist of three parts: (1) akey
that maps class colors to class names, (2) ascaleto help retrieve counts,
and (3) an optionalexplanationof how mixing is done.

The key, present in all our legends, lists the name and color that
is assigned to each class buffer. Thescaleshows how counts map to
visual attributes. In most cases, it consists of a set of color ramps (Fig. 4
[a–c]). The color ramps linearly interpolate between the colors of the
lowest and the highest count and add ticks that are equally distant in
the data domain. Thus, if a nonlinear scale has been speci�ed, the ticks
are unevenly spaced in the legend, indicating that the scale is nonlinear
(Fig. 4 (b,c)). For glyph-based assemblies, the scale consists of one or
several glyphs with numerical labels, such as the miniature bar chart in
Fig. 4d or the circle-radius scale in Fig. 4e.

The lastexplanationarea illustrates which mixing function (e.g.,
maxas in Fig. 4a ormeanas in Fig. 4b) was used for color mixing. We
considered using an Euler diagram or InfoCrystal [47] representation
to visualize all possible combinations of class colors. However, in our
case, the luminance level of class colors can vary depending on density,
and it is hard to simultaneously visualize the mixture of multiple colors
at different luminance levels. More generally, visualizing a multivariate
color scale with more than two variables is impossible, because it would
require the volumetric visualization of a cube or hypercube. Thus, we
only show the bivariate color scale derived from the �rst two class
buffers. Although this approach does not support value retrieval, it
explains how colors are mixed. We do not provide a similar explanation
for techniques such as masking and hatching because the way classes
are combined can be deduced by looking at the visualization itself.
For example, in Fig. 4c, class buffers are spatially separated through
weaving and do not involve any hidden mixing.

These techniques are meant to provide basic support for legends, and
can be improved or extended. For example, the key and scale could be
combined, as it is commonly the case in visualization and map legends.

4.8 Implementation

Our implementation is available, with example datasets, at
https://github.com/e-/Multiclass-Density-Maps and exam-
ples can also be explored athttps://jaeminjo.github.io/
Multiclass-Density-Maps/ .

(a) (b) (c) (d) (e)

Fig. 4: Auto-generated legends for multiclass density maps

f "description"?: <string>,
"background"?: <Color>,
"data": f "url": <url> | "dataSpec": <DataSpec> g,
"smooth"?: f " radius": <number> g,
"reencoding"?: f

" label "?: <LabelSpec>,
"color"?: <ColorSpec>,
"hatching"?: <HatchingSpec> g,

"rescale"?: f
" type": " linear "|" log"|"pow"|"sqrt "|"cbrt "|"equidepth",
"rebin"?: f

" type": "none"|"square"|" rect "|" topojson"|"voronoi",
"aggregation": "mean"|"max"|"sum"|"min"|"density",
"width"?: <number>, "height "?: <number>,
"size"?: <number>, " topojson"?: <TopoJSONSpec>,
"url "?: <string>, " feature"?: <string>,
"points"?: <Point []>, "stroke"?: <Color> g,

"compose"?: f
"mix": "none"|" invmin"|"mean"|"max"| "blend"|

"weavingrandom"|"weavingsquare"|"weavinghex"|
"weavingtri "|"propline"|"hatching"|"separate"|
"glyph"|"dotdensity "|" time",

"mixing"?: "additive"|"subtractive "|"multiplicative",
"size"?: <number>, "widthprop"?: <string|number>,
"colprop"?:<boolean>, "order"?: <number []>,
"glyphSpec"?: <GlyphSpec>, " interval "?: <number> g,

" levels"?: <number>
g,
"contour"?: f

"stroke": <number>, " lineWidth"?: <number>,
"values"?: <number []>, "blur"?: <number> g,

" legend"?: <LegendSpec>, "stroke"?: <StrokeSpec>,
"axis"?: <AxisSpec> g

Fig. 5: Syntax of Class Buffer speci�cations

Our Class Buffer model is implemented in approximately 5,000
lines of TypeScript, a strongly typed language that can be transpiled
into JavaScript. We render the tile glyphs using Vega-Lite [43], which
is conveniently also written in TypeScript. We also rely on the D3
library [7] for contours and cartographic projections.

Interpreting a speci�cation takes between a few hundred millisec-
onds to one second depending on the complexity of the operations
to perform, not counting the time to transfer the data, including data
buffers and the TopoJSON �le if needed. Currently, data buffers can
be sent as 2D arrays in the JSON format or as gray-scale 16-bit PNG
�les.The data buffers in the JSON format are usually heavily com-
pressed by the gzip compression of the HTTP protocol when enabled,
as in our example gallery. Changing a speci�cation and reinterpeting it
is usually much faster since data is not transferred, and intermediate
operations, such as rebinning, can be cached if the tiling is not changed,
which is common for maps.

Modern browsers support three graphic libraries: SVG, Canvas,
and WebGL. Our implementation is meant to be easy to read and
extend; therefore it uses the Canvas, which is faster than SVG but



less complicated to program and understand than WebGL. For screen
resolutions up to FHD (1920� 1080), the rendering time is under 0.1 s
for most of the con�gurations and optimizing it is not necessary.

Fig. 5 summarizes the syntax of our visualization speci�cations.
While it may look complex, most speci�cations in practice are very
concise; we show several concrete examples in the next section. The
data speci�cation mentioned on line 3 (<DataSpec>) comes from a
back-end program; it contains URIs to the data buffers and the informa-
tion required to visualize them, such as the �eld names, domains, ranges,
data-speci�c colors (e.g., red for Republican and blue for Democrats),
and sometimes projection for cartographic data. The rest of the syntax
describes the operations to apply to the data buffers, such as smoothing,
styling (reenconding ), rebinning, assembly (compose), normaliza-
tion (rescale ), and options for the post-processing stage (contour ,
legend , stroke , andaxis ).

5 EXAMPLES FROM THE CLASS BUFFER MODEL

In this section, we show how the Class Buffer model can be used
to create multiclass density maps from data in practice. We start by
reproducing our classic examples from cartography (Fig. 2). Then,
we use the Class Buffer model to scale up conventional scatterplots,
and demonstrate several design alternatives that can be con�gured
interactively on front-ends to support various tasks.

5.1 Revisiting Examples

One strength of the Class Buffer model is its ability to express various
designs of multiclass density maps with a uni�ed visualization grammar.
Fig. 6 shows the reproduced examples of Fig. 2 with synthetic data.
Note that all maps are complemented with legends.

Fig. 6a smooths prebinned histograms with a Gaussian kernel of
radius 1. Rebinning is not used in this map, so each prebinned pixel
is directly rendered on a canvas by default, with a color determined
by a logarithmic color scale. For color mixing, themeanblending
function is chosen. This blending function outputs an achromatic color
if two parties are equivalently supported and a saturated color if one
party outperforms the other. Note that Fig. 6a has the boundaries of
states through thestroke option, which does not affect binning but is
handled at the rendering stage.

The other maps apply rebinning on prebinned histograms, which is
speci�ed through therebin option. Fig. 6b uses county-level rebin-
ning, while the other US maps perform rebinning at the state level. In
addition, Fig. 6b adopts multiplicative color blending, so larger data
values from class buffers produce a darker color. Fig. 6c and Fig. 6d
employ hatching with aligned and nonaligned lines, respectively. In
Fig. 6c, each county is painted with stacked bars that show the propor-
tion of each class. By contrast, Fig. 6d assigns a different angle to each
class, encoding a data value using both the color and thickness of a line.
Fig. 6e shows an example of random weaving where each class buffer
occupies a random subset of rectangular patches on a tile (i.e., a state).
Finally, Fig. 6f places tile glyphs, a mini bar chart, on each state.

5.2 Large Multiclass Maps

Multidimensional projection algorithms are now applicable to millions
of points in a reasonable time [39, 48]. We applied the LargeVis al-
gorithms [48] to the notMNIST dataset [11] made of approximately
530,000 small images (each has28� 28= 768gray-level pixels). The
algorithm uses these 768 values as high-dimensional vectors that are
projected in two dimensions; the results are shown in Fig. 7.

The main task analysts perform on these projections is checking that
classes are well separated by comparing the visual clusters with the
color labels and looking for erroneous points. Fig. 7 shows two con-
�gurations of the same Class Buffer that reveal the ability of LargeVis
to separate some of the classes on the left and the large number of
erroneous points on the right, revealing outliers and algorithm artifacts.
The �rst con�guration composes the image by showing the class with
the highest density at each pixel and rescaling the color histogram using
an equi-depth histogram. This con�guration only shows the dominant
class at each pixel and depicts a good class separation, except at the
center where multiple classes are mixed. By contrast, the right image

employs theinvmin mix method that returns the lowest data value at
each pixel. As a result, the right image allows focusing on outliers
and artifacts to understand where the algorithm has not been able to
separate classes properly.

Fig. 8 visualizes the on-time performance of three carriers in the
United States. Each row in the dataset [37] has two quantitative at-
tributes,travel distanceandarrival delay, and one categorical attribute,
carriers. The original dataset had 2.4 million �ights, and we created
three data buffers (one for each carrier) by binning the dataset along
with the two quantitative attributes. We then normalized the counts
to percentages to allow comparison among carriers. Fig. 8 shows the
result with two density map designs. Unlike previous examples, the
density maps are augmented with thex andy axes. Fig. 8-left uses
themaxmixing function with a three-level equi-depth color scale (i.e.,
a discrete color scale where every color band has the same number
of rows) and reveals the overall trend between distance and arrival
delay; most �ights traveled less than 2,500 miles, and most long de-
lays occurred from those �ights. For short �ights (i.e.,distance <
1,000 miles), DL had the largest number of delayed �ights (orange
tiles around the top-left corner), whereas UA had the largest number
for intermediate �ights (i.e., 1,500 miles< distance< 2,500 miles,
green tiles at the center). Fig. 8-right uses parallel proportional lines to
display the data as 100% stacked bar charts in each tile. One can see
that AA (blue bars) generally performed well for short and intermediate
�ights but not for long �ights (i.e.,distance> 3,500 miles).

6 DISCUSSION

In this section, we discuss the bene�ts of the Class Buffer model, how
it can combine with a traditional visualization system, including the
postprocessing stage where additional elements should be combined
with our model to address important tasks.

6.1 Bene�ts of the Class Buffer Model

Compared with other frameworks for visualizing large maps, the Class
Buffer model is more scalable over the three facets mentioned in the
related work: data size, perceptual processing, and computation speed.
The improved perceptual processing comes from the wide range of
visualization techniques it can generate for multiclass density maps.
The data size and speed scalability comes from the separation of compu-
tations between the back-end side and the front-end side. The back-end
side needs to compute density maps, and the computation time is pro-
portional to the number of points. Once this expensive computation is
done, the wide range of visualizations offered by our model can be used
to explore the data at interactive speed, regardless of the size of the
original data. It can be about millions of points, billions, or any higher
scale; the sheer amount is irrelevant to our model, and users can explore
data using multiple visualizations with different trade-offs regarding
the visual tasks supported. Other visualization libraries compute the
aggregation and the visualization together, needing a time proportional
to the number of points to generate a new visualization and require
expensive round-trips from the back-end to the browser.

Abstract Rendering[13,23] performs the binning operations in com-
plex buffers that are con�gured early before their contents are com-
puted. Once computed, most of the rendering has to be performed in
the back-end as well because the composite structure at each bin is too
complex to be sent transparently to a front-end. Each modi�cation of
the AR pipeline requires an expensive recomputation starting at the
binning stage, requiring the handling of the whole dataset. In addi-
tion, similar to other scalable visualization systems [38], AR performs
smoothing during the aggregation stage: each point value is modulated
by a smoothing kernel that is added to the density array, an operation
that slows down the computation of the density map by the size of the
kernel (typically 4–16). By contrast, the Class Buffer model receives
the raw unsmoothed density map and can apply a smoothing kernel to
it at its �rst stage. According to Wickham [53], applying the smoothing
to the binned data produces very similar results than applying it before
binning, with a substantial performance improvement [51].

Compared with Wickham's BSS model [53], the Class Buffer model
provides a richer set of visualization options, but less statistical oper-



Speci�cation

"smooth": f " radius": 1 g,
"rescale": f " type": " log" g,
"compose": f "mix": "mean" g,
"stroke": f

" type": " topojson",
"url": "us. json",
" feature": "states",
"color": "rgba(0, 0, 0, 0.3)" g

Speci�cation

"rebin": f
" type": " topojson",
"url": "us. json",
" feature": "counties" g,

"rescale": f " type": " log" g,
"compose": f

"mix": "blend",
"mixing": "multiplicative" g

Speci�cation

"rebin": f
" type": " topojson",
"url": " franceD.json",
" feature": "poly" g,

"compose": f
"mix": "propline",
"size": 18,
"widthprop": "percent" g

(a) (b) (c)

Speci�cation

"rebin": // US rebinning
"compose": f

"mix": "hatching", "size": 4,
"widthprop": "percent",
"colprop": true g

Speci�cation

"rebin": // US rebinning
"compose": f

"mix": "weavingrandom",
"size": 2 g

Speci�cation

"rebin": // US rebinning
"compose": f "mix": "glyph",

"glyphSpec": f
" template": "bars",
"width": 20, "height": 24 gg

(d) (e) (f)

Fig. 6: Revisited examples of multiclass density maps (Fig. 2). The Class Buffer model can express various designs of multiclass density maps
using a single declarative visualization grammar. Underlying data is synthetic.

Speci�cation

"compose": f "mix": "max" g,
"rescale": f " type": "equidepth" g

Speci�cation

"compose": f "mix": " invmin" g,
"rescale": f " type": "sqrt" g,
"rebin": f " type": "square",

"size": 2, "aggregation": "min" g

Fig. 7: The notMNIST dataset [11] projected using LargeVis [48]. On the left side, colors are blended to reveal global clusters. On the right side,
the color of a class with the minimum density is chosen (invmin ), revealing outliers and algorithm artifacts.



Speci�cation

"compose": f "mix": "max" g,
"rescale": f " type": "equidepth" g,
"rebin": f " type": "square", "size": 8 g,
"axis": true

Speci�cation

"rebin": f " type": "square", "size": 64 g,
"compose": f "mix": "propline",

"widthprop": "percent", "sort": false g,
"axis": true

Fig. 8: Multiclass density maps showing the on-time performance of three carriers in the United States [37], augmented by axes. On the left side,
the overall trend can be seen; most �ights traveled shorter than 2,500 miles, and most long delays occurred from those �ights. On the right side,
proportional lines were used as stacked bar charts, enabling direct comparison between carriers.

ations at the prebinning stage. This is because the BSS model does
not manage multiclass data. Composing multiple classes from density
maps is understandable since densities are directly comparable, but
with more complex statistics such as average, variance, or higher-order
moments, the interpretations of the class combinations are challenging.

To be more speci�c on performance, we report times measured
with the Datashader library [14], optimized to visualize large-scale
aggregated data. We measured times to process the synthetic census
data [50] containing longitude/latitude and �ve “races” for 300 million
households in the US computed on a modern Linux laptop with 16GB
of memory and using 2 cores. Loading from a local SSD using a com-
pressed format took 11 s. Building �ve class buffers at a resolution of
900� 525took 1.26 s. Sending the data locally to the browser through
a WebSocket took 0.22 s. Datashader mainly implements additive color
mixing that ran in 0.088 s. Our implementation can render the class
buffers using most con�gurations in around 0.1 s, up to 1 s when com-
puting contour lines with a large blur radius. The rendering times are
thus similar but our implementation saves network traf�c—that can be
slow when using a remote connection—and complements Datashader
with a much richer set of rendering options.

6.2 Interactive Data Exploration

Our Class Buffer model uses data buffers (i.e., 2D histograms) as data
sources, and this provides the model with an ability to abstract under-
lying computation of large-scale data. For example, we assumed that
our datasetT = ( Q1;Q2;C) is �xed for simplicity, but in practice, the
dataset (1) usually has more dimensions and (2) can dynamically change
through user interaction such as �ltering out rows. When the dataset
is �ltered by a new dimension, the data buffers should be invalidated
and recomputed. In interactive exploration with multidimensional data,
this would be a frequent case, and modern data structures [27,28] have
been proposed to speed up the recomputation. Our Class Buffer model
naturally lends itself to working with those optimized data structures
through transfer of abstract data buffers. In addition, the ProgressiVis
toolkit [16] already transfers data buffers of progressively aggregated
data to its front-end, which can be used with our model.

6.3 Limitations

While the Class Buffer model allows creating a wide variety of visu-
alizations suited to complex tasks, it also needs additional data to be
fully usable, such as landmarks, points of interest, and outliers; they
should be combined at the rendering stage. Landmarks for maps include
important locations and names, sometimes additional shapes to add
context, such as rivers or points of interest. Landmarks for scatterplots

and multidimensional projections include location of interesting points.
For example, in publication data, highly cited publications or authors
can be used as landmarks. Many tasks described in Sect. 2.1 mention
identifying an individual point or comparing objects with groups. To
support these tasks, a selection of important objects should be sent to
the front-end for analysis.

The Class Buffer model can replicate several techniques used to
visualize multiclass density maps, but it does not offer guidance on
their best use. We need more experience to provide such guidelines,
for example, through controlled experiments with different techniques.
However, providing a usable implementation will enable the visualiza-
tion community to start researching these maps, opening up a new area
of scalable visualization.

7 CONCLUSION AND FUTURE WORK

Despite the popularity of multiclass maps, little has been done regarding
their design space and scalability. In this paper, we present the Class
Buffer model to improve the expressiveness and scalability of multiclass
density maps. Starting from the classic examples from cartography,
we survey and abstract multiclass density map idioms into a uni�ed
Class Buffer model. Our model separates computation between the
back-end side and the front-end side, allowing various map designs
without repeating binning and aggregation. Through our declarative
visualization grammar, users can explore the design space of multiclass
density maps, �nding the best design for achieving their goals.

For future work, we can extend our model with more multiclass den-
sity map idioms, in particular related to user interactions. For example,
the user may want to pan and zoom a density map or manipulate color
ramps on the legend through �ltering and clamping. In addition, our
prototype implementation is fast enough for modern browsers, but the
performance can be improved using WebGL for high resolution screens
or faster contour line computation. Finally, a body of research that in-
vestigated tasks and designs of conventional scatterplots exists [42], but
we found such attempts are rare for multiclass density plots. We believe
our reusable implementation will foster more research on multiclass
density maps as an effective idiom of scalable visualization.
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