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Abstract: We study a broad class of linear continuous-time time-varying systems that contain
piecewise continuous disturbances and piecewise constant outputs. Under an observability
assumption, we construct a new type of observer to estimate the state of the system in a
predetermined finite time in the presence of the disturbances. In contrast to the well-established
finite time observer design techniques which estimate the system state using a continuous output,
our proposed observer only requires a piecewise constant output. Our simulations illustrate the
efficacy of our observer.
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1. INTRODUCTION

The state of the system is not available for measure-
ment in many engineering applications such as automotive
systems, bioreactors, communication systems, networked
control systems, robotics, and many other fields. Instead,
one aims to design an observer to estimate the state using
an output that can consist of one or more, but not all,
components of the state. Due to this strong motivation,
many techniques for state estimation of linear continuous-
time systems from output measurements, like Kalman
and Luenberger observers, have been proposed in the lit-
erature; see, e.g., Kalman and Bucy (1961); Luenberger
(1964); Zemouche et al. (2008); Ferrante et al. (2014).

Most of the above mentioned observer design techniques
have the common disadvantage that they guarantee
asymptotic convergence of the estimation error to zero,
whereas it is often desirable to estimate the exact state
of the system in a predetermined finite time for control
and supervision purposes. Such finite time observers are
of considerable interest in many applications, like in fault
detection and state feedback control; see Raff and Allgower
(2007); Sauvage et al. (2007).

Moreover, most of the observers discussed in the litera-
ture require continuous measurements. However, in many
engineering applications, the measurements are piecewise
constant. These systems are called continuous-discrete sys-
tems where the system dynamics are continuous while
the measurements are only available at discrete instants;
see Jazwinski (2007) and Ahmed-Ali et al. (2009) for the
notion of a continuous-discrete system.
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Project under project numbers 35634QM (France) and EEEAG-
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This motivates the problem of constructing finite time
converging observers for systems with piecewise constant
outputs. There are several works on finite time observer
design for cases where the measurements are continuous
instead of being piecewise constant; see, e.g., Engel and
Kreisselmeier (2002); Raff and Allgower (2007); Raff and
Allgower (2008); Li and Sanfelice (2015); Mazenc, Frid-
man and Djema (2015); Mazenc et al. (2017). However,
to the best of our knowledge, the finite time estimation we
study in this work via piecewise constant measurements
has remained unsolved, even in the case of linear systems,
due to the challenges of quantifying the effects of piece-
wise continuous disturbances on the observer performance.
By contrast, for simpler cases where there are no such
disturbances in the system, notable works on finite time
observers include Qayyum et al. (2016), which uses peri-
odic sampling times in the outputs and an observability
assumption that is similar to the one we use in this work.

In the present paper, we propose a solution to the preced-
ing problem for a family of linear continuous-time systems.
We construct an observer to estimate the exact state of the
system from synchronously sampled outputs. We consider
a sequence of real numbers {ti} and a constant ν > 0
such that t0 = 0 and ti+1 − ti = ν for all integers i ≥ 0.
Then the ti’s will serve as the measurement instants for
the output and ν will be a tuning parameter that will
govern the estimation error. We will show that the smaller
the tuning parameter ν, the better the estimation. We also
provide an approximate estimate of the system’s state that
overcomes the problem of determining explicit formulas for
fundamental solutions. Our strategy has several steps. We
use a classical prediction result, the finite time observer
design technique of Mazenc, Fridman and Djema (2015),
Mazenc et al. (2017), and finally a novel construction of
continuous-discrete observers to complete the observer de-



sign; see, e.g., Mazenc, Andrieu and Malisoff (2015) for the
notion of continuous-discrete observer.We establish robust
stability of the observer with respect to disturbances in the
system dynamics.

Our paper shares fundamental features with the significant
work of Shim and Teel (2003). The idea of repeatedly
reconstructing the state values in a short amount of time
is already present in Shim and Teel (2003), where a semi-
globally stabilizing sampled output feedback for a nonlin-
ear system is proposed. However, there are three key differ-
ences between the present paper and Shim and Teel (2003).
First, in Shim and Teel (2003), the output is assumed to
be known at any instant. Second, high gain observers are
used in Shim and Teel (2003) to obtain approximate values
of the state variable, while here we adopt a finite time
reconstruction strategy. Third, although Shim and Teel
(2003) covers nonlinear systems and the present paper is
confined to linear systems, Shim and Teel (2003) imposes
a limitation on the size of the sampling period of the
feedback, while none of our results here rely on a restriction
of this type. In particular, the piecewise continuous distur-
bances in our systems can capture the effects of sampled
feedbacks with arbitrarily large sampling periods.

In Section 2 we describe our objectives in detail and
present two lemmas that we will use to prove our main
result in Section 3. Our illustration in Section 4 includes
numerical simulations and demonstrates the utility of our
theory, and in Section 5, we summarize the value added
by our paper and suggest future research directions.

Throughout the sequel, the notation will be simplified
whenever no confusion can arise from the context. The
dimensions of our Euclidean spaces are arbitrary unless
otherwise noted. The Euclidean norm in Ra in any dimen-
sion a, and the induced norm of matrices, are denoted by
| · |. Let I denote the identity matrix of any dimension. Let
| · |∞ denote the sup norm of any matrix valued function
over its entire domain, and exp(f) denotes the real valued
function ef for any real valued function f . For any matrix
valued function Ω : R → Rn×n, let ΦΩ : R × R → Rn×n

denote the function such that ∂ΦΩ

∂t
(t, t0) = −ΦΩ(t, t0)Ω(t)

and ΦΩ(t0, t0) = I for all t ∈ R and t0 ∈ R, where I is the
identity matrix. Then ΦΩ is the inverse of the fundamental
solution for the time-varying linear system q̇ = Ω(t)q.

2. PROBLEM STATEMENT AND PRELIMINARIES

Our objective in this section is to construct an observer for
a linear continuous-time system with a piecewise constant
output such that the observer converges in predetermined
finite time in the presence of a disturbance in the dynamics
of the system. The observer is expressed in terms of
the fundamental solution of suitable time-varying system.
Since the disturbance is a general piecewise continuous
function, this allows systems with a discontinuous right
side which were beyond the scope of Qayyum et al. (2016)
and other works. Then in the next section, we use ideas
from this section to obtain more explicit formulas for finite
time observers that do not contain the fundamental matrix
and therefore may be better suited to implementations
where the fundamental matrix is not available in explicit
closed form.

Our systems have the form
{

ẋ(t) = Ax(t) + δ(t)

y(t) = Cx(ti)
(1)

with x valued in Rn for any n ∈ N, y valued in Rq for
any q ∈ N, the sampling times ti being nonnegative values
for all integers i ≥ 0, and δ : [0,+∞) → Rn being a
known bounded and piecewise continuous disturbance. We
assume that A and C are known matrices of appropriate
dimensions and the following assumption throughout this
paper:

Assumption 1. There is a constant ν > 0 such that ti+1 −
ti = ν for all i ≥ 0. Also, the pair (A,C) is observable. !

When Assumption 1 is satisfied, we can use (Mazenc,
Fridman and Djema , 2015, Lemma 1) to find a constant
T > 0 and a constant matrix L such that with the choice
F = A+ LC, the matrix

MT = e−AT − e−FT (2)

is invertible and such that T/ν is an integer.

To prove our main results, we use the following two
lemmas, which we prove in the appendices. The first of
these lemmas is from Mazenc et al. (2017).

Lemma 1. Let M ∈ Rn×n be an invertible matrix. Let
N ∈ Rn×n be a matrix. Let n̄ and m̄ be two constants
such that |M−1| ≤ m̄ and |N | ≤ n̄. Assume that

m̄n̄ < 1 . (3)

Then the matrix M +N is invertible and
∣

∣(M +N)−1 −M−1
∣

∣ ≤
m̄2n̄

1− m̄n̄
(4)

is satisfied. !

Lemma 2. Let A ∈ Rn×n be a constant matrix. Consider
the system

ζ̇(t) = [A+ E(t)] ζ(t) (5)
where ζ is valued in Rn and E : [0,+∞) → Rn×n is a
bounded piecewise continuous function. Let φ denote the
fundamental solution of the system (5). Then for all t1 ∈ R

and t2 ∈ R such that t2 ≥ t1, the inequality
∣

∣

∣
φ(t2, t1)− e(t2−t1)A

∣

∣

∣
≤

|E|∞e(t2−t1)|A| e
2|A|(t2−t1) − 1

2|A|
exp

(

|E|∞
e2|A|(t2−t1) − 1

2|A|

)

is satisfied. !

3. FINITE TIME OBSERVER DESIGN

Throughout this section, we consider the system (1) and
assume that Assumption 1 is satisfied.

3.1 Exact Estimate

We provide an exact estimate of the system’s state that
converges in a predetermined finite time, using the piece-
wise constant function ϕ(t) = ti when t ∈ [ti, ti+1) and
i ≥ 0. Here and in what follows, all equalities and inequal-
ities are for all t ≥ 0, unless otherwise indicated. We have

ẋ(t) = Fx(t) + δ(t)− Ly(t) + LC[x(ϕ(t)) − x(t)] .

We also have

x(ϕ(t)) = eA(ϕ(t)−t)x(t) +

∫ ϕ(t)

t

eA(ϕ(t)−m)δ(m)dm .



As an immediate consequence,

ẋ(t) = [F + µ(t)] x(t) + δ(t)− Ly(t)

+LC

∫ ϕ(t)

t

eA(ϕ(t)−m)δ(m)dm
(6)

where µ(t) = LC
(

eA(ϕ(t)−t) − I
)

.

Let ξ(t) = ΦF+µ(t, 0)x(t). Then

ξ̇(t) = −ΦF+µ(t, 0)[F + µ(t)]x(t) + ΦF+µ(t, 0)ẋ(t). (7)

Using (6) and (7), we obtain

ξ̇(t) = ΦF+µ(t, 0)

[

δ(t)− Ly(t)

+LC

∫ ϕ(t)

t

eA(ϕ(t)−m)δ(m)dm

]

.

(8)

For any T > 0 and t ≥ T , we can integrate (8) over [t−T, t]
to obtain

ξ(t) = ξ(t− T )

+

∫ t

t−T

ΦF+µ(m, 0)

[

δ(m)− Ly(m)

+LC

∫ ϕ(m)

m

eA(ϕ(m)−s)δ(s)ds

]

dm .

From the definition of ξ, and from the semigroup property
of flow maps applied to the flow map Ψ−1

F+µ of the system
q̇ = (F + µ(t))q, we deduce that

x(t) = ΦF+µ(t, 0)
−1ΦF+µ(t− T, 0)x(t− T )

+

∫ t

t−T

ΦF+µ(t, 0)
−1ΦF+µ(m, 0)

×

(

δ(m)− Ly(m)

+LC

∫ ϕ(m)

m

eA(ϕ(m)−s)δ(s)ds

)

dm

= Φ−1
F+µ(t, t− T )x(t− T )

+

∫ t

t−T

Φ−1
F+µ(t,m)

(

δ(m)− Ly(m)

+LC

∫ ϕ(m)

m

eA(ϕ(m)−s)δ(s)ds

)

dm .

(9)

Notice that (9) gives the exact value of the solution of
the system (1) in a predetermined finite time T . In other
words, the right hand side of (9) provides a finite time
observer. However, finding an explicit expression for ΦF+µ

may be difficult, which motivates our work in the next
section.

3.2 Approximate Estimate

It is often difficult to determine explicit expressions for
fundamental solutions in order to estimate the system’s
state using (9). Our next objective is to provide an ap-
proximate estimate of the system’s state that overcomes
the problem of determining explicit formulas for the fun-
damental solutions, under our standing Assumption 1. In
terms of the functions

Σ(T, ν) = G
(

T, |LC|(eν|A| − 1)
)

,

G(T, s) = seT |F | e
2|F |T − 1

2|F |
exp

(

s
e2|F |T − 1

2|F |

)

,

Ḡ(T, ν) =
|e−FT |2Σ(T, ν)

1− |e−FT |Σ(T, ν)
,

ᾱ(T, ν) =
|M−1

T |2Ḡ(T, ν)

1− |M−1
T |Ḡ(T, ν)

,

(10)

β̄(T, ν) =
∣

∣e−FT
∣

∣ ᾱ(T, ν)

+
[

|M−1
T |+ ᾱ(T, ν)

]

Ḡ(T, ν),
(11)

and

γ̄(T, ν) =
[

|M−1
T |+ ᾱ(T, ν)

] [
∣

∣e−FT
∣

∣+ Ḡ(T, ν)
]

, (12)

we prove the following result:

Theorem 1. Let the system (1) satisfy Assumption 1,
where A, B, and C are known constant matrices. Let F
and T be such that MT as defined in (2) is invertible and
such that T/ν is an integer, where the constant ν > 0 is
such that

max
{

|e−FT |Σ(T, ν), |M−1
T |Ḡ(T, ν)

}

< 1. (13)

Let

x̂(ti) = M−1
T

∫ ti

ti−T

eA(ti−m−T )δ(m)dm

−M−1
T e−FT T̃ (ti, δ, y)

(14)

where

T̃ (ti, δ, y) =

∫ ti

ti−T

eF (ti−m)

(

δ(m)− Ly(m)

+ LC

∫ ϕ(m)

m

eA(ϕ(m)−s)δ(s)ds

)

dm .

Then

|x(ti)− x̂(ti)| ≤ ᾱ(T, ν)

∫ ti

ti−T

eA(t−m−T )δ(m)dm

+ β̄(T, ν)|T̃ (ti, δ, y)|

+ γ̄(T, ν)Σ(T, ν)T△(ti, δ, y)

holds with the choice

T△(ti, δ, y) =

∫ ti

ti−T

∣

∣

∣

∣

∣

δ(m)− Ly(m)

+ LC

∫ ϕ(m)

m

eA(ϕ(m)−s)δ(s)ds

∣

∣

∣

∣

∣

dm

(15)

for all integers i ∈ N such that ti > T . !

Proof: Set k = T/ν, which is a positive integer, by our
assumptions. By integrating (1), we obtain

e−ATx(ti) = x(ti−k) +

∫ ti

ti−T

eA(ti−m−T )δ(m)dm . (16)

Using (9) and Lemma 2 (applied with A = F and E = µ),
we obtain

x(ti) =
(

eFT + κ(t)
)

x(ti−k) + T (ti, δ, y) (17)

with

T (ti, δ, y) =

∫ ti

ti−T

Φ−1
F+µ(ti,m)

(

δ(m)− Ly(m)

+ LC

∫ ϕ(m)

m

eA(ϕ(m)−s)δ(s)ds

)

dm



and
|κ(t)| ≤ G(T, |µ|∞). (18)

Here and in the sequel, all equalities and inequalities
should be understood to hold for all t ≥ ti and all i such
that ti > T .

Our formula µ(t) = LC
(

eA(ϕ(t)−t) − I
)

gives

|µ|∞ =
∣

∣

∣
LC

(

eA(ϕ(t)−t) − I
)
∣

∣

∣

∞

≤ |LC|

∣

∣

∣

∣

∣

∞
∑

k=1

Ak(ϕ(t)− t)k

k!

∣

∣

∣

∣

∣

∞

≤ |LC|
∞
∑

k=1

|A|k|ϕ(t) − t|k

k!
.

Since |t− ϕ(t)|∞ ≤ ν, we deduce that

|µ|∞ ≤ |LC| (eν|A| − 1) . (19)

Using (18) and (19), we have

|κ(t)| ≤ G
(

T, |LC|
(

eν|A| − 1
))

= Σ(T, ν) (20)

for all t ≥ 0. Since our condition (13) on ν gives
|e−|F |T |Σ(T, ν) < 1, we can use the inequality (20) and
Lemma 1 (applied with M = eFT andN = κ(t)) to deduce
that eFT + κ(t) is invertible for all t. Then (17) gives

(

eFT + κ(t)
)−1

x(ti)

= x(ti−k) +
(

eFT + κ(t)
)−1

T (ti, δ, y) .
(21)

Combining (16) and (21), we obtain
[

e−AT −
(

eFT + κ(t)
)−1
]

x(ti) =
∫ ti

ti−T

eA(ti−m−T )δ(m)dm−
(

eFT + κ(t)
)−1

T (ti, δ, y) .

Using the definition of MT , we have

[MT +G(t, T )]x(ti) =

∫ ti

ti−T

eA(ti−m−T )δ(m)dm

−
(

eFT + κ(t)
)−1

T (ti, δ, y)

(22)

where G(t, T ) = e−FT −
(

eFT + κ(t)
)−1

. Lemma 1 (ap-
plied with M = eFT and N = κ(t)) also ensures that

|G(t, T )| ≤ Ḡ(T, ν) (23)

where Ḡ is from (10). SinceMT is invertible, it follows from
our condition (13) and the inequality (23) and Lemma 1
(applied with M = MT , N = G(t, T ), and n̄ = Ḡ(T, ν))
that MT +G(t, T ) is invertible and from (22), we have

x(ti) = [MT +G(t, T )]−1

×

∫ ti

ti−T

eA(t−m−T )δ(m)dm

− [MT +G(t, T )]−1

×
(

eFT + κ(t)
)−1

T (ti, δ, y) .

(24)

From (14) and (24), we deduce that

|x(ti)− x̂(ti)| ≤ β(t, T )|T̃ (ti, δ, y)|

+α(t, T )

∣

∣

∣

∣

∫ ti

ti−T

eA(t−m−T )δ(m)dm

∣

∣

∣

∣

+γ(t, T )|T (ti, δ, y)− T̃ (ti, δ, y)|

(25)

where α(t, T ) = |[MT +G(t, T )]−1 −M−1
T |,

β(t, T ) =
∣

∣M−1
T e−FT

− [MT +G(t, T )]−1 (eFT + κ(t)
)−1
∣

∣

∣
,

and

γ(t, T ) =
∣

∣

∣
[MT +G(t, T )]−1 (eFT + κ(t)

)−1
∣

∣

∣
.

Lemma 1 (applied with M = MT and N = G(t, T ))
ensures that

α(t, T ) ≤ ᾱ(T, ν) (26)
where ᾱ was defined in (10). We have

β(t, T ) =
∣

∣

∣

(

M−1
T − [MT +G(t, T )]−1

)

e−FT

+ [MT +G(t, T )]−1

×
(

e−FT −
(

eFT + κ(t)
)−1
)
∣

∣

∣

≤
∣

∣

∣
M−1

T − [MT +G(t, T )]−1
∣

∣

∣

∣

∣e−FT
∣

∣

+
∣

∣

∣
[MT +G(t, T )]−1

∣

∣

∣

×
∣

∣

∣
e−FT −

(

eFT + κ(t)
)−1
∣

∣

∣

≤ ᾱ(T, ν)
∣

∣e−FT
∣

∣

+
[

|M−1
T |+ ᾱ(T, ν)ν

]

Ḡ(T, ν)

= β̄(T, ν)

with β̄ also as defined in (10). We also have

γ(t, T ) =
∣

∣

∣
[MT +G(t, T )]−1 (eFT + κ(t)

)−1
∣

∣

∣

≤
∣

∣

∣
[MT +G(t, T )]−1

∣

∣

∣

∣

∣

∣

(

eFT + κ(t)
)−1

∣

∣

∣

≤ γ̄(T, ν)

where γ̄ is also from (10). Observe that Lemma 2 gives

|T (ti, δ, y)− T̃ (ti, δ, y)|

≤

∫ ti

ti−T

∣

∣

∣
Φ−1

F+µ(ti,m)− eF (ti−m)
∣

∣

∣

×

∣

∣

∣

∣

∣

δ(m)− Ly(m)

+ LC

∫ ϕ(m)

m

eA(ϕ(m)−s)δ(s)ds

∣

∣

∣

∣

∣

dm

≤ Σ(T, ν)

∫ ti

ti−T

∣

∣

∣

∣

∣

δ(m)− Ly(m)

+ LC

∫ ϕ(m)

m

eA(ϕ(m)−s)δ(s)ds

∣

∣

∣

∣

∣

dm

= Σ(T, ν)|T△(ti, δ, y)|

with T△ as defined in (15). It follows from (25)-(26) that

|x(ti)− x̂(ti)| ≤ β̄(T, ν)|T̃ (ti, δ, y)|

+ᾱ(T, ν)

∫ ti

ti−T

eA(t−m−T )δ(m)dm

+γ̄(T, ν)Σ(T, ν)T△(ti, δ, y),

(27)

which is our desired estimate. This concludes the proof."

4. ILLUSTRATION

We illustrate Theorem 1 with the system

ẋ(t) =

[

0 0.15
−0.15 0

]

x(t) +

[

d(t)
0

]

(28)



where x = (x1, x2) is valued in R2, d is scalar valued and
represents a perturbation, and the measurement is

y(t) = [ 0.3 0 ]x (ti) (29)

where ti = iν for all i ∈ N. One can easily check that
Assumption 1 is satisfied with C = [0.3 0], T = 6, and
that with the choice (28), we have

eAt =

[

cos(0.15t) sin(0.15t)
− sin(0.15t) cos(0.15t)

]

(30)

where

A =

[

0 0.15
−0.15 0

]

. (31)

Hence, choosing

L =

[

0
0.1

]

and F = A+ LC =

[

0 0.15
−0.12 0

]

,

we obtain

e−FT =

⎡

⎣

cos
(√

35T
50

)

−
√
5
2 sin

(√
35T
50

)

sin
(√

35T
50

)

cos
(√

35T
50

)

⎤

⎦ , (32)

e.g., by checking that (32) has derivative −Fe−FT with
respect to T . Choosing T = 6, we have

MT = e−AT − e−FT =

[

−0.0715 0.0226
0.1386 −0.0715

]

which has a nonzero determinant equal to 0.0020. Then
MT is invertible and

MT
−1 =

[

−36.0244 −11.3718
−69.8228 −36.0244

]

. (33)

Now choosing the sampling rate to be ν = 0.05, one can
corroborate that (13) is satisfied with |e−FT | = 1.0838,
Σ(T, ν) = 0.0094, |MT

−1| = 86.9858, and Ḡ(T, ν) =
0.0111. Therefore, we can use (33) in the formula (14) for
the continuous-discrete observer from Theorem 1 for the
system (28) with ti = 0.05i for all i ∈ N.

To illustrate our result, Fig. 1 shows MATLAB simulation
of our observer (14) for the system (28) under a piece-
wise continuous perturbation d(t) = 0.5u(t) with initial
conditions x1(0) = x̂1(0) = x̂2(0) = 0, and x2(0) = 2. We
have also include a zoomed plot in Fig. 1 to depict that we
have used a zero-order hold with ν = 0.05 to construct the
piecewise continuous estimate x̂2 from its discrete samples.
The fundamental sampling rate of our simulation is 0.1
kHz. The simulation results corroborate convergence of
our estimate after T = 6 seconds. Since our simulations
show good tracking performance, they help illustrate our
general theory in the special case of the system (28) with
the measurement (29).

5. CONCLUSION

For linear continuous-time systems with a piecewise con-
stant output, we proposed an observer of a new type,
estimating the system state in a predetermined finite time
in the presence of a disturbance in the dynamics of the
system. It provides an exact estimate which in general is
not given by an explicit formula. This led us to propose
an approximate formula, which is given by an explicit
formula and whose accuracy is proportional to the size of
the sampling interval. We also provided an approximate es-
timate to overcome the problem of computing the explicit
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Fig. 1. Simulations of continuous-discrete observer (14) for
(28): Component x2 and its estimate x̂2

expressions of the fundamental solutions. Many extensions
of our observer design we proposed are possible, pertaining
for instance to the design of reduced order observers and
extensions to families of globally Lipschitz nonlinear time-
varying systems and asynchronous sampling.
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APPENDIX A. PROOFS OF LEMMAS 1 AND 2

A.1. Proof of Lemma 1

To prove that the matrixM+N is invertible, let us proceed
by contradiction.We suppose that it is not invertible. Then
there is a nonzero vector V ∈ Rn such that V ⊤(M +N) =
0, so invertibility of M gives V ⊤ = −V ⊤NM−1, and
so also |V | ≤ |V |m̄n̄. Since V ̸= 0, we conclude that
1 ≤ m̄n̄, which contradicts (3). We deduce that M +N
is invertible. To prove the inequality (4), we first set
R = (M +N)−1 −M−1. By multiplying R by M+N and
M , we obtain (M +N)RM = M − (M +N) = −N , and
so also MRM = −N − NRM . We deduce that R =
−M−1NM−1 −M−1NR. As an immediate consequence,
we obtain |R| ≤ m̄2n̄+m̄n̄|R|, which allows us to conclude
the proof of Lemma 1. "

A.2. Proof of Lemma 2

Let φ be the fundamental solution of the system
∂φ

∂t
(t, t0) = [A+ µ(t)]φ(t, t0) . (34)

Here and in the sequel, t0 ≥ 0 and t ≥ t0 are arbitrary.
Let ψ(t, t0) = e−A(t−t0)φ(t, t0). Then

∂ψ

∂t
(t, t0) = ω(t, t0)ψ(t, t0) (35)



holds with
ω(t, t0) = e−A(t−t0)E(t)eA(t−t0). (36)

For any vector V ∈ Rn, we have
∂

∂t

(

(ψ(t, t0)V )⊤ψ(t, t0)V
)

=

V ⊤ψ(t, t0)
⊤ω(t, t0)ψ(t, t0)V .

(37)

Consequently,
∂(|ψ(t, t0)V |2)

∂t
≤ |ω(t, t0)||ψ(t, t0)V |2 . (38)

Through a simple integration, we obtain

|ψ(t, t0)V | ≤ e

∫

t

t0

|ω(m,t0)|dm
|V | . (39)

One can check readily that

|ω(t, t0)| ≤ |E|∞e2|A|(t−t0) . (40)
Consequently,

∫ t

t0

|ω(m, t0)|dm ≤ |E|∞

∫ t

t0

e2|A|(m−t0)dm

= |E|∞
e2|A|(t−t0) − 1

2|A|
.

(41)

Combining (39) and (41), we obtain

|ψ(t, t0)V | ≤ exp

(

|E|∞
e2|A|(t−t0) − 1

2|A|

)

|V | . (42)

Since this inequality is valid for all V ∈ Rn, we have

|ψ(t, t0)| ≤ exp

(

|E|∞
e2|A|(t−t0) − 1

2|A|

)

. (43)

Again using (35), we deduce that
∫ t

t0

∂ψ

∂t
(s, t0)ds =

∫ t

t0

ω(s, t0)ψ(s, t0)ds . (44)

It follows from the Fundamental Theorem of Calculus that

ψ(t, t0)− I =

∫ t

t0

ω(s, t0)ψ(s, t0)ds . (45)

We deduce that

|ψ(t, t0)− I| ≤

∫ t

t0

|ω(s, t0)||ψ(s, t0)|ds

≤

∫ t

t0

|E|∞e2|A|(s−t0)exp

(

|E|∞
e2|A|(s−t0) − 1

2|A|

)

ds
(46)

where the last inequality is a consequence of (43) and (40).
We deduce that

|ψ(t, t0)− I|

≤ |E|∞

∫ t

t0

e2|A|(s−t0)ds exp

(

|E|∞
e2|A|(t−t0) − 1

2|A|

)

= |E|∞
e2|A|(t−t0) − 1

2|A|
exp

(

|E|∞
e2|A|(t−t0) − 1

2|A|

)

.

(47)

We also have
∣

∣

∣
φ(t, t0)− e(t−t0)A

∣

∣

∣

=
∣

∣

∣
e(t−t0)A

(

e−(t−t0)Aφ(t, t0)− I
)
∣

∣

∣

≤ e(t−t0)|A| |ψ(t, t0)− I| .

(48)

The inequality in conjunction with (47) gives
∣

∣

∣
φ(t, t0)− e(t−t0)A

∣

∣

∣
≤

|E|∞e(t−t0)|A| e
2|A|(t−t0) − 1

2|A|
exp

(

|E|∞
e2|A|(t−t0) − 1

2|A|

)

which is the desired conclusion. "
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