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A Declarative Rendering Model for Multiclass Density Maps

Jaemin Jo, Frédéric Vernier, Pierre Dragicevic, and Jean-Daniel Fekete, Senior Member, IEEE
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Fig. 1: Design alternatives for a four-class density n@pshows small multiples where each density map is individually presented
with a unique color) stacks the density maps and blends the color at each gixsfiiows the color of the pixel with the highest
density;@-(e) use regular and irregular weaving patterisshows a contour plot for each class; use rebinning (binning
and aggregation over the density maps) with tiles produced by a random Voeesellation. The aggregated values are rendered in
with a at color showing the highest densitg) with hatchingd with proportional barsg with regular weaving@ with a dot
density plot@ with bar-chart glyphs, ang) with circle sizes.

Abstract —Multiclass maps are scatterplots, multidimensional projections, or thematic geographic maps where data points have a
categorical attribute in addition to two quantitative attributes. This categorical attribute is often rendered using shape or color, which
does not scale when overplotting occurs. When the number of data points increases, multiclass maps must resort to data aggregation
to remain readable. We present multiclass density maps: multiple 2D histograms computed for each of the category values. Multiclass
density maps are meant as a building block to improve the expressiveness and scalability of multiclass map visualization. In this
article, we rst present a short survey of aggregated multiclass maps, mainly from cartography. We then introduce a declarative
model—a simple yet expressive JSON grammar associated with visual semantics—that speci es a wide design space of visualizations
for multiclass density maps. Our declarative model is expressive and can be ef ciently implemented in visualization front-ends such as
modern web browsers. Furthermore, it can be recon gured dynamically to support data exploration tasks without recomputing the raw
data. Finally, we demonstrate how our model can be used to reproduce examples from the past and support exploring data at scale.

Index Terms —Scalability, multiclass scatterplots, density maps, aggregation, declarative speci cation, visualization grammar

<+

1 INTRODUCTION

In this article, we are interested in methods to increase the scalabilityMassive datasets suitable to be visualized as multiclass maps are
and expressiveness 2D multiclass map§.e., visual representations easily available, for example, thTl U.S. Synthetic Household Popu-
of data that consist of two quantitative attributes, which are mappkdion™ [50] containing one point per person in the United States (300
to (x;y), and one categorical attribute). 2D multiclass maps includwillion) with their age, sex, race, income, and house location. Large
scatterplots, multidimensional projections, and thematic geographieilticlass maps can also be easily generated by computing the projec-
maps, altogether calletiaps These maps are supported by all théion of millions of multidimensional multiclass points using modern
multidimensional data visualization and cartographic systems, attestiglable projection systems [39, 48].
their popularity and effectiveness. In nonaggregated maps, the categorifo scale scatterplots, several approaches have been proposed, such
cal attribute is depicted using a categorical visual variable at each poy,adaptive opacity [15, 30, 32] and aggregation [13, 53]. However,
such as color or shape. However, when the number of points increaggiaptive opacity does not scale well with the number of categories
the maps become unreadable because of excessive overplotting, whiglge multiple categorical colors become ambiguous when blended,
can result from structural properties of the data (e.g., multiple poirdsid aggregation methods such as density plots are limited to purely
being heavily clustered), or simply because of the sheer numbertpfariate quantitative data. Few techniques have been described to
points. support the visualization of aggregated multiclass maps, and to our
knowledge, no system supports their visualization in a exible way.

In this article, we present a declarative model to speatifiticlass
density mapamultiple density plots with different classes, applicable
to an arbitrary number of points. Our contributions are:
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buffers to create visualizations. The model enables many types of intategory is present at all, except for the speci c case of two or three
active recon gurations of the rendering pipeline, thanks to the speethsses with a well-chosen colormap [29, 49].
of the modern front-ends, without reviewing the raw data. Providing Chen et al. [12] have recently introduced animation to alleviate
a clean conceptual model supporting ef cient implementations widverdraw in multiclass scatterplot matrices (SPLOMSs). They animate
improve the exploration of multiclass maps at scale. It will also ake drawing order of the points to help the user see every point at any
low visualization systems to implement an effective separation in thgiosition by watching it for a suf cient time. However, that technique
pipeline between data aggregation and the rendering of aggregated @atdso limited by the time to animate the whole dataset. The authors
for greater richness and scalability of multiclass data visualization. mention an animation speed up to 800 rows per second, which would
take hours or days to run through millions of points. Even if the user
2 RELATED WORK was willing to spend time watching the animation, previous studies

Several articles [13, 23,31, 53] address the problem of scaling the viga\-/e shown that visual statistics_ can only be done over'short periods [1].
alization of multiclass maps. We identi ed three facets of scalability;, /€N the number of data points increases, a seemingly simple solu-

+ data sizarelated to the number of data points and categories, tion consists irsamplingpoints to limit overplotting. While uniform

. : . sampling is easy and fast to perform, it produces artifacts that are dif -
gfgﬁgﬁttll;aéi?:: Zsas;rt]gé?ézda;c:jthe ability to perform some tasl(S’cult to interpret cognitively [5, 28]. If density signi cantly varies (e.g.,

« computation speertlated to the time to compute an image fronpopu[ation maps), some regions of the map become empty, while others
a visualization technique givendata size remain crowded. Thus, many areas are hard to anal_yze. More c_omplex
Ideally, we want visualization techniques to support large data Sizsampllng methods have been studied, they are still computationally
W, ; . q Pp 9 Z&pensive [5] and produce artifacts that are challenging to interpret.
(100 million points or more with tens of categories or more) while
allowing performing important perceptual tasks quickly, and preferabb/_3 Aggregate Methods
with a high computational speed to allow interactive exploration, im-~ = =% )
plying a refresh rate between 25 ms to 10 s, depending on the typd-6f Situations where a few regions are overplotted but others are sparse
interaction [34,44]. However, managing large data sizes while allowi®f €mpty, Mayora and Gleicher have designed Splatterplots [31] that
effective perceptual processing is already a challenge, and our godFiglace dense regions with covering polygons, show individual points

to design a model that can improve all the three facets of scalabilityin sparse regions, and increase the visibility of outliers. Still, when
the number of categories and the overall density increase, Splatterplots

2.1 Tasks degrade since lled contours cover most of the visualization.

Multicl h | iidi ional ... When the number of points signi cantly exceeds the number of
utticlass maps, such as scatterplots, multidimensional prqecuog Is, it becomes technically impossible to distinguish the individual
fi

?ntlj(themgtlc %eiograpl)tth matpsl, areMused to perforn: several '.m?or ts, to perceive their density, or to see what categories are present at
as ksf re\élevl\ie s'gmuh Ipie ar: chest-' unzrr;gsrfpresendst a getneg;:] rarfy pixel. All the techniques described before fall short: jittering cannot
WOrk for tasks [ .]W ere she distinguisresiionsanalargels SNe - pe sed hecause there is no extra space to spread the high-density areas;
lists three categories of actions useful on most visualizations and f ha blending is limited to a few layers of overplotting and, even then

categories of targets. I—!er framgwork can be applied to every V'Sl.Ja.“a es not allow distinguishing clearly what colors have been mixed; and
tion technique, but the list of actions and targets can also be Spec'al'zféf?tterplots cover the whole display with lled contours

depending on the particular visualization techniques and applicatio
domains. Specializing Munzner's framework for scatterplots, Sarika@

and Gleicher [42] de ne a taxonomy with 12 tasks, sorted in thregg ;> ation where scalability is addressed through “statistical meth-
categoriesobject-centrig browsing andaggreggte-level ods,” includingbinningwith summary statisticandsmoothing How-

For maps, Roth [41] also adds speci ¢ actions and targets Suchéfilfb , it does not speci cally address the problem of multiclass maps.
rank, associate, delineate, reexpress (changing the assignment of VW@Lham [53] describes a framework to achieve scalability catiee
properties and_layou_t), arrange, sequence, resymb_ollze, °V.ef'ay’ %marise-smoot(rBSS). It starts from a dataset with two quantitative
reproject. For dimensionality reduction, the literature is more dispersgg japjes hins them, computes a simple aggregation statistics on the
Most of the articles mention visualizing class separation and class g sucH asount ana then applies a smoothing function before ren-

uality (e.g., [3]), but more elaborate studies such as Brehmer et al. [§] : ; P :
gistinyu(isr? fV\[/o]z:’ate ories of task sequend@isnension-Orientednd ring the results on the screen. Wickham insists on many important
9 9 q - details that need to come with this pipeline, such as the management

Cluster-OrientedThe cluster-oriented tasks are speci cally related ¢  jiers and uncertainties. However, his framework is limited to
multiclass maps. Aupetit [2] mentioned more subtle tasks related ariate data. not multiclass
distinguishing data outliers vs. projection artifacts; they imply visual ottam et ;al describe a.similar framework calisidstract Ren-

relatior_ls between o_bjects and clusf[ers. In addi_tion, many tasks rel ing[13, 23] (AR) made of four stageselect info, aggregateand

to “?”'“C'ass maps involve comparlsons,_mentlone(_j in tasks 10_12t nsfer. 'i'he selectfunction is equivalent to thbiln stage of BSS,

Sarikaya and Gleicher [42] ar_1d a_llso studied _by G_Ie|c_her [18]. byt in a speci c case where each bin is rectangular and aligned with
To sum up, when the data size increases, visualizations cannot Cl,egtf}'een pixels. While BSS is based on standard aggregation statistics

show all _the |nd|y|dual points. Therefore, tasks related to objects/poin ere a bin contains a single value, AR extends the concept of bin to

become impossible unless a small and useful subset of important poii&, o nd values, including RGB colors, list of categories, or reference

can be selected and clearly visualized. In addition, comparison ta% rogramming objects; these values are extracted from the data with

can be performed over the cross product of objects or groups, giint function. Therefore, thaggregatefunctions are more diverse
related to values, locations, distributions, classes, and other meaningfy,, thesummarisestep in BSS

concepts. Therefore, it is unlikely that one visualization technique Will'y;, o s visualization methods have been used to visualize multiclass

allow performing all the possible comparisons ef cienty. maps. One of the most widely used methods is color mixing where
each class is assigned a unique color, and the colors are mixed at each
point of a map by mixing depending on the density as in Fig. 2a. Color
When the amount of overplotting is limited, several effective techniquesixing can be extended to more classes; for example, Slingsby et
have been introduced, such as jittering [24] or using alpha blendirad),[45] uses seven unique colors to represent different claSsegour
sometimes with adaptive opacity [15, 30, 32]. Jittering requires empaiotscan be used to visualize multiclass data when the data is smooth
areas to spread crowded points; therefore, it does not scale when o#eough to avoid too many tangled lines [31]. Ware introdU@son
plotting happens on large areas. For alpha blending, when multiptaps[52] where “texton shapes” are overlaid on a colored density map
colored points are drawn on top of each other using transparency, theishow a second class, although with a limited spatial resolution for the
colors are blended, and it becomes dif cult to even perceive if ortexton shapes. Miller introducestribute Blockg33] where multiple

0 visualize maps of larger datasets, a few models have been pro-
sed.The Grammar of Graphicfs4] provides a general model for

2.2 Nonaggregate Methods



(a) Support for Democratic vs. Republican(b) Percentage of high school graduates, of college grég)-Number of workers per sector of economy (primary,
candidates in 2008 [46]. uates, and median house income in 2009 [22]. secondary, tertiary) in 1954 by Bertin [4].

(d) Detail of a map of New-York City showing the distri- (e) Six socioeconomic indicators in each of (f) Detail of a map showing average sales per farm
bution of nationalities across districts in 1890 [25,40]. the twelve Midwestern US states [19]. for each US state in 1919, 1924, and 1929 [10].

Fig. 2: Examples of multiclass density maps. Various techniques have been used to visualize multiclass density maps, such as bivariate (a) ar
trivariate (b) maps, exhaustive maps [4] (c), hatching (d), weaving (e), and glyphs (f).

density maps are computed, one per class, and assigned a categdbieaiocratic vs. Republican candidates (Fig. 2a). Areas with strong
color (a hue). The visualization space is then segmented by a grid widemocratic and Republican support are in blue and red, respectively. In
each cell showing one of the density maps. Similar to Attribute Blockaddition, colors in densely populated areas are highly saturated, while
Weaving19] has been designed to visualize multiclass data over choaseas with low population density appear “washed out.” While the
pleth maps (Fig. 2e). One colored choropleth map is created for ealthergent red-blue scale does not encode density information (but a
class, and the nal image is composed by stacking the choropleth mapsan response on a seven-point scale), this map can alternatively be
using a regular grid where each cell shows a density map of a randors@en as a mixture of two density maps: one showing the density of
chosen class. Superimposing symbols ¢hyph9 on a map is also Democratic supporters (and encoded on a white-blue scale) and one
commonly used to visualize multiclass data in cartography (Fig. 28howing the density of Republican supporters (and encoded on a white-
For example, Brewer and Compbell [9] introduce varied point symed scale). Therefore, this map can be conceptually seen as a multiclass
bols, such as a pie chart with two wedges, to visualize bivariate dat@nsity map with two classes.
on maps. As follow up studies, Nelson evaluates the perfor_mance ofThe second example is a US map by Gregory Hubacek [22], showing
those symbols [36], and Lamb [26] presents a layout algorithm thije percentage of high school graduates (in magenta), college graduates
automatically removes the overlap between the symbols. Fimlalty, (in yellow), and the median house income (in cyan) in 2009. The legend
distribution mapgor dot density mapq17] look similar to sampling, yses small multiples, a simple and common technique for multiclass
but they generate a random uniform pattern over aggregated areagelfsity maps. The large map combines the three maps using subtractive
convey density (Fig. 12). Each dot represents a constant number @oor blending (e.g., as when stacking colored Iters on a white surface).
data points, and the user needs to remember that meaning. Regions that are high in all three indicators are black, while regions
To summarize, various techniques have been proposed in the litgfiat are high in only one or two of the indicators have a recognizable
ture and visualization packages for multiclass maps. However, to dgalor. Even though the third class (median house income) does not
with the large number of tasks the user may want to do with this typgyolve density data, the same technique can in principle be used to
of maps, having a unifying conceptual model that can describe thgsi@duce pure multiclass density maps with three classes.

methods and realize new promising methods is required. The two maps of France in Fig. 2c are obtained from Jacques Bertin's
bookSemiology of Graphidgl]. Both maps show the number of French
3 EXAMPLES FROM CARTOGRAPHY workers per geographic department in 1954, broken down into three

In this section, we discuss a few representative examples of multicl&s®nomic sectors: the primary (agriculture), the secondary (industry),
density maps, shown in Fig. 2. Our visualizations are taken from capd the tertiary (commerce, transports, services). In the left map, the
tography, because this signi cant discipline often needed to visualigectors are encoded in yellow (1), red (Il), and black (IIl). In the right
multiclass density data, so it has rich examples. However, as we d@@p, they are encoded in cyan (1), magenta (11), and black (IIl). While
cussed before, multiclass density maps do not need to be cartographi left map only shows proportions, the right map shows absolute
For example, they can include the combinations of multiple scatterplggunts. Bertin called these maps “exhaustive maps” [4]. Following our
showing abstract data [12]. terminology, t.hey are multiclas.s density maps with three classes. These
The rst example by David B. Sparks [46] shows data from thé€signs provide a good overview of the data, and likely better support
2008 Cooperative Congressional Election Study (CCES), where 30,0092l comparisons and value retrieval than the two previous designs.
randomly-sampled US residents were asked to report their support folFig. 2d illustrates an even older example of a multiclass density



map. It is a portion of a map showing the distribution of nationalities 5. Assembly The assembly stage turns tiles and normalized counts
in New-York City in 1890 [25, 40]. Each nationality is encoded with a into a singledensity map imageSeveral types of assembly op-
speci c texture, as explained in the legend underneath. Each sanitary erations are possible, nameiyasking mixing hatching and
district is lled with textured bands whose widths map to the proportion  generating glyphs

of nationalities within the district. Thus, districts with less diversity ) ) ) )

(e.g., 11D) appear visually homogeneous, while districts with more 6- Rendering. This nal stage renders the density map image on top
diversity (e.g., 18'A) exhibit complex patterns. Although the encoding ~ ©f @ background image, also adding decorations and annotations
may appear overwhelming, this multiclass density map manages to (landmarks, axis, legend, etc.) to make the visualization easier to
show as many as ten classes, without the use of color. It is analogous "€2d and interpret.

to the left map from Bertin in Fig. 2c, except the orientation of bands is Each of the six stages is described in more detail below. We assume
varied across districts to make boundaries more prominent. we start from a tabular datasBtwith three attribute§Q;; Q2;C), with

The choropleth map in Fig. 2e shows six socioeconomic indicatdis @ndQ> being two quantitative attributes aficheing a categorical
measured in each of the twelve Midwestern US states [19]. Ea@Hribute withN possibleclasse<C = fcy;cz;  ;ong. We further as-
indicator has a color scale, as shown by the legend underneath. Eg¢Re thatQ;, Qz) use a 2D position encoding (i.€; is mapped to
state blends the six color scales using the recently introdocted  thex axis andQz is mapped to thg axis in the nal visualization).
weavingtechnique [19], where colors are displayed side by side in4311 Binnin
high-frequency texture. The state of Kansas (on the bottom left) appears 9
dark because it is high in all six indicators, while the state of Minnesofde Class Buffer model is designed to scale multiclass scatterplots
(second on the top) is high in the number of high-school graduates (d##kile supporting responsive interactions at the user interface level. To
cyan dots) but relatively low in other indicators. A study has suggestéis end, we start by preprocessing the raw data so that multiclass
that color weaving facilitates value retrieval from individual channeldensity maps can be later rendered in interactive time.
compared with color blending, as used in Fig. 2b [19]. ~ Inthe binning stage (Fig. 3-1), the initial data talfle ( Q1;Q2;C)

Fig. 2f is an example of what Robert L. Harris calls “symbols o#f SPlitintoN data buffers Bip(; ;. A data bufferis av  H scalar
maps” in his illustrative reference on information graphics [20]. Thigatrix that discretizes the domain @;; Q) into a regular grid and
map shows the average sales per farm through cooperative associatibores the number of data cases that fall into each cell (which we refer
for each of the US States in 1919, 1924, and 1929 [10]. If the quantiy ascounts). Data buffers are class-specic, so one data buffer is
shown was density information (e.g., population density), this mayeated for each of the classes irC. In other words, each data buffer
would be a multiclass density map with three classes (i.e., one cl&stores a 2D histogram for the subset of the data that ve@ esi.
for each year). In this article, we will use the term “glyph” to refer to We refer to a cell in a data buffer adbaned pixel. The granularity
such miniature visualizations. In his boSkemiology of Graphicgl], of the binning (i.e., the choice of values féfandH) typically depends
Bertin advises against using glyph maps because they typically proviere the required rendering resolution for the nal visualization. Natu-
poor overviews and make it hard to perceptually separate the chanriglly, larger values fow andH allow for a higher rendering quality at
(compare with Fig. 2c, for example). However, Bertin only focuses dhe cost of bigger buffer sizes.
showing a few channels (typically three), while visualizations such asIn a Class Buffer model implementation, the binning stage is ex-
in Fig. 2f can be easily extended to many more channels. pected to occur of ine on a back-end server or to use precomputed tiles
for fast rendering [27]. This stage can also be progressively carried
out [16]. Since binning is independently done for each class, it can be
very ef ciently parallelized with modern hardware such as GPUs and
In this section, we introduce a declarative model that covers a langeilticore CPUs. In addition, the data buffers can be compressed before
design space of multiclass density maps. It originated from our ctiley are sent to a browser; by default, our implementation sends 16-bits
lection of real examples of multiclass density maps from cartograplofgep grayscale PNG images that are supported by all web browsers,
information visualization, and infographics, such as the ones descrit@tl where each pixel corresponds to a binned pixel in a data buffer.
in the previous section. Reviewing the examples, we found that mdste size of the data buffers can be adapted to the network bandwidth,
examples could be expressed with @lass Buffer idiomparticularly screen resolution, and processing power of the machine managing the
used in a previous study [12]; we use that idiom as the building bloétont-end visualization and interaction. All computation and rendition
for our model. at the later stages occur on the front-end.

Our implementation of the model de nes an expressive visualization Note that the set of data buffers can also be seen asNr2@iate
grammar for multiclass density maps using the JSON data-interchamtggaset where each of thi¢ H cells hasN density values, one per
format. Such speci cations can be ef ciently interpreted and renderedass. In cartography, maps are often referred with their number of
in visualization front-ends such as modern web browsers. Our moderiates; for example, Fig. 2b is a trivariate map (i.e., three classes).
consists of six stages (see Fig. 3):

4 THE CLASS BUFFER MODEL

4.2 Preprocessing

1. Binning. The initial data table is split into as madgta buffers . . . .
% preprocessing stage applies optional transformations fd taa
&

as classes. A data buffer is essentially a 2D histogram that co
and bins all data cases of a particular class. This step is perfor
by the back-end of the visualization system, which sends the d
buffers to the front-end visualization engine.

ers. Possible transformations are Itering out classes (e.g., ignoring
data buffer of the “mouse” class as in Fig. 3-2), combining two or
multiple buffers into a single data buffer, and normalizing where the
counts in each data buffer are divided by the sum of the counts. Our
. . current implementation supports smoothing (i.e., the application of a
2. Preprocessing Once in the front-end, the data buffers underge, 5 ,sgjan Eernel of arbitrar;)gize) (see Fig. 6%1(for an exa?npple). Accord-
optional preprocessing operations such as Gaussian smoothifgy 14 wickham, “Smoothing is an important step because it allows us
to resolve problems with excessive variability in the summaries” [53].
3. Styling: The data buffers are then transformed iokass buffers The outcome of this process still consistshofiata buffers, but the
A class buffer is a data buffer augmented with visual propertiassunts can possibly take noninteger values.
such as a class-speci c color.
4.3 Styling
4. Rebinning. The grid used by class buffers is partitioned itites, The styling stage (Fig. 3-3) construdisclass buffers one per class.
and for each tile, anggregated couris computed for each class A class buffer is a data buffer that has been assigned visual properties
and stored in @ata vector Aggregated counts are then convertedhat will be used in the later stages of the rendering pipeline. These
into normalized counts visual properties include, for example:



Fig. 3: The six stages of the Class Buffer model.

« acolor that will determine the color scale used to visually represeffthere are four broad types of assembly operations: masking, mixing,
the class (see Fig. 1); hatching, and generating glyphs.

+ a hatchingangle in case hatching is used (see Figgj): The rst type of assembly operatiomasking, assigns a mask to
» ascalethat will be used to transform the counts before encodingpch of theN class buffers. A mask is&wW H grid of opacity values,
them visually (e.g., linear scale, log scale, or square-root scale). and theN masks are de ned so that the sum of opacity values across all
All these visual properties are speci ed on the front-end using @asses is 1 for each of the pixels. Then each tile is rendetimdes
grammar that will be detailed in Sect. 4.8. All the visual propertiegith a uniform color. The color corresponds to the color previously
have default values. For example, by default, we assign a color frg8signed to the class in the styling stage, and its opacity is set to the
ColorBrewer's qualitative color scales [21] to each class buffer. Howormalized count stored in the data vector. Thdiles are nally
ever, controlling the color assignment is often important, as in Fig. 2a#pha-blended using the opacity values stored in the masks. Masks are
where the parties have well-known colors. Besides channel-specigsentially used for producingeaving patterns, such as illustrated in
visual properties, this declarative grammar contains information @iy, 1@~®. In these examples, the mask opacity values are either 0 or
data buffers (e.g., a URI to data buffers on a server) and speci es glohaknd the masks are used to de ne “patches.” Patches can be polygons,
options for the pipeline (e.g., how color scales should be blendedgch as triangles, rectangles (Figa®); or hexagons (Fig. ). They

how tiles should be de ned for the next stage). can be randomly assigned to class buffers (Figy)ler follow a regular
o pattern (Fig. 1@). Weaving guarantees that each pixel in the density
4.4 Rebinning map image is assigned a unique class. When no masking is speci ed,

The rebinning stage (Fig. 3-4) rst partitions t¢ H grid intoM  con icts can be resolved using other types of assembly operations.
tiles. Atile is a set of cellsin th&/ H grid, and the set of all tilesis ~ The mixing operation combines tiles by blending them. Similar
referred to as &ling . Tilings are de ned such that there is no overlapgo masking, each tile is renderddtimes, again with a uniform color
between tiles and the union of all tiles is the wh@le H grid. The corresponding to the class and an opacity value equal to the normalized
simplest tiling ispixel tiling , where each tile consists of a single cellcount. However, the colors are mixed across the entire tile instead of
of theWw H grid (i.e.,M = W H). Other tilings contain tiles that being masked. A straightforward mixing approach consists/arag-
span multiple cells. Such tilings can be either regular (e.g., a setin§ all colors (see Fig. L) for an example). Other mixing methods
2 2rectangles as in Fig. 3-4) orirregular (e.g., regions in a choropletian be used; for exampladditive mixingsums each RGB channel
map). Fig. are examples of irregular tilings, while Fig@-@ of theN colors, thus generating bright colors for high-density regions.
use pixel tiling. Tiles can be de ned based on geometrical primitivedultiplicative mixingdoes the opposite, yielding dark colors for high-
or using the URI of a TopoJSON [6] speci cation to de ne geographidensity regions (see Fig. 6b for an example). It is also possible to take a
administrative boundaries for choropleth maps. winner-takes-alapproach, where only the class with the highest count
After a tiling has been constructed, the rebinning process creates @dhosen (see Fig. & for an example). Finally, we also de ne a
assigns alata vectorto each of theM tiles. A data vector is a vector loser-takes-albpproach, where only the class with the lowest nonzero
of lengthN that stores a count for each class, calledabgregated count is chosen, but its color intensity is inverted; low color values
count. That is, all binned pixels from classhat belong to the tilé  become vivid. This mixing method can boost the visibility of outliers.
are aggregated into a single value and stored intrelement of the  Tiles can also be rendered withhatching operation, which lis
data vector of. Possible aggregate functions incluslem(i.e., the each tile with evenly spaced lines. Typically, normalized count is en-
counts of the binned pixels are summed)n, mean max anddensity coded with line thickness, while class is encoded using line orientation,
(sum divided by area). Again, counts can take noninteger values. Wh&ilor, or texture. The hatches can be combined across classes either
pixel tiling is used, aggregation amounts to simply copying counts frogy stacking them side by side within each tile (as in Fig. 2c-left) or by
binned pixels into data vectors. superimposing them (as in Fig.Gb).

Finally, the rebinning stage Viftua"y normali_zes all aggregate_d Finally, tiles can be rendered using a more conventional visualization
counts _between 0 and 1, acco_rdlng to the options aSS|gned_ durggﬁ_le"ne, i.e., bygenerating glyphs Glyphs are miniature visualiza-
the styling stage (e.g., using a linear, log, square root, or equi-dejifhs that encode al normalized counts in the data vector and are
histogram scale). These counts are callednalized counts Con-

X . typically displayed at the center of each tile. For example, in Fig, 1-
cre_tely, it de nesa scale object that maps the range of couni@d ;5 phar chart is placed inside each tile, conveying the density for each
This scale object is later reused for the legend.

class. Meanwhile, Fig. & uses a “punchcard” style, where densities
are mapped to circle radii. In our implementation, all such glyphs
4.5 Assembly can be speci ed in Vega-Lite [43], a high-level JSON grammar for
The assembly stage (Fig. 3-5) turns the tiles and data vectors intovésualization. Note that nding a “good” location for the glyphs is not
image with an opacity (alpha) channel, which we refer to deresity  always trivial. We currently compute the largest rectangle in polygon
map image Much of the visualization process occurs in this stagéar each tile and place the glyph at the center of that rectangle.



The assembly operation is optional. When no assembly operation
has been speci ed, each tile is rendered using a uniform translucent
color as previously described, and the process outpusnsity map
images instead of a single one, leaving the con ict resolution to the
nal rendering stage.

4.6 Rendering

The nal rendering stage turns the density map image(s) into a nal

image that can be directly displayed on the screen (Fig. 3-6). In case

the classes were already assembled in the previous stage, the density

map image is simply rendered on a background. The background color (a) (b) (c) (d) (e)
de nes the lower end of the color scales used in the nal visualiza-

tion. For example, a white background produces color scales where Fig. 4: Auto-generated legends for multiclass density maps
zero or minimum density is mapped to white (as in Fig. 1). While

backgrounds can be uniform, they can also consist of cartographie

backgrounds that provide extra annotations such as city locations angescription™?: <string>

names. Alternatively, annotations can be rendered on top of the densi§2ckground”?: <Color>, )

map image. The rendering stage augments the rendered density mafi&2 th"of ”rf',, Zf”'f, |< databs"fc <DataSpec> g

with any extra visual element necessary to improve readability an. za?]()codi'ng..? ra f'us number=g

interpretability. This stage is responsible for rendering optional contour |zpe|*>. <L abelspecs

plots (see Fig. 1), tile boundaries, the andy axes, and the legend  “¢qjor"?: <ColorSpec>

(discussed in more detail in the next section). Finally, it decides on "hatching"?: <HatchingSpec> g

where to render the density map image and at what scale (e.g., in cagescale"?: f

of pixel magni cation). In the case of multiple density map images “type": "linear"|"log"|"pow"|"sqrt"|"cbrt"|"equidepth”

(i.e., no assembly), each density map image is rendered at different’rebin"?-

locations (i.e., amall multiplesapproach, see Fig. @). type": "none|"square”|"rect”|"topojson”|"voronoi®
"aggregation”: "mean”|"max"|"sum"|"min"|"density"

"width"?: <number>, "height"?: <number>
"size"?: <number>, "topojson"?: <TopoJSONSpec>
To be usable, a multiclass density map needs a legend. Our current "url"?: <string>, "feature"?: <string>
implementation of the Class Buffer model automatically generates _"Points"?: <Point[]>, "stroke"?. <Color> 9
simple legends (Fig. 4). Our legends consist of three parts: K&y a compose™?. f N i
h mix none"|"invmin"|"mean”|"max"| "blend"|

that maps class colors to class names, @)aeto help retrieve counts, " . i . i . .

. . N L weavingrandom"|"weavingsquare"|"weavinghex"|
and (3) an optionaéxplanationof how mixing is done. "weavingtri’|"propline”|"hatching"|"separate”|

The key, present in all our legends, lists the name and color that "glyph”|"dotdensity"|"time"
is assigned to each class buffer. Boaleshows how counts map to "mixing"?: "additive"|"subtractive"|"multiplicative"
visual attributes. In most cases, it consists of a set of color ramps (Fig. 4  "size"?: <number>, "widthprop"?: <string|number>
[a—c]). The color ramps linearly interpolate between the colors of the ~ "colprop”?:<boolean>, "order"?: <number[]>
lowest and the highest count and add ticks that are equally distantin "9lyphSpec”?: <GlyphSpec>, "interval"?: <number> g
the data domain. Thus, if a nonlinear scale has been speci ed, the ticks '€ve!s"?: <number>
are unevenly spaced in the legend, indicating that the scale is nonline%%romour,,,) ;
(Fig. 4 (b,c)). For glyph-bqsed assemblies, the scalle.consists of one.on.stroke.} <numbers. “lineWidth®?: <number>
several glyphs with numerical labels, such as the miniature bar chart in «yajyes™2: <number[]>, "blur"?: <number> g
Fig. 4d or the circle-radius scale in Fig. 4e. "legend"?: <LegendSpec>, "stroke"?: <StrokeSpec>
The lastexplanationarea illustrates which mixing function (e.g., "axis"?: <AxisSpec> g

maxas in Fig. 4a omeanas in Fig. 4b) was used for color mixing. We
considered using an Euler diagram or InfoCrystal [47] representation
to visualize all possible combinations of class colors. However, in our Fig. 5: Syntax of Class Buffer speci cations
case, the luminance level of class colors can vary depending on density,
and it is hard to simultaneously visualize the mixture of multiple colors

at different luminance levels. More generally, visualizing a multivariate o, class Buffer model is implemented in approximately 5,000
color scale with more than two variables is impossible, because itwouyldes of TypeScript, a strongly typed language that can be transpiled
require the volumetric visualization of a cube or hypercube. Thus, we JavaScript. We render the tile glyphs using Vega-Lite [43], which

only show the bivariate color scale derived from the rst wo Clasg conveniently also written in TypeScript. We also rely on the D3
buffers. Although this approach does not support value retrleval,ngrary [7] for contours and cartographic projections.

explains hOW colors are mixeo!. We do not pr_ovide a similar explanation Interpreting a speci cation takes between a few hundred millisec-
for techniques such as masking and hatching because the way claga@s 15 one second depending on the complexity of the operations
are combined can be deduced by looking at the visualization |ts¢{: ‘perform, not counting the time to transfer the data, including data

For example, in Fig.. 4c, class buffers are spatially separated thro ers and the TopoJSON le if needed. Currently, data buffers can
weaving and d(.) hot involve any hldden mixing. be sent as 2D arrays in the JSON format or as gray-scale 16-bit PNG
These techniques are meant to provide basic support for Iegends,ﬁ The data buffers in the JSON format are usually heavily com-

4.7 Legends

can b_e |mprov_eq or extended. For examp!e, th.e kgy and scale coulq,peqe by the gzip compression of the HTTP protocol when enabled,
combined, as it is commonly the case in visualization and map legergis;, our example gallery. Changing a speci cation and reinterpeting it
is usually much faster since data is not transferred, and intermediate
operations, such as rebinning, can be cached if the tiling is not changed,
Our implementation is available, with example datasets, whichiscommon for maps.
https://github.com/e-/Multiclass-Density-Maps and exam- Modern browsers support three graphic libraries: SVG, Canvas,
ples can also be explored dittps://jaeminjo.github.io/ and WebGL. Our implementation is meant to be easy to read and
Multiclass-Density-Maps/ . extend; therefore it uses the Canvas, which is faster than SVG but

4.8 Implementation



less complicated to program and understand than WebGL. For screemploys thénvmin mix method that returns the lowest data value at
resolutions up to FHD1(920 1080, the rendering time is under 0.1 seach pixel. As a result, the right image allows focusing on outliers
for most of the con gurations and optimizing it is not necessary.  and artifacts to understand where the algorithm has not been able to
Fig. 5 summarizes the syntax of our visualization speci cationseparate classes properly.
While it may look complex, most speci cations in practice are very Fig. 8 visualizes the on-time performance of three carriers in the
concise; we show several concrete examples in the next section. Theted States. Each row in the dataset [37] has two quantitative at-
data speci cation mentioned on line 8ataSpecy comes from a tributes,travel distanceandarrival delay, and one categorical attribute,
back-end program; it contains URIs to the data buffers and the infornearriers. The original dataset had 2.4 million ights, and we created
tion required to visualize them, such as the eld names, domains, rangésee data buffers (one for each carrier) by binning the dataset along
data-speci c colors (e.g., red for Republican and blue for Democratajith the two quantitative attributes. We then normalized the counts
and sometimes projection for cartographic data. The rest of the synteypercentages to allow comparison among carriers. Fig. 8 shows the
describes the operations to apply to the data buffers, such as smoothieglt with two density map designs. Unlike previous examples, the
styling (reenconding ), rebinning, assemblycémposg, normaliza- density maps are augmented with thandy axes. Fig. 8-left uses
tion (rescale ), and options for the post-processing staggnfour , themaxmixing function with a three-level equi-depth color scale (i.e.,

legend, stroke , andaxis ). a discrete color scale where every color band has the same number
of rows) and reveals the overall trend between distance and arrival
5 EXAMPLES FROM THE CLASS BUFFER MODEL delay; most ights traveled less than 2,500 miles, and most long de-

In this section, we show how the Class Buffer model can be uskys occurred from those ights. For short ights (i.aistance <

to create multiclass density maps from data in practice. We start bp00 miles), DL had the largest number of delayed ights (orange

reproducing our classic examples from cartography (Fig. 2). Thédigs around the top-left corner), whereas UA had the largest number
we use the Class Buffer model to scale up conventional scatterplé® intermediate ights (i.e., 1,500 miles distance< 2,500 miles,

and demonstrate several design alternatives that can be con gugégen tiles at the center). Fig. 8-right uses parallel proportional lines to

interactive|y on front-ends to Support various tasks. dISplay the data as 100% stacked bar charts in each tile. One can see
that AA (blue bars) generally performed well for short and intermediate
5.1 Revisiting Examples ights but not for long ights (i.e.,distance> 3,500 miles).

One strength of the Class Buffer model is its ability to express varioys DISCUSSION
designs of multiclass density maps with a uni ed visualization grammat.
Fig. 6 shows the reproduced examples of Fig. 2 with synthetic datathis section, we discuss the bene ts of the Class Buffer model, how
Note that all maps are complemented with legends. it can combine with a traditional visualization system, including the

Fig. 6a smooths prebinned histograms with a Gaussian kernelpsistprocessing stage where additional elements should be combined
radius 1. Rebinning is not used in this map, so each prebinned pixélh our model to address important tasks.
is directly rendered on a canvas by default, with a color determined
by a logarithmic color scale. For color mixing, theeanblending 6.1 Bene ts of the Class Buffer Model
function is chosen. This blending function outputs an achromatic colgbmpared with other frameworks for visualizing large maps, the Class
if two parties are equivalently supported and a saturated color if oB@&ffer model is more scalable over the three facets mentioned in the
party outperforms the other. Note that Fig. 6a has the boundarieggihted work: data size, perceptual processing, and computation speed.
states through thetroke option, which does not affect binning but isThe improved perceptual processing comes from the wide range of
handled at the rendering stage. visualization techniques it can generate for multiclass density maps.

The other maps apply rebinning on prebinned histograms, whichTige data size and speed scalability comes from the separation of compu-
speci ed through theebin option. Fig. 6b uses county-level rebinations between the back-end side and the front-end side. The back-end
ning, while the other US maps perform rebinning at the state level. $ide needs to compute density maps, and the computation time is pro-
addition, Fig. 6b adopts multiplicative color blending, so larger dafsortional to the number of points. Once this expensive computation is
values from class buffers produce a darker color. Fig. 6¢ and Fig. 86ne, the wide range of visualizations offered by our model can be used
employ hatching with aligned and nonaligned lines, respectively. o explore the data at interactive speed, regardless of the size of the
Fig. 6¢c, each county is painted with stacked bars that show the propsiginal data. It can be about millions of points, billions, or any higher
tion of each class. By contrast, Fig. 6d assigns a different angle to eagale; the sheer amount is irrelevant to our model, and users can explore
class, encoding a data value using both the color and thickness of a lifta using multiple visualizations with different trade-offs regarding
Fig. 6e shows an example of random weaving where each class buifgs visual tasks supported. Other visualization libraries compute the
occupies a random subset of rectangular patches on a tile (i.e., a statgjregation and the visualization together, needing a time proportional
Finally, Fig. 6f places tile glyphs, a mini bar chart, on each state.  to the number of points to generate a new visualization and require

i expensive round-trips from the back-end to the browser.

5.2 Large Multiclass Maps Abstract Renderinfl3, 23] performs the binning operations in com-
Multidimensional projection algorithms are now applicable to millionplex buffers that are con gured early before their contents are com-
of points in a reasonable time [39, 48]. We applied the LargeVis guted. Once computed, most of the rendering has to be performed in
gorithms [48] to the notMNIST dataset [11] made of approximatelhe back-end as well because the composite structure at each bin is too
530,000 small images (each I2& 28= 768gray-level pixels). The complex to be sent transparently to a front-end. Each modi cation of
algorithm uses these 768 values as high-dimensional vectors thattaeeAR pipeline requires an expensive recomputation starting at the
projected in two dimensions; the results are shown in Fig. 7. binning stage, requiring the handling of the whole dataset. In addi-

The main task analysts perform on these projections is checking thian, similar to other scalable visualization systems [38], AR performs
classes are well separated by comparing the visual clusters with sieoothing during the aggregation stage: each point value is modulated
color labels and looking for erroneous points. Fig. 7 shows two cdoy a smoothing kernel that is added to the density array, an operation
gurations of the same Class Buffer that reveal the ability of LargeVithat slows down the computation of the density map by the size of the
to separate some of the classes on the left and the large numbekashel (typically 4—16). By contrast, the Class Buffer model receives
erroneous points on the right, revealing outliers and algorithm artifadtse raw unsmoothed density map and can apply a smoothing kernel to
The rst con guration composes the image by showing the class witihat its rst stage. According to Wickham [53], applying the smoothing
the highest density at each pixel and rescaling the color histogram usindhe binned data produces very similar results than applying it before
an equi-depth histogram. This con guration only shows the dominahtnning, with a substantial performance improvement [51].
class at each pixel and depicts a good class separation, except at ti@ompared with Wickham's BSS model [53], the Class Buffer model
center where multiple classes are mixed. By contrast, the right imgg®vides a richer set of visualization options, but less statistical oper-



Speci cation Speci cation Speci cation
"smooth": f"radius": 1 g "rebin” f "rebin” f
"rescale" f"type": "log" g "type": "topojson” "type": "topojson”
"compose": f"mix": "mean" g “url": "us.json" “url": “franceD.json"
"stroke" f "feature": "counties" g "feature": "poly" g
"type": "topojson" "rescale” f "type": "log" g "compose": f
"url": "us.json" "compose": f "mix": “"propline"
"feature": "states" "mix": "blend" "size": 18
"color": "rgba(0, 0, 0, 0.3)" g "mixing": "multiplicative" g "widthprop": "percent" g
(@ (b) ()
Speci cation Speci cation
"rebin": /I US rebinning Speci cation "rebin": /I US rebinning
"compose": f "rebin": /I US rebinning "compose": f "mix": "glyph"
"mix": "hatching", "size": 4 "compose": f "glyphSpec": f
"widthprop": "percent"” "mix": "weavingrandom" "template": "bars"
"colprop": true g "size": 2 g "width": 20, "height": 24 g9
(d) (e) ®

Fig. 6: Revisited examples of multiclass density maps (Fig. 2). The Class Buffer model can express various designs of multiclass density maps
using a single declarative visualization grammar. Underlying data is synthetic.

Speci cation
Speci cation "compos"e f"mlx : ‘|Invm'|In g
rescale f "type sqrt g
"compose": f"mix": "max" g "rebin"” f "type": "square"

"rescale" f"type": "equidepth" g "size": 2, "aggregation": "min" g

Fig. 7: The notMNIST dataset [11] projected using LargeVis [48]. On the left side, colors are blended to reveal global clusters. On the right side,
the color of a class with the minimum density is chosenrgin ), revealing outliers and algorithm artifacts.



Speci cation Speci cation

"compose": f"mix": "max" g "rebin” f "type": "square", "size": 64 g
"rescale" f "type": "equidepth" ¢ "compose": f"mix": "propline"

"rebin"” f "type": "square", "size": 8 g "widthprop": "percent", "sort": false g
"axis": true "axis": true

Fig. 8: Multiclass density maps showing the on-time performance of three carriers in the United States [37], augmented by axes. On the left side
the overall trend can be seen; most ights traveled shorter than 2,500 miles, and most long delays occurred from those ights. On the right side,
proportional lines were used as stacked bar charts, enabling direct comparison between carriers.

ations at the prebinning stage. This is because the BSS model daed multidimensional projections include location of interesting points.
not manage multiclass data. Composing multiple classes from dengity example, in publication data, highly cited publications or authors
maps is understandable since densities are directly comparable,daut be used as landmarks. Many tasks described in Sect. 2.1 mention
with more complex statistics such as average, variance, or higher-orikmtifying an individual point or comparing objects with groups. To
moments, the interpretations of the class combinations are challengsgport these tasks, a selection of important objects should be sent to
To be more speci ¢ on performance, we report times measurduk front-end for analysis.
with the Datashader library [14], optimized to visualize large-scale The Class Buffer model can replicate several techniques used to
aggregated data. We measured times to process the synthetic cevisuslize multiclass density maps, but it does not offer guidance on
data [50] containing longitude/latitude and ve “races” for 300 milliontheir best use. We need more experience to provide such guidelines,
households in the US computed on a modern Linux laptop with 16GBr example, through controlled experiments with different techniques.
of memory and using 2 cores. Loading from a local SSD using a cohiewever, providing a usable implementation will enable the visualiza-
pressed format took 11 s. Building ve class buffers at a resolution ¢ibn community to start researching these maps, opening up a new area
900 525took 1.26 s. Sending the data locally to the browser througdf scalable visualization.
a WebSocket took 0.22 s. Datashader mainly implements additive color
mixing that ran in 0.088 s. Our implementation can render the clags CONCLUSION AND FUTURE WORK
buffers using most con gurations in around 0.1 s, up to 1 s when comespite the popularity of multiclass maps, little has been done regarding
puting contour lines with a large blur radius. The rendering times afieir design space and scalability. In this paper, we present the Class
thus similar but our implementation saves network traf c—that can buffer model to improve the expressiveness and scalability of multiclass
slow when using a remote connection—and complements Datashagifisity maps. Starting from the classic examples from cartography,

with a much richer set of rendering options. we survey and abstract multiclass density map idioms into a uni ed
. . Class Buffer model. Our model separates computation between the
6.2 Interactive Data Exploration back-end side and the front-end side, allowing various map designs

Our Class Buffer model uses data buffers (i.e., 2D histograms) as daidthout repeating binning and aggregation. Through our declarative
sources, and this provides the model with an ability to abstract undésualization grammar, users can explore the design space of multiclass
lying computation of large-scale data. For example, we assumed tHahsity maps, nding the best design for achieving their goals.

our dataseT =( Q1;Q»;C) is xed for simplicity, but in practice, the For future work, we can extend our model with more multiclass den-
dataset (1) usually has more dimensions and (2) can dynamically chasig map idioms, in particular related to user interactions. For example,
through user interaction such as lItering out rows. When the datagbe user may want to pan and zoom a density map or manipulate color
is Itered by a new dimension, the data buffers should be invalidatedmps on the legend through Itering and clamping. In addition, our
and recomputed. In interactive exploration with multidimensional datarototype implementation is fast enough for modern browsers, but the
this would be a frequent case, and modern data structures [27, 28] hpggformance can be improved using WebGL for high resolution screens
been proposed to speed up the recomputation. Our Class Buffer maatdiaster contour line computation. Finally, a body of research that in-
naturally lends itself to working with those optimized data structuregstigated tasks and designs of conventional scatterplots exists [42], but
through transfer of abstract data buffers. In addition, the ProgressiMis found such attempts are rare for multiclass density plots. We believe
toolkit [16] already transfers data buffers of progressively aggregatedr reusable implementation will foster more research on multiclass
data to its front-end, which can be used with our model. density maps as an effective idiom of scalable visualization.

6.3 Limitations ACKNOWLEDGMENTS

While the Class Buffer model allows creating a wide variety of vis-his work was supported by the National Research Foundation of
alizations suited to complex tasks, it also needs additional data tokerea (NRF) grant funded by the Korea government (MSIP) (No.
fully usable, such as landmarks, points of interest, and outliers; thdRF-2016R1A2B2007153). Fig. 2c is from Semiology of Graphics:
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