Compressing the Input for CNNs with the First-Order Scattering Transform

Edouard Oyallon 1, 2, 3 Eugene Belilovsky 4 Sergey Zagoruyko 5 Michal Valko 2
2 SEQUEL - Sequential Learning
Inria Lille - Nord Europe, CRIStAL - Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
5 WILLOW - Models of visual object recognition and scene understanding
Inria de Paris, DI-ENS - Département d'informatique de l'École normale supérieure
Abstract : We study the first-order scattering transform as a candidate for reducing the signal processed by a convolutional neural network (CNN). We study this transformation and show theoretical and empirical evidence that in the case of natural images and sufficiently small translation invariance, this transform preserves most of the signal information needed for classification while substantially reducing the spatial resolution and total signal size. We show that cascading a CNN with this representation performs on par with ImageNet classification models commonly used in downstream tasks such as the ResNet-50. We subsequently apply our trained hybrid ImageNet model as a base model on a detection system, which has typically larger image inputs. On Pascal VOC and COCO detection tasks we deliver substantial improvements in the inference speed and training memory consumption compared to models trained directly on the input image.
Type de document :
Communication dans un congrès
European Conference on Computer Vision, 2018, Munich, Germany
Liste complète des métadonnées

Littérature citée [2 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01850921
Contributeur : Michal Valko <>
Soumis le : samedi 28 juillet 2018 - 00:28:36
Dernière modification le : mercredi 13 février 2019 - 20:06:33
Document(s) archivé(s) le : lundi 29 octobre 2018 - 12:41:06

Fichier

ECCV2018.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01850921, version 1

Citation

Edouard Oyallon, Eugene Belilovsky, Sergey Zagoruyko, Michal Valko. Compressing the Input for CNNs with the First-Order Scattering Transform. European Conference on Computer Vision, 2018, Munich, Germany. 〈hal-01850921〉

Partager

Métriques

Consultations de la notice

372

Téléchargements de fichiers

277