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Interval-based cooperative UAVs pose domain characterization
from images and ranges

Ide-Flore Kenmogne, Vincent Drevelle and Eric Marchand

Abstract— An interval-based approach to cooperative local-
ization for a group of unmanned aerial vehicles (UAVs) is
proposed. It computes a pose uncertainty domain for each
robot, i.e., a set that contains the true robot pose, assuming
bounded error measurements. The algorithm combines dis-
tances measurements to the ground station and between UAVs,
with the tracking of known landmarks in camera images, and
provides a guaranteed enclosure of the robots pose domains.
Pose uncertainty domains are computed using interval con-
straint propagation techniques, thanks to a branch and bound
algorithm. We show that the proposed method also provides
a good point estimate, that can be further refined using non-
linear iterative weighted least squares. Results are presented
for simulated two-robots configurations, for experimental data,
and compared with a classical Extended Kalman Filter.

I. INTRODUCTION

In the last few years, unmanned aerial vehicles (UAVs) have
significantly attracted attention and interest in several fields
of applications involving multi-robot tasks, like searching
and coverage missions [1], cooperative manipulation [2], and
camera based formation control [3]. It appears that a team
of robots can perform more efficiently tedious tasks like
exploration [4].

One of the problems to address with group of robots
is cooperative localization [5], i.e., improvement of each
robot positioning ability thanks to information exchange (e.g
sensor measurements) with other robots of the group. Several
methods are available for Cooperative Localization (CL), like
the Extended Kalman Filter (EKF) for a centralized system
[6], or, if computation is decentralized and communication is
unreliable, other techniques like Covariance Intersection [7]
or Interleaved Update [8]. Bounded error approaches using
polytopes and linear programming have also been proposed
[9], [10].

In a bounded error framework, interval methods [11]
enable rigorous propagation of errors in non-linear problems.
Applications are found in localization of mobile robots [12]
or cars [13], and in the context of cooperative localization
for underwater robots with sonar ranging [14], and vehicle
networks with GNSS [15]. The main characteristic of these
approaches is to provide a set a feasible positions, instead of
a point estimate.

In a previous work [16], we proposed an interval-based
set-membership approach to single robot pose domain charac-
terization. In this paper, we extend this method to multi-
robots cooperative localization. We consider a group of
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UAVs equipped with cameras able to track landmarks and
a communication system with ranging capabilities. We aim
at computing an enclosure for the pose of each robot based
on set-inversion and constraints propagation techniques. The
method computes a set that contains all the feasible poses
of each robot, by taking image measurements, distance
measurements and landmark positions error bounds into
account. The true pose is guaranteed to be inside the computed
solution set, as long as the actual measurement errors stay
within their bounds. The main contribution of this paper
resides in:
• using interval methods for cooperative fusion of camera

and range measurements for the localization of two
UAVs

• combining the interval approach with non-linear
weighted least squares for accurate initial localization

• providing a comparison with other existing classical
approaches

The paper is organized as follows. Section II presents the
localization problem with camera and ranges. Interval analysis
and contractors are introduced in Section III. The proposed
approach to compute pose domains is presented in Section IV.
Finally, the approach is validated in Section V.

II. PROBLEM STATEMENT

This paper addresses the problem of localizing two UAVs
in the world reference frame (Fig. 1), in a cooperative way,
and with a focus on characterizing pose uncertainty domains.
Given measurement uncertainties, we want to determine an
enclosing domain that contains the pose of the robots.

Both robots are equipped with an altimeter, an inertial
measurement unit (IMU) and a camera, so that each robot
Rk, k ∈ {1, 2} can measure:
• its altitude zk
• its accurate roll ψk and pitch θk angles
• a rough estimate of the heading φk angle
• image points {xi,k, ...,xN,k} corresponding to observ-

able landmarks {wXi, ...,
wXN} in the environment

In addition to these embedded sensors measurements, each
robot is capable of:
• measuring its distance dk,j to the other robot Rj
• measuring its distance dk to the base station (the origin

of the world frame in which the robots move)
• communicating its measurements to the other robot.

This can be done using an IEEE 802.15.4.a ultra-wide band
(UWB) communication system [17] which enables ranging
via time of flight measurements, or others external sensors.
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Fig. 1: Cooperative localization of two UAVs R1 and R2,
seeing landmarks and measuring ranges to the base station
B.

We aim at computing the domains of the feasible 6-DOF
poses of each robot in the world reference frame Fw, i.e.,
positions pk = (xk, yk, zk) and attitudes (roll, pitch and yaw)
qk = (φk, θk, ψk). As in [18], since we are operating in near-
hovering regime, we assume that the roll and pitch (φk, θk)
are measured with an onboard IMU. Moreover, it is possible
to retrieve the altitude of each robot through an altimeter.
Thus, most of the effort in this article will be focused on
estimating the horizontal position xk, yk and the heading ψk
of each robot.

A. Camera based pose estimation

Let Fw the world frame attached to the origin of a local
coordinate system, Frk the robot frame attached to the UAV
Rk center of gravity, and Fc the camera frame attached to
the camera optical center. We aim at determining the pose
rk = (xk, yk, zk, φk, θk, ψk) of each robot in the world frame.
Considering a single robot, the indices k are omitted in the
sequel of this subsection for clarity. Pose estimation amounts
to estimating the transformation matrix rTw between the
world reference frame Fw and each robot frame Fr.

rTw =

(
rRw rtw
03×1 1

)
(1)

where rRw and rtw are respectively the rotation matrix
depending on the UAV’s orientation and the translation vector
that represents the position of the UAV in the world reference
frame.

Knowing that cTw =cTr rTw, if we suppose that the rigid
transformation cTr between the robot and the camera frame
is known from calibration [19] (for each UAV), the pose
can be obtained indirectly by estimating the transformation
between the camera and the world frames.

To determine the pose of a camera in the world (as depicted
in Fig. 2), the perspective projection equation of a 3-D point

Fig. 2: Perspective projection of an object in the image plane

(in the world frame) on the image frame (a 2-D point) is
used. This is the pinhole camera model, expressed by:

x̄ = K Π cTw wX (2)

where:
• wX = (X,Y, Z, 1)> are the homogeneous coordinates

of a 3-D point in the world frame;
• x̄ = (u, v, 1)T are the homogeneous coordinates (in

pixel) of the projection of wX in the image;
• K is the camera intrinsic parameters matrix expressed

using px and py , the meter/pixel scale factor and u0 and
v0 the image principal point’s coordinates [20];

• Π is the perspective projection matrix.
The intrinsic parameters can be easily obtained through an

off-line calibration step; we therefore consider them as known.
If we have N points wXi, i = 1..N whose coordinates
expressed in Fw are given by wXi = (Xi, Yi, Zi, 1)>,
the projection x̄i of these points in the image plane is
then given by: x̄i = KΠ cTw

wXi. Knowing 2D-3D point
correspondences, x̄i and wXi, pose estimation consists in
solving the system of equations for cTw. This is an inverse
problem that is known as the Perspective from N Points
problem or PnP. Many solutions exist to solve the PnP
problem [21], [22]. The ”gold-standard” consists in estimating
the six parameters of the transformation cTw by minimizing
the norm of the reprojection error, by using a non-linear
minimization approach such as the Levenberg Marquardt
technique. Without prior knowledge of the pose, 3 unaligned
points lead to four ambiguous solutions. A minimum number
N ≥ 4 of points is thus needed to determine the pose.

B. Range measurements

Assuming the antenna coincides with the center of the UAV,
range measurements are independent of the robot attitude.
They only provide information about the robot position pk =
(xk, yk, zk). Indeed, range measurement of robot Rk to the
base station B is defined by

dk = ‖pk − b‖2 with k ∈ {1, 2},

where b = (xB , yB , zB) is the base station position in the
world reference frame. Inter-robot range measurements are
defined by

dk,j = ‖pk − pj‖2 with (k, j) ∈ {1, 2}2 and k 6= j.

Since the base station position b is known, the knowledge
of dk constrains the position of Rk on the sphere S2(b, dk).
The additional knowledge of d1,2 restricts the feasible config-
urations: for a given candidate position of R1, the admissible
positions of R2 are restricted to a circle (intersection of the
two spheres S2(b, d2) and S2(p1, d1,2)).

Range measurements d1, d2 and d1,2 provide constraints
on the positions of the two robots, but there are 3 degrees
of freedom left (out of 6) on the position components of
the two-robot group (corresponding to all rotations of the
formation around the base station).

Now let us consider that the altitude zk of each robot
is known (provided by the altimeter). This provides two



additional constraints. Distances dk to the ground station
now restrict the position of each robot on an horizontal
circle (intersection of S2(b, dk) and the zk = zmeas

k plane).
The inter-distance measurement d1,2 constrains the feasible
configurations such that for a given position of R1, there are
only two admissible positions of R2. These corresponds to
the intersections of the R2 position circle with the sphere
S2(p1, d1,2). In addition to this ambiguity, there is still one
degree of freedom left for the two-robot position configuration,
corresponding to rotations around the vertical axis of the base
station.

C. Cooperative pose-domain characterization
As previously explained, in the proposed configuration

(two robots and a fixed base station), ranging alone does not
enable to do perform a position fix. It has to be combined
with camera measurements. A robot is able to compute its
pose by combining pitch and roll knowledge from the IMU,
altitude measurement, distance measured to the base station,
and vision of at least two landmarks. Seeing more landmarks
enables to refine the pose thanks to data redundancy.

Cooperative positioning is enabled by inter-UAV ranging,
and measurements exchange. It provides a means for position
refining by using additional measurements. Cooperation also
allows to relax the landmark visibility constraint, enabling
one of the robots to see only one landmark and still estimate
its pose (up to an ambiguity that can be resolved with a rough
heading estimate).

In the sequel, we consider that measurements are uncertain,
and are represented by intervals (bounded-error model). The
solution to the localization problem is not a point pose
estimate anymore, but a pose domain, i.e., a set. We now show
how to compute a guaranteed enclosure of the two robots pose
domains, by using interval analysis and constraint propagation
methods.

III. INTERVAL ANALYSIS
This section presents a short overview of Interval Analysis

as a non-probabilistic tool for bounded error estimation. It puts
an emphasis on the use of Contractor Programming [23] and
Set Inversion via Interval Analysis (SIVIA) [24] to perform
set-membership estimation, i.e., computing the set of solutions
that are compatible with the measurements and their error
bounds.

A. Set Inversion
Let us denote IR the set of real intervals, and IRn the set

of n-dimensional boxes (interval vectors). Intervals and boxes
will be denoted between brackets. The interval [x] = [x, x]
is defined as the set {x ∈ R, x ≤ x ≤ x}, where x and
x are respectively the lower and upper bounds of [x]. The
width of an interval is w([x]) = x− x, and its midpoint (or
center) is mid([x]) = x+x

2 . The width of a box is the largest
of the widths of its components, and the center of a box is
the vector of the midpoints of its components.

With f a function from Rn to Rm and Y a subset of Rm,
set-inversion consists in characterizing the preimage of Y,
i.e., the set X = {x ∈ Rn|f(x) ∈ Y} = f−1(Y).

Since computing with arbitrary sets is intractable in the
general case, interval analysis treats problems by operating
on interval and boxes. Inclusion functions are an important
tool for interval computations. An inclusion function for f is
a function from IRn to IRm such that

∀[x] ∈ IRn, f([x]) ⊂ [f ]([x]).

If f admits a convergent inclusion function [f ], then two
subpavings (sets of non-overlapping boxes) X− and X+ that
characterize the set X such that X− ⊂ X ⊂ X+ can be
obtained with the SIVIA branch and bound algorithm.

B. Contractors

To characterize a set X, SIVIA needs to bisect in all
dimensions of the search space, which make the complexity
grow exponentially with the dimension of the problem.
Problems in higher dimensions can however still be addressed,
by using contractors to reduce the search space.

A contractor is a mapping from IRn to IRn such that
• ∀[x] ∈ IRn, C([x]) ⊆ [x] (contraction)
• (x ∈ [x], C(x) = x)⇒ x ∈ C([x]) (consistency)
• C(x) = ∅ ⇔ (∃ε > 0,∀[x] ⊆ B(x, ε), C([x]) = ∅)

(continuity), where B(x, ε) is the ball centered on x
with radius ε.

A contraction operation returns a sub-domain of the input
domain [x], without losing any solution. For example if we
have the equation a = 2c + b. Let a ∈ [−2, 3], b ∈ [1, 1]
and c ∈ [0, 2]. The most straightforward way to contract
with respect to numerical constraints is by using the forward-
backward algorithm. The forward operation will give a =
[−2, 3] ∩ 2 ∗ [0, 2] + [1, 1] = [1, 3]. The backward operation,
based on applying the derived constraints c = (a − b)/2
and b = a − 2c, gives c = [0, 1] and b = [1, 1]. If the
box resulting from the contraction operation is equal to the
smallest interval that contains the solution, the contractor is
said to be minimal. The forward-backward contractor, also
known as HC4 [25], is the classical constraint propagation
loop found in the literature. It allows to contract with respect
to a system of constraints, by propagating constraints in an
optimal order, as shown in the example above. In this article,
we use the contractor to refine our domain by rejecting the
part that is non consistent with the measurements.

C. Set Inversion with Contractor

An outer subpaving of the solution set X contained in the
initial domain [x0] can be computed with the SIVIA algorithm
(Alg. 1). Taking the initial box [x0], SIVIA successively
refines the box by applying contractions and bisections. The
list L, which is a stack (LIFO) for depth first space exploration,
is used as a working list in which bisected boxes are temporary
stored. For each box, the contractor Cf is used to discard all
parts of the box that are not consistent with the measurements
(this is equivalent to applying the constraint f(x) ∈ [y]. The
parameter ε is used to control the sharpness of X+. If the
width of a contracted box is greater than ε, then the box is
bisected and the two resulting boxes are enqueued in L.



Result: X+

X+ := ∅ outer subpaving of pose domain
L← {[x0]}
while L 6= ∅ do

[x]← get the first box of L
[x]← Cf ([x]) contract the box
if width([x]) < ε then

X+ ← X+ ∪ [x]
else if [x] 6= ∅ then

([x1], [x2])← bisect([x])
put [x1] in L
put [x2] in L

end
end

Algorithm 1: SIVIA( [x0], Cf , ε )

IV. PROPOSED APPROACH

To solve the problem described in Section II, we define
our problem as a Constraint Satisfaction Problem (CSP), and
then use SIVIA with contractors (Alg. 1) to characterize the
feasible poses domain for each robot. So in this section, we
present:
• the constraints related to the projection of points in the

camera frame
• the constraints related to the measured ranges (UAV to

UAV and UAV to base ranges)
• the proposed strategy used to seek the domain of all the

feasible poses.
The width of this domain will quantify the uncertainty on
the pose with respect to that of the measurements.

A. Camera constraints

For each landmark seen by the camera of a robot, the
projection equation (Eq. 2) and the fact that the camera
cannot see from the back give the following constraints:
• Two constraints Cproj w.r.t. the 2D-3D correspondences.

With each landmark point represented in homogeneous
coordinates, the landmarks coordinates in the camera
frame are given by

(cX, cY cZ, 1)T = cTr
rTw(r)(X,Y, Z, 1)T

and we have their pixel coordinates in the image plane

(u, v, 1)T = K Π(cX, cY cZ, 1)T .

The image projection constraint Cproj is given by:

Cproj = {u = pxxi + u0, v = pyyi + v0}

with xi =
cXi

cZi
, yi =

cYi
cZi

.

• Cfront expresses the constraint w.r.t. the fact that we
have a front-looking camera. For all points in camera
frame, cZi > 0, i.e., observed points are in the front
half-space:

Cfront = {cZi > 0}

Therefore Ccam,i = {Cproj,i, Cfront,i} is the set of all these
constraints for all 2D-3D pairs (xi,

wXi), with i ∈ 1...N .

B. Range constraints

Considering the three known ranges, we have 3 constraints
derived from this.
• Cbase expresses the constraint w.r.t. the distance to the

base station for each UAV.
Considering the base b as defined in Section II-B in the
world frame, we define dk the distance constraint from b to
UAV k (with k ∈ 1, 2) by

Crk,base : {dk = ‖pk − b‖2}

• Cr1,r2 expresses the constraint w.r.t. the inter-distance
between UAVs.

Let d12 be the measured distance between both UAVs. The
constraint can be expressed as follow

Cr1,r2 = {d12 = ‖r1 − r2‖2}

C. Approach

Taking into account the fact that all UAV exchange their
image measurements, their distance to the base station, and the
distance between each other, we can formulate the problem
as a centralized CSP H defined by:

H :


r1 ∈ [r1], r2 ∈ [r2],

x̄i,k ∈ [x̄i,k] ,wXi ∈ [wXi] ,
{Ccam,i,k, i ∈ 1...N, k ∈ {1, 2},

Cr1,base, Cr2,base, Cr1,r2}

 (3)

where the boxes [r1] and [r2] represent prior knowledge of
the UAV poses, [x̄i,k] represents bounded-error measurements
of the landmarks in the image seen by UAV number k, and
the width of [wXi] represents the uncertainty about world
coordinates of the landmarks.

To characterize the pose solution-set of each UAV, we use
the SIVIA algorithm presented in section III-C to compute the
subpaving of all feasible poses in [r1], [r2] that are consistent
with the measurements using H (CSP in Eq. 3).

As the components φ1, θ1, φ2, θ2, z1 and z2 of the poses
r1 and r2 are directly measured, the initial domains of theses
components of the state are known with a small uncertainty
related to the sensors precision. Let εφ, εθ and εz , these
measurements uncertainties. The domains are therefore set
to intervals [φmeas.

1 ± εφ], [θmeas.
1 ± εθ], [φmeas.

2 ± εφ], [θmeas.
2 ±

εθ], [z
meas.
1 ±εz] and [zmeas.

2 ±εz]. For the unknown parameters
(x1, y2, ψ2, x2, y2 and ψ2), their initial domains in [r1], [r2]
are set w.r.t. the prior knowledge of the environment (in this
article, the experimental room dimensions)

After setting the initial domain for each robot, a forward-
backward contractor (HC4) is built and applied in the SIVIA
algorithm for all unknown parameters (x, y, ψ). This enables
to recursively reduce the initial domain by rejecting the parts
that are not consistent with the measurements when applying
the constraints of H).

At convergence of SIVIA, bounded domains for the poses
r1 and r2 are obtained in the form of subpavings X+

r1 and



Fig. 3: Position domains for a single robot, at 50 different
positions, with range measurement to the base station (±5 cm)
and 3 landmarks in view (±0.5 px). Top view.

X+
r2 . Assuming the measurements error bounds have not been

violated (i.e., the bounded error model is respected), the
computed domains are guaranteed to contain the true robot
poses r∗1 and r∗2, i.e., r∗1 ∈ X+

r1 and r∗2 ∈ X+
r2 .

V. COOPERATIVE LOCALIZATION

In this section, we present results obtained from simulations,
and an experimental trial using cameras onboard UAVs.

A. Simulation results

The simulation environment consists in a room, with the
base station at coordinates b = (0, 0, 0), and three landmarks
of known positions on the other side of the room (see Fig. 3
for a top view). A pattern of 50 test positions has been
generated to validate our approach. This leads to a set of 2450
two-robot positions combinations (for every fixed position
i ∈ 1..50 of robot R1, all positions j 6= i, j ∈ 1..50 of R2

are considered).
Altitude, pitch angle and roll angle are assumed to be

known. Assuming unreliable compass measurements, the
robot heading is assumed to be known only very coarsely
(within a ±20 degrees interval). Ranging errors (from base
station and inter-UAV) are assumed to be within ±5 cm.
Landmarks tracking in the image is assumed to be ±0.5 px
accurate.

Fig. 4: Position domains for cooperative localization. R1 is
fixed (in blue, circled), R2 at 49 different positions (in red).

1) Single robot: The results of single robot positioning,
using ranging from the base station and camera measurements
of 3 landmarks are shown in Fig. 3. The figure represents
in blue the projection on the (x, y) plane of the subpavings
computed for the 50 simulated positions. Statistics of the
width of the computed domains are reported in left part of
Table I. We clearly observe in the figure that pose domains
get larger as the robot gets further from the landmarks. It is
also interesting to notice bigger uncertainties near the x = 0
axis. This is due to the poorly conditioned intersection of
the sphere from the base station distance and the landmarks
projection constraints.

2) Cooperative localization with full visibility: Position
domains have been computed using the proposed cooper-
ative localization method for the two-robot combinations
of the simulated positions patterns, assuming both robots
are identical and able to see the three landmarks. Overall
improvement on the position uncertainty (w.r.t. the single
robot case) is mainly visible on the x coordinate (better min
and mean values in Table I). This improvement is not very
large because the position uncertainty domains of both robots
without measurements exchange are often of comparable sizes,
and the geometric configuration does not always allow domain
contraction. Moreover, some of the computed domains are
larger that in the single robot case, due to the ε parameter of
the set inversion process which prevents perfect approximation
of the domain (this is visible in the ”max” column of Table I,
and also affects the means).

Figure 4 shows a configuration where cooperative localiza-
tion sensibly reduces position uncertainty, thanks to a good
geometric configuration (compare the x = 0 column with
Fig. 3).

On a 2014 2.8GHz Core i7, with a single threaded
implementation, the average computation time is of 200 ms for
ε = 30 mm (presented results), and of 32 ms for ε = 60 mm.
Increasing ε reduces the computation time, but provides a
rougher estimate of the feasible poses domain. When using a
fixed ε value, the computation time varies with the size of the
computed domain and is linear with the number of landmarks
seen by a robot. Real-time implementation is possible using,
either a fixed number of SIVIA iterations, or an any-time



Fig. 5: Cooperative localization results when R1 sees 3
landmarks and R2 sees only one. Each figure corresponds to
a different fixed position of R1 (circled blue domain). The
(x2, y2) domains at 49 positions of R2 are shown in red.

implementation like in [26].

Domain dimension Single robot 2-robot coop.
min mean max min mean max

x (cm) 3.62 15.8 53.8 2.8 15.4 60
y (cm) 2.0 8.0 16.53 1.1 8.1 18.6

yaw (deg) 0.75 2.1 5.6 0.67 2.1 6.2

TABLE I: Pose domains width in the single robot case and
in the full visibility two-robot cooperative case.

3) Cooperative localization with reduced visibility: To em-
phasize the benefits of the proposed cooperative localization,
we now suppose that the robot R1 sees all 3 landmarks, but
the robot R2 only sees one landmark. This situation could
arise when an operator wants to rotate an UAV in order to
observe another part of the environment. Localization with a
single landmark is impossible for a single UAV (horizontal
position is only constrained by the distance to the base station,
which, given uncertainties and badly known heading, leads to
an arc-shaped solution set). Knowing the distance to the other
(well localized) UAV enables to compute an usable position
domain. Simulations have been done for the 2450 possible
configurations. Obtained uncertainty domains are, of course,
larger than in the previous case, due to the lack of camera
measurements (see Table II). The very large maximum values
obtained in Table II correspond to a few cases where the
heading measurement uncertainty prevents from resolving
the position ambiguity of R2, leaving a set of two disjoint
pose domains. Figure 5 shows the pose domain subpavings
obtained for the robot R2 (in red), for 4 different positions
of the robot R1 (whose position domain is painted in blue
and circled). It clearly shows the influence of the uncertainty

min mean max
x (cm) 11.09 32.5 357.3
y (cm) 2.9 14.45 83.39

yaw (deg) 2.09 5.62 48

TABLE II: Pose domain width of R2 in the reduced visibility
cooperative case. R1 sees 3 landmarks and R2 only sees one.

Method Horiz. pos. error (cm) Heading error (deg)
mean 95 % max mean 95 % max

Interval (CoB) 1.51 3.52 17.5 0.16 0.41 1.99
Interval + LM 1.43 3.36 10.1 0.14 0.36 1.06
LM (GT guess) 1.43 3.36 10.1 0.14 0.36 1.06
LM (bad guess) 351.7 645.2 721.9 39.1 105.7 179.3

TABLE III: Position (2-D horizontal) and heading error
statistics in the 2-UAV cooperative case with full visibility

Method Horiz. pos. error (cm) Heading error (deg)
mean 95 % max mean 95 % max

Interval (CoB) 5.39 13.61 167.7 0.80 2.59 19.4
Interval + LM 4.11 7.00 328.4 0.56 1.19 39.4
LM (GT guess) 2.90 6.68 34.1 0.36 1.08 5.79
LM (bad guess) 391.9 760.8 1074 140.5 179.0 180.0

TABLE IV: Position and heading error of R2 in the coopera-
tive case with reduced visibility. R1 sees all landmarks and
R2 only sees one.

of R1, but also of the geometric configuration: large domains
obtained in the center of the two right figures are due to
the fact that distance to the base and distance to the robot
R1 constrain the position of R2 at the intersection of almost
tangent circles. Bottom right figure of Fig. 5 even shows a
few ambiguous cases, where the solution set is made of two
disjoint subsets.

B. Point estimate and comparison with weighted least squares

By computing the set of all feasible poses, our approach is
interesting for solving the initial localization problem. When
point estimate is needed, a straightforward solution consists in
taking the center of the bounding-box (CoB) of the solution
subpaving.

The horizontal position and heading errors of the CoB
estimate are reported in the first row of Table III (full visibilty
case) and of Table IV (robot R2 in the reduced visibility case).
Cumulative distributions of the errors for the reduced visibility
case are shown in Fig. 6 (dotted blue lines).

These estimates are compared to non-linear weighted least
squares (WLS) estimates computed with the Levenberg-
Marquardt (LM) algorithm, using all observations (images,
distances, altitude and IMU angles). The measurements
weights are initially set w.r.t. the standard deviations cor-
responding to the widths of the interval error bounds and
then fine-tuned. The ground truth is first used as an initial
guess (LM GT guess in the tables, dashed red lines in Fig. 6).
It shows that the center of the bounding box is a good point
estimate, with errors figures very close to the WLS estimate
when the domains are not too large. In the full visibility
case, the CoB average errors are 1.51 cm horizontal and
0.16 degrees in heading, vs 1.51 cm and 0.14 degrees with
the WLS. However, when the computed domains gets bigger,
the CoB becomes less precise. This can be seen with robot
R2 in the reduced visibility case (Table IV).

An idea is to combine the domain computed with the
interval method (as an uncertainty indicator) with LM to
provide a precise point estimate. When initialized far from
the solution (here, the center of the simulation area), LM
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Fig. 6: Cumulative distribution of horizontal position error
(left) and absolute heading error (right), for robot R1 seeing
3 landmarks and robot R2 seeing only one.

Fig. 7: Onboard camera view of the two UAVs

often fails to reach the true pose; this can be seen in the
fourth row of Tables III and IV (LM bad guess).

We thus use the CoB as initial guess for LM, in order to
get a better point estimate (Interval+LM). In the full visibility
case, starting at the CoB make the LM result similar to the one
initialized by the ground truth (second row of Table IV). This
shows the CoB is a good initial point for efficient convergence
to the solution and helps to avoid local minimums.

In the reduced visibility test case, the Interval+LM method
significantly improves point estimates, especially in the case
of robot R2 (see how plain black curves in Fig. 6 are almost
superimposed with ground-truth-initialized-LM curves).

C. Experimental validation

The experimental environment is made of a Vicon motion
capture system that tracks the pose of quadcopter UAVs
(MikroKopter MK-Quadro equipped with a camera) to provide
ground truth and the landmarks positions. The landmarks are
cubes for which the positions are known in the reference
frame and have a very visible face for the purpose of image
tracking (Fig. 7).

In addition to the uncertainties described in the previous
simulation section, this experiment also considers small
uncertainties on the roll and pitch angles (±0.6 deg), on
the altitude measurements (±1 cm) and on the landmark
positions (±1 mm).

The experiment mainly consists in moving the UAVs along
the x axis. The bounds of the computed pose domains for the
two robots are reported in Fig. 8. Similarly to the simulation,
uncertainty is larger on the x component of the position
(36 cm mean width) than on y (17 cm mean width), which
is due to the geometry of the problem. This can be observed
on Fig. 9, where the position domains computed for the two
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Fig. 9: Position domains of the two UAVs at the beginning
of the experiment: R1 in blue (right), R2 in red (left).

robots R1 (in blue, right) and R2 (in red, left) at the first
epoch are represented.

The first row of Table V reports the position and heading
errors obtained during the experiment, when using the center
of the computed domain as a point estimate. The mean
horizontal error is of 3.03 cm, and the mean heading error
is less than 0.6 degree. An Extended Kalman Filter (EKF)
has been applied on the same data, with the observations
gains set identically to the WLS of the previous subsection.
The results of the EKF (second row of Table V) shows the
proposed interval method outperforms the EKF in terms of
position precision. The EKF initial state has been set to the
true pose, to avoid initial localization problem and keep the
comparison fair. The poor results of the EKF on position
estimate are mostly due to the assumption of centered, white
and independent noise on measurements, which is not the
case in practice due to correlation in landmark tracking errors
(e.g., due to motion blur) and biases. The EKF, however,
yields a better heading estimate than the interval method. An
explanation comes from the ε setting of the interval method,
which limits the precision of the pose domain approximation.

Camera tracking of the landmarks has failed at several
epochs of the trial, leading to measurements error bounds
violation. At times t ≈ 16 s and around t = 20 s, the result
of the interval method is the empty set (blanks in Fig. 8).
It is the consequence of measurements inconsistency, i.e.,
there is no pose that satisfies all the constraints of Eq. 3.

Method Horiz. pos. error (cm) Heading error (deg)
mean 95 % max mean 95 % max

Interval 3.03 6.01 7.22 0.58 1.63 3.02
EKF 4.2 9.47 20.6 0.26 0.66 5.25

TABLE V: Position and heading error in the cooperative
experiment. Statistics of EKF and interval errors



This inconsistency enables to prove that the bounded error
assumption is violated for these epochs. Around time t ≈ 2 s,
we observe that the computed pose domains are very small
and do not contain the true robot poses. This still correspond
to error bounds violation, but not enough to yield empty set.
It can be noted that, during these tracking failure epochs,
the EKF precision is also negatively impacted, with average
errors of 6.4 cm in position and 1.0 deg in heading (vs 4.1 cm
and 0.2 deg average over the other epochs).

VI. CONCLUSION

This paper has presented a set-membership cooperative
localization approach for two UAVs. Assuming that measure-
ment errors are bounded and can be represented by intervals,
a set-inversion method based on constraint propagation
techniques is employed to compute a guaranteed outer
approximation of the set of feasible poses for each robot.
Both robots measure distances to a base station, the distance
between them, and can see known landmarks with their
cameras. They share their measurements to enable cooperative
localization. We show that cooperation enables to tighten the
pose uncertainty domain, especially when the geometrical
configuration is favorable to inter-distance measurement. The
center of the computed pose domain is a good point estimate
that can be refined using the Levenberg-Marquardt algorithm.
Another strong aspect of cooperative localization is that it
gives positioning ability to a robot that otherwise would
have not been able to compute a position fix due to the lack
of measurements. An example is given, where one of the
robot can only see a single landmark, while the other can
see all of them. These aspects have been demonstrated by
simulating multiple two-robot configurations. Validation with
experimental data shows the usability of the method with
real image measurements, and better position accuracy than
an Extended Kalman Filter.
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