, Dementia ambient care: Multi-sensing monitoring for intelligent remote management and decision support, 2014.

O. Barnich and M. V. Droogenbroeck, ViBe: A Universal Background Subtraction Algorithm for Video Sequences, IEEE Transactions on Image Processing, vol.20, issue.6, 2011.
DOI : 10.1109/TIP.2010.2101613

C. , A video database for testing change detection algorithms, 2014.

A. Elgammal, D. Harwood, and L. Davis, Non-parametric Model for Background Subtraction, 2000.
DOI : 10.1007/3-540-45053-X_48

M. Hofmann, P. Tiefenbacher, and G. , Background segmentation with feedback: The pixel-based adaptive segmenter , 2012. Computer Vision and Pattern Recognition Workshops

A. Nghiem, E. Auvinet, and J. Meunier, Head detection using kinect camera and its application to fall detection, 2012, 11th International Conference on Information Sciences, Signal Processing and their Applications

M. Piccardi, Background subtraction techniques: a review, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583), 2004.
DOI : 10.1109/ICSMC.2004.1400815

R. Radke, S. Andra, O. Kofahi, and B. Roysam, Image change detection algorithms: a systematic survey, IEEE Transactions on Image Processing, vol.14, issue.3, 2005.
DOI : 10.1109/TIP.2004.838698

J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio et al., Real-time human pose recognition in parts from single depth images, IEEE Conference on Computer Vision and Pattern Recognition, 2011.

L. Spinello and K. O. Arras, People detection in RGB-D data, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011.
DOI : 10.1109/IROS.2011.6095074

C. Stauffer and W. Grimson, Adaptive background mixture models for real-time tracking, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149), 1999.
DOI : 10.1109/CVPR.1999.784637