J. D. Banfield and A. E. Raftery, Model-Based Gaussian and Non-Gaussian Clustering, Biometrics, vol.49, issue.3, pp.803-821, 1993.
DOI : 10.2307/2532201

A. J. Bekker and J. Goldberger, Training deep neural-networks based on unreliable labels, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.2682-2686, 2016.
DOI : 10.1109/ICASSP.2016.7472164

V. Belagiannis, C. Rupprecht, G. Carneiro, and N. Navab, Robust Optimization for Deep Regression, 2015 IEEE International Conference on Computer Vision (ICCV), p.ICCV, 2015.
DOI : 10.1109/ICCV.2015.324

URL : http://arxiv.org/pdf/1505.06606

G. Beliakov, A. V. Kelarev, and J. Yearwood, Robust artificial neural networks and outlier detection, p.169, 1110.

M. J. Black and A. Rangarajan, On the unification of line processes, outlier rejection, and robust statistics with applications in early vision, International Journal of Computer Vision, vol.8, issue.4, pp.57-91, 1996.
DOI : 10.1002/0471725382

B. C. Chen, C. S. Chen, and W. H. Hsu, Cross-Age Reference Coding for Age-Invariant Face Recognition and Retrieval, p.ECCV, 2014.
DOI : 10.1007/978-3-319-10599-4_49

URL : http://cmlab.csie.ntu.edu.tw/%7Esirius42/papers/chen14eccv.pdf

P. Coretto and C. Hennig, Robust Improper Maximum Likelihood: Tuning, Computation, and a Comparison With Other Methods for Robust Gaussian Clustering, Journal of the American Statistical Association, vol.8, issue.516, pp.1648-1659, 2016.
DOI : 10.1007/3-540-28084-7_79

M. Demirkus, D. Precup, J. J. Clark, and T. Arbel, Hierarchical temporal graphical model for head pose estimation and subsequent attribute classification in real-world videos. CVIU pp, pp.128-145, 2015.

V. Drouard, R. Horaud, A. Deleforge, S. Ba, and G. Evangelidis, Robust Head-Pose Estimation Based on Partially-Latent Mixture of Linear Regressions, IEEE Transactions on Image Processing, vol.26, issue.3, pp.1428-1440, 2017.
DOI : 10.1109/TIP.2017.2654165

URL : https://hal.archives-ouvertes.fr/hal-01413406

F. Forbes and D. Wraith, A new family of multivariate heavy-tailed distributions with variable marginal amounts of tailweight: application to robust clustering, Statistics and Computing, vol.94, issue.1, pp.971-984, 2014.
DOI : 10.1016/S0378-3758(00)00208-1

A. Galimzianova, F. Pernus, B. Likar, and Z. Spiclin, Robust Estimation of Unbalanced Mixture Models on Samples with Outliers, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.37, issue.11, pp.2273-2285, 2015.
DOI : 10.1109/TPAMI.2015.2404835

I. D. Gebru, X. Alameda-pineda, F. Forbes, and R. Horaud, EM Algorithms for Weighted-Data Clustering with Application to Audio-Visual Scene Analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.38, issue.12, pp.2402-2415, 2016.
DOI : 10.1109/TPAMI.2016.2522425

URL : https://hal.archives-ouvertes.fr/hal-01261374

A. Gelman, J. Carlin, H. Stern, and D. Rubin, Bayesian Data Analysis, CRC Texts in Statistical Science, 2003.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation, 2014 IEEE Conference on Computer Vision and Pattern Recognition, p.CVPR, 2014.
DOI : 10.1109/CVPR.2014.81

P. J. Huber, Robust estimation of a location parameter. The annals of mathematical statistics pp, pp.73-101, 1964.

P. Huber, , 2004.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet classification with deep convolutional neural networks, Communications of the ACM, vol.60, issue.6, p.NIPS, 2012.
DOI : 10.1162/neco.2009.10-08-881

S. Lathuilì-ere, R. Juge, P. Mesejo, M. Salinas, R. Horaud et al., Deep Mixture of Linear Inverse Regressions Applied to Head-Pose Estimation, p.CVPR, 2017.

S. Lathuilì-ere, P. Mesejo, X. Alameda-pineda, and R. Horaud, A comprehensive analysis of deep regression. arXiv preprint arXiv:1803, p.8450, 2018.

Y. Li, J. Yang, Y. Song, L. Cao, J. Luo et al., Learning from Noisy Labels with Distillation . arXiv preprint, 2017.

Z. Liu, P. Luo, S. Qiu, X. Wang, and X. Tang, DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), p.CVPR, 2016.
DOI : 10.1109/CVPR.2016.124

Z. Liu, S. Yan, P. Luo, X. Wang, and X. Tang, Fashion Landmark Detection in the Wild, p.ECCV, 2016.
DOI : 10.5244/C.24.12

R. A. Maronna, D. R. Martin, and V. J. Yohai, Robust statistics, 2006.

P. Meer, D. Mintz, A. Rosenfeld, and D. Y. Kim, Robust regression methods for computer vision: A review, International Journal of Computer Vision, vol.53, issue.1, pp.59-70, 1991.
DOI : 10.1002/0471725250

S. Mukherjee and N. Robertson, Deep Head Pose: Gaze-Direction Estimation in Multimodal Video, IEEE Transactions on Multimedia, vol.17, issue.11, pp.2094-2107, 2015.
DOI : 10.1109/TMM.2015.2482819

R. Neuneier and H. G. Zimmermann, How to train neural networks, Neural Networks: Tricks of the Trade, pp.373-423, 1998.

N. Neykov, P. Filzmoser, R. Dimova, and P. Neytchev, Robust fitting of mixtures using the trimmed likelihood estimator, Computational Statistics & Data Analysis, vol.52, issue.1, pp.299-308, 2007.
DOI : 10.1016/j.csda.2006.12.024

R. Ranjan, V. M. Patel, and R. Chellappa, HyperFace: A Deep Multi-task Learning Framework for Face Detection, Landmark Localization, Pose Estimation, and Gender Recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, p.1249, 2016.
DOI : 10.1109/TPAMI.2017.2781233

R. Rothe, R. Timofte, and L. Van-gool, Deep Expectation of Real and Apparent Age from a Single Image Without Facial Landmarks, International Journal of Computer Vision, vol.30, issue.6, 2016.
DOI : 10.1109/ICCVW.2015.43

P. J. Rousseeuw and A. M. Leroy, Robust regression and outlier detection, 2005.
DOI : 10.1002/0471725382

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh et al., ImageNet Large Scale Visual Recognition Challenge, International Journal of Computer Vision, vol.1010, issue.1, pp.211-252, 2015.
DOI : 10.1007/978-3-642-15555-0_11

P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus et al., Overfeat: Integrated recognition, localization and detection using convolutional networks, p.ICLR, 2014.

K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, p.1556, 2014.

C. V. Stewart, Robust Parameter Estimation in Computer Vision, SIAM Review, vol.41, issue.3, pp.513-537, 1999.
DOI : 10.1137/S0036144598345802

Y. Sun, X. Wang, and X. Tang, Deep Convolutional Network Cascade for Facial Point Detection, 2013 IEEE Conference on Computer Vision and Pattern Recognition, p.CVPR, 2013.
DOI : 10.1109/CVPR.2013.446

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed et al., Going deeper with convolutions, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), p.CVPR, 2015.
DOI : 10.1109/CVPR.2015.7298594

A. Toshev and C. Szegedy, DeepPose: Human Pose Estimation via Deep Neural Networks, 2014 IEEE Conference on Computer Vision and Pattern Recognition, p.CVPR, 2014.
DOI : 10.1109/CVPR.2014.214

F. Wilcoxon, Individual comparisons by ranking methods, Biometrics Bulletin, pp.80-83, 1945.

T. Xiao, T. Xia, Y. Yang, C. Huang, and X. Wang, Learning from massive noisy labeled data for image classification, p.CVPR, 2015.

X. Xiong and F. De-la-torre, Supervised Descent Method and Its Applications to Face Alignment, 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp.532-539, 2013.
DOI : 10.1109/CVPR.2013.75

X. Zhu and D. Ramanan, Face detection, pose estimation, and landmark localization in the wild, pp.2879-2886, 2012.