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Figure 1: An illustration of the steps of our automatic structuring and layering system. (a) The input drawing. (b) Structure
analysis and part-completion estimate the constituent parts and their layering. The arrows represent the partial depth ordering
(“over” relation). (c) Manipulation of the depth ordering as desired (top), followed by the union of these elements composed
with the original internal contours to produce a new drawing (bottom).

ABSTRACT

Complex vector drawings serve as convenient and expressive visual
representations, but they remain difficult to edit or manipulate. For
clean-line vector drawings of smooth organic shapes, we describe a
method to automatically extract a layered structure for the drawn
object from the current or nearby viewpoints. The layers corre-
spond to salient regions of the drawing, which are often naturally
associated to ‘parts’ of the underlying shape. We present a method
that automatically extracts salient structure, organized as parts
with relative depth orderings, from clean-line vector drawings of
smooth organic shapes. Our method handles drawings that contain
complex internal contours with T-junctions indicative of occlusions,
as well as internal curves that may either be expressive strokes or
substructures. To extract the structure, we introduce a new part-
aware metric for complex 2D drawings, the radial variation metric,
which is used to identify salient sub-parts. These sub-parts are then
considered in a priority-ordered fashion, which enables us to iden-
tify and recursively process new shape parts while keeping track of
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their relative depth ordering. The output is represented in terms of
scalable vector graphics layers, thereby enabling meaningful edit-
ing and manipulation. We evaluate the method on multiple input
drawings and show that the structure we compute is convenient
for subsequent posing and animation from nearby viewpoints.
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1 INTRODUCTION

Contour drawings are commonly used for shape depiction. They
are both easy to create and easy to interpret for a human and
thus it makes them a convenient and expressive solution for visual
communication. They are found in children’s books, advertisements,
technical books, and more. In contrast, these drawings are difficult
for a computer to interpret. They usually depict silhouette curves
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and internal contours as well as expressive strokes, and they may
represent fully visible, self-occluding, or locally hidden regions.

Many contour drawings are directly authored in vector graphics
applications or are easily converted to a compatible representa-
tion using vectorization tools. Automatically decomposing them
into distinct and simple structural parts, layered in depth (as in
Figure 1 (b)), permits users to edit and manipulate the drawings in-
tuitively by rescaling, moving, rotating, copying, and pasting parts
without the need for intricate manual modifications and corrections
which would otherwise be required for such operations.

In this paper, we present an automated geometry-based method
for extracting apparent structure and depth layers from clean con-
tour line-drawings. We assume that the input drawing is intended
to represent an organic shape, i.e., any free-form 3D solid with
smooth connections between its 3D structural parts. The extracted
depth-ordered structure is similar to the collection of blobs that
artists sometimes use to temporarily define the construction lines
and volumes of the shape they want to depict (see results of a
web image search with the terms "tutorial drawing construction
animals")We record additional information, namely, where these
volumes blend together and where contours should be erased. This
information can then be used for both current and nearby views
editing to achieve new poses such as in Figure 1 (c). Although
view-dependency may prevent the structure from being complete
relative to the actual structure of the 3D depicted shape, we sill
claim that it is a useful reference for editing the current drawing to
create other postures of the shapes or near-by viewpoints.

The input drawing may be composed of silhouette curves as
well as different categories of internal and external curves. They
include internal open contours connected to silhouette curves, e.g.,
the contours of the feather groups in Figure 1 (a). Regions in the
drawing that are demarcated by silhouette curves may also include
a number of internal regions depicting sub-shapes, possibly lying
on top of one another, such as the eye of the swan in Figure 1.
Highly ambiguous curves, such as disconnected internal curves
and connected external open curves, are considered in our work
as decorative curves. We also detect and discard internal elements
that fail to define their own silhouettes (see Section 3.2).

Our three contributions towards solving structuring and layering
problems for drawings are as follows:

e We describe a simple and efficient method for the aesthetic
closing of sub-parts contours. This method provides a consis-
tent solution when open-end points are not explicitly defined
in the input drawing (Section 4).

e We introduce the radial variation metric (RVM), a novel
part-aware metric for complex 2D drawings, inspired by
the volumetric shape image used for shape segmentation of
3D models [Liu et al. 2009]. Its variation along the medial
axis of parts in a drawing enables the identification of salient
connections between sub-parts (Section 5).

e We describe a recursive algorithm enabling the successive
identification of sub-parts in a complex sketch and their as-
signment to depth-layers (Section 6). The key insight lies in
processing the possible junction zones between the identified
sub-parts in a specific order based on the types of contours
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involved. This enables us to handle cases of multiple con-
nected internal contours forming a tree-like structure, as can
be observed for the swan wing in Figure 1.

The structure and layering information we obtain can be used to
represent and edit the input sketch in current or nearby views
(Section 7).

We also demonstrate the automatic conversion of the sketch
into a Vector Graphics Complex (VGC), a structure that eases the
computational and manual editing of vector drawings, and that
readily allows for manipulation, editing, and animation.

2 RELATED WORK

Recovering the structural parts of 3D objects in 2D vector contour
drawings is a long standing and complex problem. This is due to
the lack of information required for the unambiguous and auto-
mated shape understanding of most drawings. For instance, the
understanding of the main features in a drawing is often based on
contextualized interpretations.

Given that a drawing is only composed of lines, several ap-
proaches have been proposed to identify which visual mechanisms
are used to help interpret the drawn lines in terms of self-consistent
shapes and contours [Singh 2015].

Several methods address specific aspects of this complex pro-
cess and techniques have been developed to evaluate them on
well-defined data sets. Alternatively, more practical approaches
aim at providing actionable interpretation methods by leveraging
knowledge about particular object classes and relying on Gestalt
principles.

One such Gestalt principle, the principle of closure — how our vi-
sual system tends to perceive the missing parts of curves or contours
— has been used by algorithms to complete hidden and subjective
contours [Nitzberg and Mumford 1990; Ullman 1976; Williams and
Hanson 1996]. Many solutions rely on plausible, visually appealing
curves such as Minimum Energy Curves (MEC) [Horn 1983] that
maximize the curve smoothness, and Minimum Variation Curves
(MVC) [Moreton 1992] that generate fair solutions. Our technique
uses a variation of the latter with the aim of efficiently generating
aesthetic curves.

Our approach is also inspired by the fact that the human visual
system tends to segment a complex shape into simpler parts. Shape
segmentation problems have been tackled for very long. Pioneering
work relied on the branches of the skeletal representation of 2D
shapes for inferring segmentation [Blum and Nagel 1978]. Observ-
ing that the quality of the correspondence between branches and
depicted shape parts drops as the complexity of the object rises,
subsequent work rather made use of maxima of negative curvature
on the contour to identify part boundaries and focused on trying
to disambiguate pairing between such boundary elements [Late-
cki and Lakamper 1999; Richards et al. 1987]. Shape segmentation
then became a classical problem for both 2D and 3D shapes. We
refer the reader to [Yang et al. 2008] and [Shamir 2008] for surveys.
Fully accepted general solutions do not yet exist, and segmentation
remains an area of active research even for the 2D case [Carlier
et al. 2016; Larsson et al. 2015; Leonard et al. 2016]. In parallel, inter-
active sketch segmentation and/or completion methods based on
human input were proposed to fill in drawings [Pessoa and Weerd
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2003], to select layers for shape manipulation [Igarashi and Mitani
2010], to segment sketchy drawings [Noris et al. 2012] or to simplify
them [Liu et al. 2015; Mi et al. 2009].

In this work, we build-on, or draw inspiration from, a number
of the processing steps introduced for 2D [Giesen et al. 2009] and
3D [Liu et al. 2009] shape segmentation. However, our goal is to
automatically segment complex sketches with not only contours
but with internal silhouettes as well. Indeed, internal silhouettes are
great perceptual conveyors of shape, as shown by their extensive
use for expressive depictions of 3D models and high-reliefs [De-
Carlo et al. 2003; Eisemann et al. 2009; Kunsberg and Zucker 2017].
Therefore, taking them into account is essential for being able to
segment a larger variety of drawings.

This new goal brings us to prior work in the area of sketch-based
modeling, where a number of methods relied on the analysis of
complex sketches to infer a 3D shape or a 2.5D high relief from a sin-
gle sketch, e.g., [Cordier and Seo 2007; Karpenko and Hughes 2006;
Xu et al. 2014; Yeh et al. 2017]. Most methods in the area built on
a priori knowledge (or contextual information) in order to resolve
ambiguities - such as requiring exact symmetric shapes [Cordier
et al. 2011], being restricted to garments [Turquin et al. 2007] or to
side views of animals [Entem et al. 2014] or requesting 3D informa-
tion such as a 3D skeleton from the user [Bessmeltsev et al. 2015].
Others methods obtained great results by relying on interactive
user annotations for helping to infer high-reliefs from photos or
drawings [Bui et al. 2015; Rivers et al. 2010; Sykora et al. 2014; Yeh
et al. 2017].

Closer to our goal, interpreting drawings of general organic
shapes (ie. smooth 3D solids) depicting all visible silhouettes includ-
ing cusps was tackled by Karpenko’s pioneering work [Karpenko
and Hughes 2006] in the context of 3D modeling from a sketch.
To this end, drawn lines were represented as networks of oriented
curves, enabling the authors to identify holes and to propose a recon-
struction method for hidden silhouettes indicated by T-junctions.
While we build on this work, we chose not to ask the user for the
orientation of contours, thus interpreting a two-circle drawing of a
torus as two superposed spheres. We focus instead on extending
the handling of internal curves beyond cusps, enabling us to han-
dle more complex suggestive contours as well as extra decorative
elements.

In summary, we provide the first fully automatic method able to
extract structural parts from cartoon drawings of organic shapes.
We provide in Section 7 a detailed comparison between our results
and those of previous work, by re-using a number of their examples.

Finally, we note that our method outputs a layered structure of
sub-parts locally ordered in depth, so as to ease the subsequent
editing of the drawing. Different structures and representations
have been developed to handle partial depth orderings [Dalstein
et al. 2014; Wiley 2006; Wiley and Williams 2006]. In this work
we output results in the VGC format [Dalstein et al. 2014], and
we choose to define a self-consistent global depth ordering of the
shape parts. The extracted structure is view-dependent (there is
no structure inferred for parts that are completely occluded, for
instance), and the rule that treats internal silhouettes as distinct
cases may lead to occasional surprises: the pupil of the cat’s eye
in Figure 2 is in fact a hole inside the eye, and thus its correct
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manipulation would require an intersection operator with the eye
region to not protrude out of it.

3 OVERVIEW

Our method decomposes an input drawing into a set of ‘structural
parts’, layered in depth, and possibly overlapping in 2D, together
with rules for combining these. The decomposition is based on
connected internal silhouettes and inner closed contours in the
drawings, which provide explicit indicators of part layering; the
resulting parts are intended to be meaningful for artists as shape-
defining-volume silhouettes, and can be used for editing and posing
in nearby views.

This section introduces the terminology we use throughout the
paper, defines the assumptions we make on the input drawing, and
presents the main features of our algorithm.

3.1 Terminology and assumptions

The input of our method is a vector line-drawing O defined in
the (x,y) plane as a set C of parametric curves that may only
intersect at their endpoints. The drawing may be either directly
created in this form or obtained from a rasterized drawing using a
vectorization algorithm [Noris et al. 2013] and then cutting curves
at all intersections. Paramatric curves are also uniformely sampled
as polylines for some of the further processing. In the following,
we therefore refer to points along the curves C as samples.

As in Smoothsketch [Karpenko and Hughes 2006], our algorithm
is designed to handle contour-drawings of smooth, closed shapes,
which we refer to as organic shapes. However, to be able to handle a
larger category of drawings, we also allow them to include specific
categories of decorative curves such as those often used in cartoon
drawing.

Therefore, our algorithm includes a mechanism for the automatic
detection of contour curves within C. Since we are not asking for
any additional information (such as contour orientations) from
the user, we assume that the depicted shapes have no surface-to-
surface contact, have genus 0, and are not self-overlapping (e.g., no
animal’s tail passing under and behind the body and forming a new
background region).

We use the following terminology throughout the paper (see
Figure 2):

Contour: A contour is a curve in C that corresponds to a
silhouette of the depicted 3D shape, i.e. to points where the
normal to the shape is orthogonal to the viewpoint. The
contour graph is the planar graph structure formed by the
contours and their intersections.

Region: AregionR) isa 2D connected component of O delim-
ited by a counterclockwise face cycle in the contour graph.

Part: Structural parts (or parts) are the 2D counterparts of
the structural elements of the 3D shape represented by the
drawing, as depicted in Figure 1(b). Our goal is to extract
them.

Suggestive contour: A suggestive contour is an internal curve
within a region R, of the drawing, connected with tangent
continuity to its external contour (and thus forming a T-
junction). Such curves are used in drawings to partially de-
pict the visible contour of a structural part.
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Figure 2: Stroke classification. Red curves are suggestive con-
tours; green curves are hair; blue and purple curves are part
of non-hair decorative elements. The remaining contours,
in black, are part of the external silhouettes of shape parts.

Note that this definition is slightly different from the one
found in the literature, since our term is in between the
concepts of suggestive contours [DeCarlo et al. 2003] and of
cusps [Karpenko and Hughes 2006], to better match what
we observed in typical line drawings.

Decorative elements: These include all curves in D that are
not visible contours of the depicted shape, but can instead
represent ornamental details, 1D elements such as hair, or
strokes used to represent bas-relief carvings. In our case, a
curve is considered as a decorative curve if it falls in any of
the following categories:

o Inner isolated subgraphs that do not contain external con-
tours when processed as independent input drawings (in
purple in Figure 2). Although they might contain or actu-
ally be inner contours, such subgraphs are highly ambigu-
ous. We leave interpreting and processing them for future
work.

o Inner trees of curves that are connected to the external
contour of a region, but without tangent continuity (blue
curves in Figure 2)

e Trees of curves located outside of the region they are
connected to (green curves in Figure 2, which we call
hair).

In our method, the decorative curves are identified and ignored

from further contour processing, but are kept in the description of
the corresponding to-be-segmented part.

3.2 Processing pipeline

Let G be the contour graph, the planar half-edge graph defined by
the curves C that constitute the input drawing . As in standard
planar graph processing, each half-edge corresponds to a given
orientation of a curve. If half-edges are part of a closed contour, they
are considered to lie respectively in the interior and in the exterior
of the corresponding face cycle of the graph. In the remainder of
this section we use both “edge” or “curve” to denote the edges of G,
depending on context.

The goal of our method is to process G in order to extract and
progressively refine the set # of 2D structural parts of D, as well as
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the associated partial depth ordering POp expressing their relative
depths. More precisely, P is defined as: P = {P; = (e;, Si, 0;)},
where e; is the external silhouette contour (as a list of edges) of P;
and where S; (respectively O;) is the subgraph of G corresponding
to the suggestive contours (respectively, the decorative elements)
located within P;, or attached to it.

Our processing pipeline, detailed below, is depicted in Figure 3.
Starting with an initial set of silhouette-complete parts extracted
at the initialization stage, our algorithm recursively decomposes
each part into simpler sub-parts and updates PO accordingly. This
is done until none of the parts in  has any suggestive contour left
(for all i, S; is empty).

Initialization:

We aim at initializing # to a first set of structural parts, such as
the heart of the flower versus the part with all its petals in Figure 3
or the head versus the ears and the nose of the head in Figure 2 (a),
and to set POy to the corresponding partial depth ordering. This
involves completing the contours of partially hidden parts, such
as the ears. Although this decomposition and figure completion
problem was already solved in the past [Williams and Hanson 1996],
this was for drawings only depicting silhouette outlines of occluded
surfaces. To handle more complex cases of cartoon drawings with
decorative lines such as the whiskers in Figure 2 (b), we extend the
original method into a four-stage process:

Firstly, if G contains any vertex v of valence 4 or more (such as
vertices where the whiskers of the cat cross the head’s contour in
Figure 2 (b)), we convert G into a non-planar graph by dissociating
the curves at v, enabling us to further process the whiskers as
decorative elements attached to the nose. This is done based on
Gestalt’s perceptual rule of continuity, as follows: For each vertex
v of valence 4 or more with adjacent edges in G that correspond
to pairs of tangent-continuous curves, we join each pair of curves
at v into a single curve. This disconnects the pairs of curves from
each other, enabling them to be attached to different structural
parts. A constraint is also set to prevent more than one pair of
merged curves from being interpreted as a contour curve in further
processing, since this would violate our hypotheses of organic
shape depiction (e.g., two overlapping circles do not correspond to
any valid contour of organic shape, and are thus interpreted as a
single 2D region crossed by a closed decorative curve). After this
stage, any connected component of G that still contains a vertex
of valence larger than 3 is considered in its whole as a decorative
element, since a set of curves that connect without any tangent
continuity cannot include silhouettes of smooth organic shapes.

Then, we process each remaining connected component CC
of G to separate contour curves from curves corresponding to the
associated suggestive silhouettes or decorative elements.

Since the input drawing is supposed to contain no self-overlapping
part, this can be done by simply moving every edge whose half-
edges both belong to the same face cycle (ie. lie in the same 2D
region) from CC; to another subgraph A;, which gathers candidate
edges for either S; or O;. Note that this operation may split CC;
into smaller connected components, since the edges moved to A;
may include bridges between different subgraphs. In this case, CC;
and the corresponding A; are split into smaller subgraphs. We
decide to which sub-connected component the bridge sub-graph
should be associated to by looking at its tangent continuity with the



Structuring and Layering Contour Drawings of Organic Shapes

Expressive *18, August 17-19, 2018, Victoria, BC, Canada

(b) (c) (d) ~ (e) @ (9) ,

initializati for each dial axi compute classification of select separation into two @ P,
initialization medial axis
part part-aware metric ~ salient junctions one junction layered sub-parts
T + cluster high values to process
) (h) reapply for each computed sub-parts «
i
C@@ O
. output 0
input (exploded view)

Figure 3: Processing pipeline: The input is (a) and the output is (h) with partial depth ordering (here depicted in exploded

view).

neighboring curves: We insert the bridge into the Ay set associated
with the subgraph CCy of CC; to which it has tangent continuity
at one of its endpoints (e.g., a suggestive curve partially hidden
by the contour of an inner part). If there is tangent continuity at
both ends, the decision is taken at random. If there is none, the
bridge is considered as a decoration and is attached to the subgraph
corresponding to the contour of the region where it lies.

At this stage, each CC; should only contain contour edges (for
instance, the drawing in Figure 2 (a) is split into two connected
components, namely (1) the nose and (2) the head plus ears, where
only black curves remain). This enables us to use the existing algo-
rithm in [Williams and Hanson 1996] to split then into structural
parts, by using T-junctions to identify partially hidden parts (such
as the ears) and smoothly complete their contours. Failure cases of
this algorithm and other limitations are be discussed in Section 7.

In contrast with previous work, we use our own efficient solution,
presented in Section 4, to compute closure curves. All resulting parts
P; are stored in P together with their contour edges e;. The corre-
sponding partial depth ordering information is added to POp. We
also add temporary depth relations with the remaining connected
components, depending on the number and order of intersections
with each other components to reach the background of the draw-
ing with a line (parts with the same number of intersections being
considered at the same depth level).

In a final stage, the set S; of suggestive contours of each part
P; is extracted from the set A associated to its former connected
component CCj, by selecting curves with smooth T-junctions with
contours e; and that lie within #;. The other curves in A; connected
to e; are classified as decorative elements and added to O;. Lastly,
every curve in other Ay sets that were initially crossing any of the
current contour curves are stored in the set Oy of the part in which
it is located since they no longer can be contours.

The set of parts P is now ready for further decomposition.

Recursive part decomposition:

The core of the algorithm is a recursive loop that processes each
part in P and recursively decomposes it into sub-parts. This enables

us to process complex suggestive contours indicating embedded
sub-parts, such as the wing of the swan in Figure 1: The full wing is
extracted first and is then recursively split into partially overlapping
sub-parts. The recursive loop proceeds as follows:

For each part P in P, we identify the salient potential junction
zones between sub-parts, and iterate from best-to-worst until a
valid pair (Pg, Pp) of sub-parts is identified. Missing contours are
then inferred for P, and P}, (see Figure 3 (g)) and the depth ordering
relation between them is added to PO. P, and P, are added to the
list of parts P, enabling us to recursively apply this process until
no further decomposition is possible (Figure 3 (h)).

This recursive decomposition method raises three challenges,
leading to our three key technical contributions. (1) The description
of a robust method for completing the contours of the extracted
sub-parts in a perceptually valid way. (2) The design of an effec-
tive metric for identifying the salient junction zones between the
sub-parts of a 2D shape. In contrast with previous work, the 2D
shapes we process may include suggestive contours, which are not
constrained to come in even numbers, or to be short cusps. (3) The
definition of an order in which to process the identified alternative
solutions for segmentation into sub-parts. This order is important
for extracting consistent sub-parts as it enables us to reuse the same
algorithm in a recursive fashion.

Our aesthetic and efficient contour completion is presented in
Section 4 and we discuss our new metric for identifying junctions
in Section 5. Section 6 details our recursive structuring algorithm.
It makes use of our new metric and completion method, with an
emphasis on the priority order we set for processing possible junc-
tions.

4 AESTHETIC AND EFFICIENT CONTOUR
COMPLETION

In this section, we present the completion method we use for closing
contours of both partially occluded structural parts (initialization



Expressive *18, August 17-19, 2018, Victoria, BC, Canada

step) and of sub-parts extracted during recursive part decomposi-
tion. Although not proved to be the best possible perceptual comple-
tion method, our solution is simple, efficient, and produces adequate
results in practice.

4.1 Scale-Invariant MVC

We first note that perceptually pleasing contour completion is
a different problem from that of completing illusory contours,
e.g., [Williams and Hanson 1996]. We seek to find aesthetic curves
that are appropriate for the editing and subsequent animation of
the drawing, during which hidden or omitted contour segments
may become visible. In the literature, both curves minimizing the
total curvature (i.e. “smooth” curves, MEC’s) and curves minimiz-
ing the total variation of curvature (i.e., “fair” curves, MVC’s) have
been proposed as possible solutions to the problem. We choose to
use MVC’s because they tend to form more circular arcs; these are
particularly well suited to later editing operations.

Let A and B be the two end-points of the open contour to be
connected, along with corresponding unit tangent directions T4 and
T as shown in Figure 4 (a). Our goal is to generate a perceptually
plausible curve between A and B that best matches an inferred
silhouette for the resulting part.

We define the curve connecting these two input points as follows.
Let B4p be a Bézier cubic curve connecting A and B, defined by the
four control points (A, P1, P2, B), and whose tangents are aligned
along the unit vectors T4 and Tg, i.e, P = A+ c1T4, and Py =
B + cTg. We optimize the free parameters ¢; and ¢y in order to
minimize a “fair” curve functional that is a variation of the SIMVC
energy originally introduced in [Moreton 1992] as:

3 2
EsimMvc-Moreton = (/ dS) /(dlzis)) ds (1)

where (/ ds) ’ is the product of a regularization term ((f ds) /|IB - A||)

and scale-invariance term ||B — A||>. This regularization term relies
on the cube of the scale-relative arc length of the curve. We increase
the regularization term’s exponent from 3 to 5 in order to reward
slightly shorter curves that avoid cases where closure curves would
slightly jut out from the desired boundaries and thus propose to
minimize the following energy:

Esimve =

5
V) riaxoy:
/ ( ) ds (2)

1B aAl*J \ ds

The use of Bézier curves guarantees that the curve lies in the
convex hull of its control points and is therefore well suited to inter-
active sampling and intersection queries. The choice to optimize its
parameters with the SIMVC functional produces a scale-invariant
result.

In practice, we use the standard Gauss-Kronrod quadrature to
numerically integrate the different integral terms. Powell’s method
is used for minimizing Esypvc-

4.2 Efficient implementation

Given that the completion curves we compute are invariant to scal-
ing, translation and rotation, there remain only two configuration
parameters, namely 6 and ¢. They are the oriented angles formed
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by the two tangents with respect to a line between the two points
to be connected, as shown in Figure 4 (a).

¢ SIMVC ¢ MEC

0 0

- 0 i -T 0 T

I — -
(a) (b) 10° ! ! . 1!)5 =

Figure 4: To optimize the computation of our SIMVC curves,
we precompute a table of the energies and associated param-
eters that the curve can take as a function of the two angles
0 and ¢ defined in (a). We illustrate the sampled function
SIMCYV energy values and compare them with the MEC en-
ergy that minimized total curvature.

The SIMVC energy of our curve defined as a function of these
two parameters is continuous and smooth in the sub-space of non
self-intersecting curves, as shown in Figure 4 (b). This enables us to
precompute a table of the different SIMVC Bézier cubic curves, with
their SIMVC energy and parameters c¢; and cy, as a function of 0
and ¢. Parameters can then be interpolated, with either bilinear or
bicubic interpolation, to provide both an approximated curve and
good initial parameters for the final curve computation, leading to
an important speedup of the gradient descent with two variables.

In practice, Bezier curves enable us to quickly detect invalid
contours: indeed, closures for partially occluded or partially occlud-
ing parts should not protrude outside of the union of the related
3parts thus we look for intersections. To avoid unintended intersec-
tions we rotate tangents, at the points to be connected, inwards
and by a small angle, keeping the alignment of tangents almost
imperceptible. During our experiments, we ended with a value of 2
degrees.

5 EXTRACTION OF SALIENT JUNCTIONS
WITHIN A PART

While previous work already addressed the segmentation of 2D
shapes into perceptually salient sub-parts, these methods do not
tackle the segmentation of shapes carrying extra structural infor-
mation in the form of suggestive contours. This is the problem we
are addressing here.

5.1 Salient Junctions

In the remainder of this paper, we define a salient junction as a
region where the drawing of a part exhibits a perceptual change,
enabling it to be divided into two sub-parts in a perceptually con-
sistent way.

We define junction boundaries as being the portions of the
part contours that delimit such a junction. These portions can
either be a point (e.g., the open end of a suggestive contour) or a
contour segment, as will be the case when the exact point where
the segmentation should occur is unclear.
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Among the common approaches to 2D shape segmentation that
we review in Section 2, computing junction boundaries as the seg-
ments of the contour of maximal negative curvature cannot capture
approximate regions such as those indicated by the green and red
junction boundary in Figure 5 (a), since the red one is not a curvature
maximum and thus would not be detected. Similarly, segmentation
methods that directly make use of the branches of a skeletal repre-
sentation such as the Medial-Axis Transform to identify sub-parts,
also fail in a number of cases, as shown in Figure 5 (b,c). Fortu-
nately, such correspondence between a Medial-Axis’ branch and
a structural part remains generally true for foreground structural
parts delimited by suggestive contours, such as the middle sub-part
in Figure 5 (b). The solution we describe below therefore builds on
skeletal representations, while being based on a new metric.

(@) (b) ]

Figure 5: (a) A maximum of negative curvature (in green)
defines a junction boundary on the contour but its visual
counter-part boundary (in red) shows no such maximum. (b)
S-skeleton of a part (in red), i.e. Medial-Axis considering in-
ternal silhouettes: the lower structural sub-part is not cap-
tured, while the middle sub-part at the top is. (c) Processed
Medial-Axis of the external contour of (b), where no branch
is associated with the top structural sub-part.

5.2 Radial Variation Metric

SSI

A

SSl

B

Figure 6: Example of SSI for points M, (resp. Mp) con-
structed by measuring the local reaches rf‘ (resp. rlg) in the
k’th direction of a uniformly sampled set of m directions
(here m = 3). Some discontinuities of reach are present and
shown here as green arrows.

Our new parts-aware metric is inspired by a similar metric [Liu
et al. 2009] developed for 3D shape segmentation. In particular,
it makes use of a Surfacic Shape Image, a modified 2D version of
the Volumetric Shape Image (VSI) introduced in [Liu et al. 2009].
However, we tailor this more specifically to our problem, as detailed
below.

We define the Surfacic Shape Image (SSI) as a signature of sil-
houette visibility from a given point of view inside a part of the

Expressive *18, August 17-19, 2018, Victoria, BC, Canada

input drawing (see Figure 6). A signature SSI; is defined as a set
of m distances llk between closest points pOi.C and plll? to the point
i in the k" direction of a pre-defined uniformly sampled set of
m directions. From 60 to 100 directions per set are used for the dif-
ferent examples in this paper. Both external contours and internal
contours are considered at this step, while decorative curves are
discarded.

Similar to the 3D case, the local change of SSI (differential of SSI)
between two neighboring points can be used to detect junctions
between two structural shape parts. We propose to compute this
differential between points A and B as follows:

k _ gk
A(SSD)a,B = 3 WkABM ®3)
T X wkaB o U IIB-A|
where
tf = [lprk - po| @

Discontinuities near open ends of suggestive contours as depicted in
Figure 6 generate outliers. To tackle this problem, we fit a Gaussian
to the distribution of such values (as in [Liu et al. 2009]) using the
weights wy. defined as follows:

e has=0 1N i dy 4 <t 20
Wk, A,B = .
0, ifdg op>=u+20
where di_s 5 = (lf1 - zgj /1B = Al, u is the mean of the dj._s p’s.
and o the standard deviation.
Note that in contrast to [Liu et al. 2009], ‘lﬁ - l§| is not squared

in Equation (3), in order to make the equation more linear. In prac-
tice, we regularize this term by the distance between neighboring
points of view, in order to allow for similar results whatever the
sampling resolution at which this measure is used. Thus A(SSI)
tends to be scale-invariant for high resolutions when there are no
discontinuities of visibility. Salient discontinuities, even pruned,
should still contribute to the A(SSI) in salient junctions. However,
we note that their contribution is related to the number of rays
comprised within the parallax angle of a discontinuity location seen
from neighbor points. Thus we propose two sampling methods that
correctly balance this contribution. The first uses a uniform spacing
that is relative to the drawing size (in practice 0.005 * Dp;g4p;) and
the second uses a dynamic spacing relative to local Medial-Axis
disk radii (in practice 0.02 * local_radius). While the first is closer
to perceptual principles, the second allows for small details to be
processed. Our presented results have been generated with the first
method for better readability of figures. We emphasize that even if
it extends to the continuous case when there are no discontinuities,
the resolution of SSI sample points should not be higher than that
of the input polylines so as not to reflect the lack of curvature of
the polylines (otherwise a wave like pattern can emerge).

Let us now define a part-aware metric from the SSI. Note that we
cannot reuse the method introduced by Liu et al. [Liu et al. 2009],
where the distance used to segment a 3D mesh was defined as the
integral of the VSI distance along a geodesic path between vertices.
Indeed, in our case, there is no 3D surface to support and define
the actual shortest path between two facing vertices on opposite
sides of a shape. Therefore, our approach identifies salient sub-parts
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(b)

Figure 7: (a) Computed dss; between vertices of each edge of
the S-skeleton of a part, and represented for each skeleton
edge as the scale of an orthogonal segment passing through
the center of this edge (values are squared for visibility). (b)
Salient junctions (in grey).

by defining a 2D Part-Aware metric along the curves of a specific
skeleton, called the salient skeleton (S-skeleton), as described
below.

We initialize the S-skeleton of a shape part as the medial axis
of the region bounded by the external contour and the suggestive
contours of this part, as shown in Figure 5 (b). Decorative curves
are discarded. As usual, it is defined as the locus of the disks of a
Medial-Axis Transform (abbreviated MAT) which are the maximal
disks that do not intersect the set of contours (see Figure 3). For the
S-skeleton to only reflect the main shape feature, we proceed in
a fashion similar to the Scale-Axis Transform [Giesen et al. 2009].
The goal is to locally remove small disks by considering those
that can be covered by others in a version of the MAT with larger
radii. The final result can be realized by computing the MAT of
the grown shape defined by the union of scaled up disks from the
initial MAT, and then scaling down the radii. However for reasons
of computational efficiency and simplicity, we choose to iteratively
remove disks from branch extremities in the grown MAT that are
covered by others and then scale down the radii of the remaining
disks. This saves the computation of a union and a MAT for similar
results at the scaling factor used in our algorithm, which is 1.3.
Additionally, the associated contour points of these removed disks
are given to the nearest remaining neighbor in order to keep a
mapping between contours and the S-skeleton.

Given that the drawing represents the silhouettes of a volumet-
ric, organic shape, the S-skeleton is a good candidate for extracting
structural information about salient sub-parts. It enables us to re-
cover junction boundaries that either lie along the external contour
of the part, or at the open end of a suggestive contour. To correctly
identify these boundaries, all the curves in the drawing, as well as
the S-skeleton itself, are represented using half-edges. This enables
us to assign the duplicate vertices on two sides of a suggestive
contour to different branches of the S-skeleton, as illustrated in
Figure 7.

Our new 2D part-aware metric, called radial variation metric
and noted dsgy is then defined over the S-skeleton as the integral
of the SSI differential (Equation (3)) along the shortest path joining
two skeleton vertices:

dss{(Ma, Mp) = Z A(SSI)e (6)

ecE
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where M4 to Mp are vertices of the S-skeleton and E the set of
edges of the shortest path between them.

5.3 Salience junction detection

With the S-skeleton S being computed from a medial axis transform,
each edge e € S is associated with two facing portions of the
contours, i.e. the segments or point of the contours that could be
generated by drawing discs from this specific edge of the skeleton.
This enables us to use the S-skeleton to define both salient junctions
(the regions we are looking for) and the junction boundaries that
delimit them on the contours:

We initialize salient junctions as the 2D regions corresponding
to segments of the S-skeleton with dsgy values over a threshold
k (see Figure 7 (b)). Thanks to the scale-independent nature of
the metric, a single threshold value k is used regardless of the
scale of the input drawing (we use k = 0.45 for all our results).
These segments are stored using lists of edges of the S-skeleton.
Since sharp extremities of structural sub-parts may correspond to
large-but-irrelevant dggy values, we remove them in a second pass:
Starting from S-skeleton extremities, we iteratively remove edges
while their dsg; values decrease. Increases in dgsy values due to
noise can lead to unwanted decomposition of pointy ends, but are
mostly avoided by smoothing the dggs; values along the S-skeleton
first. Due to the nature of the SSI, sampling points near the middle
of a punctually symmetrical transition will yield low dssr values
compared to other transitions as illustrated in Figure 8. However,
we note that the negative curvature cues on both sides is implicitly
given by the diamond shape formed between the junction zones
(Figure 8 (a)). We merge these salient junctions if the distances
dco and dc; between the junctions zones along contours are both:
inferior to the distance djs along the S-skeleton, and inferior to the
half of the average radius of the Medial-Axis disks of the junctions
zones.

Figure 8: (a) A salient junction misidentified as two junctions
due to punctual symmetricity of the shape at the center of
the transition (in near radial directions to the Medial-Axis).
Both are merged before further processing. (b) A more com-
mon case of salient junction with no merging necessary.

6 RECURSIVE PART DECOMPOSITION

Given the general methods that we have described for closing
contours and for extracting salient junctions within a structural
part, we now detail how a given part is decomposed, i.e., how its
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salient junctions are prioritized, and how the corresponding sub-
parts are extracted and completed.

6.1 Prioritizing salient junctions

Decomposing a part not only requires extracting possible junction
regions between sub-parts, but also assigning them a prioritized
order. We achieve this via a classification of salient junctions, de-
pending on the type of contour segments that contributed to this
specific part of the S-skeleton.

Figure 9: Salient junctions: (SF, SF) in dark blue, (SB, SB) in
cyan, (C,SF) in green, (C,C) in orange, discarded regions in
pink.

Since they are defined by segments of the S-skeleton, each salient
junction comes together with a pair of junction boundaries (the
associated parts of the contours, possibly reduced to a point) found
on each side of the skeleton. Salient junctions are classified as
follows, based on the nature of this pair of junction boundaries (see
Figure 9):

(1) Two segments of suggestive contours, that do not be-
long to the same tree of internal silhouettes: The junc-
tion is either classified (SF, SF) and (SB, SB), depending on
whether the suggestive contour’s curves (a set of half edges)
correspond to a front (occluding) or to a back (occluded)
sub-part of the shape. The occluding side is given by the
T-junction properties.

(2) A pair formed by an external contour segment and a
suggestive contour segment: We only consider the case
when the suggestive contour side corresponds to the front
of the shape, denoted as (C, SF).

(3) Two portions of the external contour: the junction is
classified (C, C).

If a curve segment in a pair spans different types of contours, the
associated salient junction is subdivided. Regions that do not fit into
the categories described above (in pink in Figure 9) are discarded,
since they have a bounding contour on one side and an occluding
one on the other, and this case is not handled by our decomposition.

This classification is used to select the salient sub-parts to be
extracted at each stage of the recursive part decomposition algo-
rithm described in Section 3.2: (SF, SF), (SB, SB), (C, SF) and (C, C)
salient junctions are respectively given highest to lowest priority.
This enables us to give priority to sub-parts that are unambiguously
in front of their neighbors, such as for the bottom-right part of the
flower in Figure 3, before processing partially occluded sub-parts
and those with weaker depth clues.
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6.2 Processing complex suggestive contours

Figure 10: Adding relative depth information along a sug-
gestive contour, illustrated here for the case of a complex
curve forming a tree. As shown here, the numbering must
be made in forward or backward fashion depending on the
root T-junction.

In addition to the sorting order we just defined, sub-parts defined
by (C, SF) junctions need to be given a priority order. This enables
us to handle cases where the suggestive contour forms a tree of
branching curves, such as the swan’s wing in Figure 1.

Let us look at the similar shapes on Figure 10: sub-shapes with
high label values on the edges need to be extracted first, since they
embed the other ones. This enables us to extract the full wing,
which can then be progressively decomposed into three consistent
sub-parts.

Given that suggestive contours represent internal silhouettes of
volumetric sub-parts of a shape that smoothly blend with the parent
part, they should have a G! continuous junction to the silhouette
they are attached to (see Figure 10). The side of this smooth junction
indicates which part comes above the rest. Therefore:

(1) If the connection point with the external contour is only C°,
the curve tree is re-classified as decoration.

(2) If G! continuity is detected, we use a traversal of the sugges-
tive contour from the connection point to the open end, on
the side of the G! continuous curve in order to enumerate
and prioritize these half edges for decomposition.

(3) During the traversal of the tree, only suggestive contours
that demarcate a sub-part that is on the same side as the
occluder at the root T-junction are allowed. Other contours
are left-out as decorative strokes and are not processed by
our algorithm.

Note that even in the case of complex suggestive contours that
form a tree as in Figure 10, the suggested sub-shape is always on
the same side of the curve, given that the organic shape hypothesis
would otherwise be violated.

6.3 Part decomposition method

Decomposing a shape part at a given salient junction always in-
volves generating two contours for closing the two resulting sub-
parts. We use the terms front closure and back closure to refer to the
closure curve that closes the sub-parts lying at the front and back,
respectively, given the depth clues provided by the suggestive con-
tours. To decompose a part, we first generate the two closure curves
for all the junctions having the highest priority, using specific algo-
rithms for each type of salient junction, as detailed below. If either
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of the resulting closure curves intersect the shape contour or if
the front closure curve intersects a decoration curve, the current
junction is discarded. Finally, the junctions that result in most plau-
sible closure, as defined by the minimal sum of their closure curves’
energy, are selected for the decomposition. The resulting sub-parts
are created and included in the partial depth set ¥ according to
their classification as a front or back closure curve.

Note that the two newly created parts may have overlaps be-
tween their respective closure curves, but this is valid since they are
each assigned a different depth layer. To assign such depth in the
case of (C, C) salient junction without a relative depth cue, e.g., the
bottom-right petal of the flower in Figure 3, we use the convention
that the largest shape part should be in front, which is often the
best choice when the resulting sub-shapes are to be animated.

While inferring the closure of a sub-part given two end-points
and the associated tangent vectors is easy (Section 4), and can be
done for connecting two suggestive contours (SF, SF) and (SB, SB)
salient junctions, the connections in the (C, SF) and (C, C) cases are
much more challenging. Indeed, the best pairs of contour points
in the salient junction zone should be computed for the front and
back closure curves. Our methods for solving these two cases are
presented next.

6.4 Contour / Suggestive contour (C,SF) closure

Given that we are in the case where the suggested sub-part is on
top, we compute all the possible closure curves that join the tip of
the suggestive contour to the sample points on the facing contour
segment in order to generate the front closure (Figure 11 (b)). We
also generate all the possible closure curves joining the contour
segment with the T-junction at the base of the suggestive contour
tree (Figure 11 (c)). Keeping only pairs of closure curves whose tips
on the contour are not further from each other than the blending
radius, we select the most plausible pair of closure curves of minimal
energy using the sum of their SIMVC energies (Equation 2). This
enables us to efficiently select the best pair of closure curves among
the n? possible choices.

For this task we must define an adapted sampling to explore the
space of possible closure curves. We first compute a blending radius
that reflects the size of the transition between the salient sub-part
of interest and the remaining part of the current shape. This radius
is set as the average of radii at the two ends of the salient junction
along the S-skeleton. We then identify corner segments within the
junction boundary, defined as parts of the curve where curvatures
are larger than the blending radius (orange curve segments in Fig-
ure 11 (a)). Corners are associated with specific virtual sampling
points at two different locations, namely at the beginning and end
of the curve-segment that forms the corner, and with two possible
tangents depending on which of the two closure curves is being
computed (Figure 11 (b) and (c)). Other contour parts are regularly
sampled with a distance between consecutive samples equals to the
half of the blending radius. For each such sample point we store the
incoming (or outgoing) tangent vectors, with a small tilt outwards
(or inwards) in order to avoid undesired intersections.

When dealing with suggestive contours that could be considered
as big cusps (Figure 12 (a)), the front closure is processed normally
(Figure 12 (b)) while the the back closure requires to extend the
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relevant transition contour (Figure 12 (c)). The transition contour is
extended by following its associated S-skeleton branch until either
an extra branch is encountered, or the facing contour is a neighbor
of the T-junction. This produces the result exposed in Figure 12 (d).

6.5 Contour / Contour (C,C) closure

We sample the boundaries of the salient junction in the same way
as for the (C, SF) case. The two closure curves’ extremities may
be located anywhere on these segments. With n sample points on
both contours, a naive method would lead to n? possible curves to
generate for each of the sub-parts, and thus to n* pairs of closure
curves to evaluate. To reduce the complexity back to n?, we only
consider the pairs of closure curves between a given pair of points,
i.e., the same sample for the two curves.

We use a variation on the energy in this case for selecting the
most plausible pair of curves. Rather than selecting short curves, we
wish to favor a decomposition close to the middle of the junction
zone. Therefore, we use the energy E of the two curves to select
the best closing pair, defined as:

a 2 a 2
(A-555) b+ -g53)h

0 1
h+h (Esimve + Esimve)

E=[1+

with [; = a; + b; and a;, b; the junction boundary segments
arc lengths shown in Figure 13, Eg mve and Eé My the ener-
gies of the closure curves.

We also wish to reward the use of corners over a solution with
two circular arcs forming a circle since it has an energy close to
zero. Thus valid closures that use a sample at a corner as an implicit
end point are given priority.

7 RESULTS AND DISCUSSION

Figures 1, 3, 20 to 17, and 21 show a variety of shape decomposi-
tion and layering results that are automatically computed by our
method. Note that for Figure 20, we reused drawings from a recent
paper [Bessmeltsev et al. 2015], showing that our method achieves
the structuring and layering of such drawings without the need
of any extra information, whereas a user-defined 3D skeleton was
used in the original paper. Figures 1 and 14 (top-right) show even
more challenging cases where some of the suggestive contours
form a chain of T-junctions, requiring the labeling method of Sec-
tion 6.2 in order to be properly processed. Figure 21 shows results
computed on cat drawings found on the web using a simple query
and vectorized using Adobe Illustrator.

Validation: Segmentation in depth ordered structural parts is a
fundamental first step for further applications such as the edition of
vector drawings with robust completion of partially hidden parts,
2D animation, or sketch-based 3D modeling. While developing such
applications remains out of the scope of this research, we tested our
method with two applications in mind: the conversion of the input
drawing into a Vector Graphics Complex [Dalstein et al. 2014] that
then enables easy and meaningful editing, and 2D vector animation.
Posing and animation results are shown respectively in Figure 1
and in the supplemental video. The decomposition of the wing of
the swan may not fit the perceived structure for every viewer, but
wings are not known to be easily animatable in 2D.
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Figure 11: Part decomposition at a salient junction. a) junction boundaries in this case are described by an external contour at
the bottom and a red suggestive contour at the top. The external contour is uniformly sampled into a set of points and their
associated pair of tangents. Corner segments (orange) samples are given two points instead of one to handle proper connection
where curvature is the highest. b) all the closure curves corresponding to pairs of one sample point from the contour and
the suggestive contour extremity are computed and their plausibility is evaluated for closing the rightmost sub-part. Curves
that intersect contours are eliminated. c) the same closing procedure is applied to the other region, therefore the suggestive
contour’s T-junction is used instead of its extremity; d) resulting closure curves.

SOV

Figure 12: (a) Example of a suggestive contour comparable
to a cusp requiring a (C,SF) closure. (b) The front closure un-
known end-point is searched along the blue contour part de-
fined by the identified salient junction. (c) The transition is
extended for the back closure. (d) Result of the decomposi-
tion with sub-parts sharing a wide part of contour.

Figure 13: For (C,C) closures we define a new coefficient for
E based on the samples’ positions relative to their respective
sampling contours as defined in Section 6.5.

Discussion: Our method for structuring complex drawings per-
forms as expected in most cases. We point out that once a drawing
is processed, the union of the extracted parts does not necessarily
exactly correspond to the initial outline since the blending between
parts is not conserved. However, it is very similar and it would be
possible to retrieve a similar outline by representing the parts’ con-
tours as iso-contours of 2D scalar fields and blending them together.
Scalar fields with skeleton could also allow for easy directional
rescaling of structural parts to allow for illusory 3D rotations. For
instance it could help for improving the animation of our swan’s
wings.

In some cases, a valid drawing may be ambiguous and gives
rise to several different interpretations. This is the case for the
example in Figure 15, where the shape could either be interpreted

Kia

Figure 14: Results on drawings of a cartoonish man, a tree
and a pig. The two legs of the man are seen from a special
view, thus the surface contact is classified as a decorative el-
ement. Warmer colors are in the foreground.

as a boxing glove (b) or as a snail head protruding out of the shell (c).
Our method will output a single result in such cases, the one in (c),
because of the way we process complex suggestive contours. Some
curves that would be processed naturally by a human as contours
are not processed when there is no T-junction such as for the beak
of the bird in Figure 1.

Lastly, similarly to the metric in [Liu et al. 2009], our dssy metric
could also be used to define a distance between two points of the
contour, which we would define as the dss; distance between their
two corresponding S-skeleton’s vertices. In future work we wish
to explore the possible applications of this new metric to contour
drawings.

Comparison with previous work: The closest work we can com-
pare with is SmoothSketch [Karpenko and Hughes 2006]. While
they look for a plausible completion of the hidden contour hinted
by cusps, we instead use the facing contour to smoothly wrap a
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Figure 15: An ambiguity of interpretation. Our algorithm
can only produce the result (c) while (b) would also be a per-
ceptually plausible result.

curve around the hypothetical 3D shape as shown in Figure 16. We
emphasize that the segment of our hidden closure that is near the
T-junction is a plausible hidden contour. Thus, our method could
benefit figural completion of cusps in SmoothSketch’s failure cases.
However, we think that both this algorithm and ours should be
used in a complete application since hidden contour completion is
more meaningful than our decomposition for the case of cusps that
are small relative to the local thickness of the shape, and specific

cases such as the swan’s wing.
(@ (b) () (d)

Figure 16: Comparison of our results (b,d) with SmoothS-
ketch’s failure cases (a,c).

The recursivity of our decomposition hides some perceptual
information such as similarity, grouping, symmetry. In the paw ex-
ample in Figure 16(c,d), we perceive the similarity and symmetry of
the fingers. However our algorithm first decompose the foreground
finger, and considers the two others as a whole, thus the background
finger is eventually perceived as big as the middle one once the first
is extracted. Designing a global method from our recursive one is a
non trivial problem since the closures are interdependent in many
cases.

We also show results on inputs from [Entem et al. 2014] in Fig-
ure 17 (top, middle). Though the segmentation is similar, our initial-
ization step cannot complete complex hidden contours. This limi-
tation would locally require a completion similar to the one used
in [Sykora et al. 2014] but it is non trivial to combine this method
with figural completion to be able to completed parts with distinct
visible regions in the absence of distinct similarities between these
regions such as color or grouping annotations. However our al-
gorithm tackles the case of sub-parts hinted by single suggestive
contours as shown in Figure 17 (bottom).

Limitations: Even though our method is giving good results in
most of the cases, we have few limitations as well. One main prob-
lem is the cyclic arrangement of parts over one another. Figure
18(a) shows an example in which the petals are overlapping to one
another in a cyclic fashion. In this case, layering cannot be done
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Figure 17: Results on two drawings from [Entem et al. 2014]
and the third is the second drawing minus two suggestive
contours, a case that their algorithm could not handle. Red
dotted curves are contours that make our initialization stage
fail.

using the proposed method and makes our part decomposition
phase to fail. Since we are assuming that the occlusion results in
either T-junctions or cusps, the more complex junctions are not
processed in the current system.

Many limitations are found in the initialization step, when draw-
ings carry ambiguities at curve intersections. Notably when T-
junctions are not well defined either due to special view or surface
contact as in Figure 18 (b,c) and Figure 21 (2,3), or misleading be-
cause the hypothetical occluded contour is in fact a texture change
as in Figure 18 (e, left). The latter limitation can be manually worked
around by erasing a part of the stroke as in Figure 18 (e, right).

8280

Figure 18: Different limitation cases of the initialization step
(b, ¢, d, e) and recursive decomposition algorithm (a).

a)
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Future Work: Our current method can be improved in various
directions. One of them is to include user interventions to solve
ambiguous cases (recognize whether two concentric circles rep-
resent two spheres or a torus), and to do assisted-segmentation
as in citeDS14. Another interesting roadway is to use decorative
curves as suggestive contours. Figure 19 shows a case in which
the decorative curve represents a suggestive curve and our method
would ignore it.

Figure 19: An input where a suggestive contour is not con-
nected to the outer contour and thus misclassified as as a
decorative element in our initializaton step. We would like
to use it as a possible segment of a foreground closure in
future works.

\/‘_‘:'__~
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Figure 20: Results on three drawings also used in [Bessmelt-
sev et al. 2015], except that we removed the hat of the char-
acter. Warmer colors are in the foreground.

8 CONCLUSION

We presented the first automatic method able to use complex inner
contours in the analysis and recursive decomposition of drawings
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Figure 21: Results for three drawings found on the first re-
sults page of Google Images with the following search terms:
“catline drawing”. The second result has been produced with
salience threshold parameter that is more sensitive than the
one used for all the other examples. The third example is
subject to three limitations: 1) non trivial hidden part com-
pletion; 2) badly defined T-junction; 3) 4-valence vertex.

that represent smooth shapes. Our decomposition method outputs
a structure of closed 2D shapes layered in depth. It relies on the
inference and progressive refinement of a partial depth tree to store
depth information. A new metric computed along a skeleton was
proposed to detect salient parts of complex drawings including
internal silhouette curves. We introduced a new, perceptual-based
criterion for selecting the most salient possible junctions, priori-
tizing them, and using them to recursively segment a shape into
parts. An efficient implementation of curve closures using a varia-
tion of Scale-Invariant MVC functional was defined for closing the
extracted sub-parts, hidden or salient. Lastly, we managed to keep
most parameters scale-invariant, enabling us to achieve structural
decomposition of drawings with different resolutions of features.
Many applications can benefit from our method. As we have
illustrated, it enables organic sketches to be easily edited in a mean-
ingful way. Subdivision and depth layering makes the model ready
for simple 2D animations. As future work, the automatic deter-
mination of the implied articulations between overlapping shape
parts would make the application to vector drawing animation even
more straightforward. We could also locally blend the contours at
each animation step in order to enable smooth transitions between
silhouette curves where and when needed, as done by the user
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in Figure 1 (c). This could be done with the help of 2D implicit
contours and specially designed operators. We also plan to inves-
tigate 3D shape modeling from our part decomposition method,
similarly to what was done in [Bessmeltsev et al. 2015; Entem et al.
2014] for much more constrained input. When applied to vector
drawing animations, such a 3D intermediate representation would
enable us to apply out-of-plane rotations to limbs and to change
the viewpoint, two cases in which the silhouettes and occlusion
between shape parts need to be recomputed.
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