
HAL Id: hal-01854160
https://inria.hal.science/hal-01854160

Submitted on 6 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Combining an Iterative State-Based Timing Analysis
with a Refinement Checking Technique

Björn Koopmann, Achim Rettberg, Tayfun Gezgin

To cite this version:
Björn Koopmann, Achim Rettberg, Tayfun Gezgin. Combining an Iterative State-Based Timing
Analysis with a Refinement Checking Technique. 5th International Embedded Systems Symposium
(IESS), Nov 2015, Foz do Iguaçu, Brazil. pp.88-99, �10.1007/978-3-319-90023-0_8�. �hal-01854160�

https://inria.hal.science/hal-01854160
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Combining an Iterative State-based Timing

Analysis with a Re�nement Checking Technique

Tayfun Gezgin, Björn Koopmann, and Achim Rettberg

Carl von Ossietzky University Oldenburg,
Ammerländer Heerstr. 114, 26121 Oldenburg, Germany

Abstract. The analysis of real-time properties is crucial in safety crit-
ical areas like in automotive applications. Systems have to work in a
timely manner to o�er correct services. Most of the applications in this
domain are distributed over several computation units, inter-connected
by bus systems. In previous works we have introduced a state-based
analysis approach to validate end-to-end deadlines for distributed sys-
tems. The approach is based on the computation of the state spaces of
all resources, such as processors and buses, in an iterative fashion. For
this, abstraction and composition operations were de�ned to adequately
handle task and resource dependencies. During the design process of a
system changes occur typically on both the speci�cation and implemen-
tation level, such that already performed analyses of the system have to
be repeated. In this work, we extend our timing analysis with a re�ne-
ment checking approach, detail when it is appropriate to be used, and
compare the analysis times with the computation times to perform the
re�nement check.

Keywords: Real-time Systems, Scheduling Analysis, Re-Validation, Tim-
ing Analysis, State-based Timing Analysis

1 Introduction

In recent years the co-operations and inter-connections between individual, ge-
ographically distributed systems heavily increased. Also in safety critical areas
the signi�cance of these topics increased. As an example, much e�ort has been
invested in the development of Car-to-Car communications with the aim to in-
crease the safety in tra�c and optimize tra�c �ows. Another example is the
dynamic partitioning of the airspace with respect to time investigated in the
SESAR (Single European Sky ATM Research) program. The recent partitioning
of the airspace is performed in a static manner with respect to time, i.e. the
trajectories are not changed during the whole landing approach and the takeo�.
The shift to a dynamic partitioning, which is called 4D-trajectories, involves a
much more intensive co-operation between the tower and each airplane.

For the correct functionality of safety-critical functions of such systems, tim-
ing constraints are one crucial aspect. The �nal product has to satisfy those
constraints, as the violation of a requirement could result in high costs or even

2 Tayfun Gezgin, Björn Koopmann, and Achim Rettberg

threats to human life. Nissan for example had to recall the vehicles of its premium
segment cars due to some delays in the emergency program of their new steer-
by-wire system. Such a problem could have been avoided, if an early analysis
on timing constraints would have been performed. Unfortunately, many changes
occur during the design process, such that already performed analyses have to
be repeated. Our approach targets these problems.

In [1] we worked out a state-based approach for the analysis of timing prop-
erties. In analogy to model checking methods, we consider the full state space,
where all task interleavings are preserved. In order to alleviate the problem of
state space explosion due to state unfolding, the state space of an architecture
is constructed in an iterative manner. Abstraction methods are applied to keep
the interfaces between components as small as possible, while composition op-
erations are used to combine a set of triggering sources of a component.

On top of this we worked out an impact analysis approach to minimize re-
validation e�orts of timing properties needed when the considered system is
modi�ed [2]. Adaptations of the architecture of an already existing and analyzed
system could be for example the addition of new tasks that are allocated to the
existing system. To minimize the e�ort of a re-validation, it is desirable to reuse
the previous results of the analysis that did not change. With this, only the parts
are re-validated, which were a�ected by the architectural changes.

This work is a consecutive extension of our previous work [2]. We illustrate the
implementation of the impact analysis. We describe in which cases a re�nement
check can be applied to reduce the re-veri�cation times when changes occur. We
evaluate our approach by a set of test systems demonstrating the computation
times needed to perform a full timing analysis and the times needed to perform
the impact analysis consisting of the loading and storing of state spaces, and
the re�nement check between state spaces. Further, we discuss the bene�t of
applying abstractions of resource interfaces for the re�nement relation.

Related Work

Timing analysis on distributed systems is a very large research area. Thus, we
cover only the most relevant works for our approach. The classical approach is a
holistic one, as it was worked out in e. g. [3,4]. Local analysis is performed eval-
uating �xed-point equations. These approaches are very fast and able to handle
large systems. Unfortunately, the analytical approaches deliver pessimistic re-
sults if inter-ECU task dependencies exist. In [5] activation patterns for tasks
are described by upper and lower arrival curves realizing a compositional analy-
sis method. Based on this work a compositional scheduling analysis tool, called
SymTA/S, was created by SymtaVision [6]. The concept has been developed by
Richter et al. The main idea behind SymTa/S is to transform event streams
whenever needed and to exploit classical scheduling algorithms for local anal-
ysis. Another related approach is the modular performance analysis (MPA) [7]
which is based on a formalism with many similarities to event streams named
Real-Time Calculus. Arrival functions are used to model the computation that
is requested by a process, and service functions are used to model the amount of

State-based Timing Analysis 3

computation that can be delivered by a resource. In [8], the MPA approach has
been combined with timed automata while o�ering methods that allow to trans-
form the model of one formalism to another. CARTS is another tool for com-
positional real-time scheduling analysis [9]. Schedulability is checked for tasks
whose resource usage is bounded by periodic resource models developed by Lee
et al. Composition is done on the resource model level resulting again in periodic
resource models by using abstractions.

Another approach is based on model-checking: In [10] non-preemptive sched-
ulers are modeled in terms of timed automata. The advantage of this approach
is that one gets exact solutions with respect to the modeled scheduling problem.
Since the state space of the analyzed system is preserved, checking complex prop-
erties like safety is possible. Unfortunately, state-based approaches do not scale
well. The authors of [11] also use timed automata to model preemptive schedul-
ing and verify timing properties by using Uppaal. As a front-end they employ
sequence diagrams, from which timed automata are derived. In [12] these au-
tomaton models were reused and the results were compared to other techniques
such as MPA or SymTA/S. In [13] timed automata are extended by clocks which
may be subtracted by a natural number to handle preemption in a more natural
way. The authors derive a sub-class of this formalism, where the reachability is
preserved.

Outline

First, we illustrate the considered problem domain. In Section 3 we will detail
our general analysis approach in a condensed form. In Section 4 we introduce
our implemented impact analysis methodology. Section 5 evaluates our concept
and compares plain veri�cation times and re�nement checking times. Finally, we
conclude the work and give an outlook for future work.

2 Problem Domain

We are interested in safety-critical real-time systems which are typically used in
the automotive domain. Typically, the design of the overall system is performed
by the original equipment manufacturer (OEM). The OEM designs the software
components in form of logical architectures by using, e.g., Autosar software com-
ponents (SWC), inter-connected by a high level virtual function bus (VFB) like
illustrated in the left part of Figure 1. The components and parts of this system
are then realized by the suppliers. In order to get adequate realizations from
each supplier, the OEM has to specify the extra-functional properties and in-
terfaces unambiguously. This is realized by the usage of so called contracts [14].
Contracts are pairs consisting of an assumption (A) and a guarantee (G). The
assumption speci�es how the context of the component, i. e. the environment
from the point of view of the component, should behave. Only if the assumption
holds, then the component will behave as guaranteed. To specify the assump-
tions and guarantees various formalisms like pattern-based languages could be

4 Tayfun Gezgin, Björn Koopmann, and Achim Rettberg

...

...

Abstracted Architec.
for Analysis

t1

tn

E
C
U

C
A
Nt1 tm

Fig. 1. General concept of modeling and analysis.

used. Contracts follow the principle of separation of concerns, i.e., a contract
does not just specify a guarantee about the behavior of a component, but also
an assumption about the behavior of the environment in which the component
will be integrated.

If all suppliers deliver the implementations of the SWCs, the OEM has to
verify whether all SWCs �t together, i.e., he has to perform the consistency check
in a black box manner, and whether some higher level requirements ranging over
several SWCs are realized by the decomposition structure.

After the implementation of all SWCs the logical architecture has to be allo-
cated to the hardware architecture, consisting of electronic control units (ECUs)
which are inter-connected by bus systems. At this design stage technical details
such as resource consumptions and timing latencies have to be veri�ed. To per-
form such analyses, typically the architecture is abstracted in an appropriate
manner. The abstraction we perform for our analysis is illustrated in the right
part of Figure 1: ECUs and bus systems are treated logically equivalent in the
sense that both represent computation units on which a set of tasks are allocated.
The order of executions of the tasks is determined by the corresponding schedul-
ing policy like �xed priority scheduling. Dependent tasks are directly connected,
tasks with no input edges are considered to work independent from other tasks.
A task is characterized by a tuple τ = (bcet, wcet, pr), where bcet, wcet ∈ N≥0,
bcet ≤ wcet, are the best and worst case execution times with respect to the
resource the task is allocated to, and pr ∈ N≥0 is the �xed priority of the task.
We will refer to the elements of a task by indexing, e.g. bcetτ for task τ . The
set of all tasks is called T . Independent tasks are triggered by events of a cor-
responding event stream (ES). An event stream ES = (p, j) is characterized by
a period p and a jitter j with p, j ∈ N≥. Such streams can be characterized by
upper and lower occurrence curves as introduced in the real-time calculus [15].
In this work we restrict to event streams where jτ < pτ for all τ ∈ T. Like stated
above we will further assume that dependent tasks are directly connected.

3 State-based Timing Analysis

Our timing analysis approach is based on model-checking. For each computation
resource its state space is computed. Such a state space encapsulates the relevant

State-based Timing Analysis 5

Fig. 2. Timing analysis approach; Left: Computation of resource state spaces; Right:
Computation of output interfaces.

hp

lp

t{cp, cr} {cc}

cc 2 [bcet, wcet]cp == P

{cp, cr,
 cc }
cp == P

ihp

cc 2 [bcet, wcet] + ihp

Fig. 3. Two tasks hp, lp and the interrupt scenarios. The clocks refer to the task lp.
Clocks in curved brackets indicate a reset, P is the period of lp.

timing information for tasks allocated to the corresponding resource, and end-
to-end latencies between a set of tasks. In contrast to standard model-checking,
our approach does work in an iterative fashion. The interfaces between resources
are tried to be kept as minimal as possible. Note that we assume cyclic free
systems. Parts of systems with cycles have to be handled in a holistic fashion.

To build the state space of a computation resource, we have to determine its
input behavior, which de�nes the activation times of all allocated tasks. State
spaces are represented by symbolic transition systems (STS): the states deter-
mine a range of valuations of clock variables, and include the information, which
task is currently running, is interrupted, or in the ready queue. A resource can
have multiple sources for its inputs: the independent tasks are triggered by event
streams, while dependent tasks are triggered when the tasks on which they de-
pend, terminate. Thus, we get multiple input state spaces. To determine a single

input state space for each resource, we have to combine all these inputs.
When the input is determined, the next step is to build the state space of the

resource itself. For this, the input STS, the behavior of the scheduling policy, and
the execution times and priorities of the allocated tasks are taken into account.
The approach to compute the state space is illustrated in Fig. 3, where two tasks

6 Tayfun Gezgin, Björn Koopmann, and Achim Rettberg

hp, lp are allocated to a single resource with a �xed priority scheduling policy.
For each task a clock cp which traces the periodic activation is needed. Further,
we need a clock cc to determine when a task is �nished. If we are interested in
the exact response times of a task instance, we need multiple clocks cr, one for
each instance of a task.

The computed state space of a resource is then used as an input for dependent
resources, i. e. for resources on which dependent tasks are allocated. To keep the
interface between the resources as small as possible, parts of the state space that
are not relevant for the input behavior of the dependent resources are abstracted.

Consider the example in Fig. 2, which consists of three resources where on
each resource two tasks are allocated. The tasks task5 and task6 on resource
Resource3 depend on task2 on resource Resource1 and task3 on resource
Resource2 respectively. Tasks task1,...,task4 are activated by event streams,
thus the inputs for both Resource1 and Resource2 are directly given and their
state spaces can be computed (illustrated in the left part of the �gure). Next,
the input of Resource3 has to be determined, which depends on both the state
space of Resource1 and Resource2. As timing information for the tasks task1
and task4 is not relevant for Resource3, the corresponding STSs can be reduced
by abstracting from states encapsulating information about these tasks. After
this minimization, the product of both STSs is computed (indicated by the right
part of the �gure).

The details of our timing analysis including the composition operation, the
minimization, and the resource construction can be found in [1].

4 Impact Analysis Methodology

During the design process changes a�ecting the architecture of a system oc-
cur, such as adding a new task on an existing resource, the merge of two tasks
in a single one, or even the change of the complete implementation. If such
changes occur, already performed analyses have to be repeated, increasing the
time needed to verify the functionality and properties of the design, and thus
increasing the time to market.

To minimize the e�ort of a re-validation, it is desirable to reuse the previous
results of the analysis that did not change. With this, only the parts are re-
validated, which were a�ected by the architectural changes. It is required to
perform an impact analysis, when changing or maintaining software because it
allows to judge the amount of work required to implement a change, proposes
software artifacts which should be changed, and helps to identify test cases which
should be re-executed to ensure that the change was implemented correctly [16].

As our timing analysis approach works in an iterative manner (and not holis-
tically), we are able to determine whether the interface of dependent resources
is a�ected through the concept of our re�nement analysis: we are able to check if
the new interface between dependent resources re�nes the old interface. In such
a case a re-validation of dependent resources can be omitted. The de�nition of
an appropriate re�nement relation was the topic of our previous work [2].

State-based Timing Analysis 7

In the next section, we illustrate our implementation approach of the im-
pact analysis. We demonstrate in which cases a complete re-veri�cation of a
component is necessary, in which cases a re�nement check is performed, and
when veri�cation steps can be omitted. Thereafter we discuss the advantages
of our approach when using further abstraction techniques on the interfaces of
resources.

4.1 Concept

The concept of the implementation of our impact analysis is illustrated in Figure
8 in terms of an UML activity diagram.

Each resource has a status �ag for its resource state space called outputIs-

Consistent, initially set to false. The idea of this �ag is to inform dependent
resources whether some non-re�nement changes concerning the resource state
space occurred (and thus the resource state space has to be recomputed).

First, it is checked whether some inputs of the resource has changed (check-
InputStatus). If changes occurred, the check evaluates to false and the input STS
(computeInputSTS) followed by the computation of the resource state space itself
(computeResourceSTS)is performed as usual. As the resource STS is newly com-
puted, the �ag outputIsConsistent is set to false to signalize dependent resources
that this input has changed. Last, the resource STS is stored appropriately. If
on the other hand the output STSs of all resources, from which the current
resource depends on, did not change, checkInputStatus evaluates to true. Then
it is checked whether an already computed resource STS of this resource exists
(from previous veri�cation steps, where the resource STS was saved). If not, it
has to be computed as described above. Else, it is checked whether structural
changes have occurred, i.e. changes concerning the scheduling policy of the re-
source, the number of allocated tasks and their properties like priorities and
execution times. If these properties did not change, the resource STS will also
be not a�ected. Thus, the existing STS can be restored (loaded from �le system).
The �ag outputIsConsistent is set to true indicating that nothing changed on
the output.

If else some changes on the resource occurred checkInputStatus will evaluate
to false. In this case, we have to re-compute the resource STS, load the previ-
ously computed resource STS and do a re�nement check between both STSs.
If the re�nement check evaluates to true, outputIsConsistent is also set to true

indicating that the resource STS changed in a good manner. Else it is set to
false. Note that before the re-computation of the resource STS the input STS
of the resource has also to be re-computed because if properties of independent
tasks change the input STS is also a�ected.

4.2 Combination with Abstractions

Generally an impact analysis is useful in combination with analysis techniques
that involve abstractions. This is also a typical scenario for analytic techniques
such as in [17]. These techniques are based on the assumption that every interface

8 Tayfun Gezgin, Björn Koopmann, and Achim Rettberg

t1
t2

ECU1

t3
t4

CAN

t5
t6

ECU2

System2

t1
t2

ECU1

t3
t4
t9

CAN

t5
t6

ECU3

System3

t7
t8

ECU2

...

...

t1
t2

ECU1

t3
t4

ECU2

System1

...

Fig. 4. Test systems.

behavior can be characterized by event streams. To obtain event streams for the
outputs of a resource, the actual task behavior is generally over-approximated.

Hence changes in the behavior of a particular resource might indeed have an
impact on the already computed exact state-space representing its output be-
havior, but might not have an impact on the over-approximated output behavior
of the resource. This can be exploited by our impact analysis.

We consider event streams as the maximal abstraction of the timing behavior
of a task, as these only contain information about best- and worst-case response-
times, without any information, in which cases the corresponding response times
occurs. For example a task could have a large response time when it is interrupted
by an high priority task which is allocated on the same resource, and an small
response time, when no interrupts occur.

Though our analysis approach is an exact analysis in general, it can be com-
bined with abstraction techniques in order to reduce the state space of the
interface transition systems. Such abstractions were the topic of our previous
works [18].

An abstraction indeed might a�ect the schedulability of a depending re-
source, and hence may cause false negative results. On the other hand, suitable
abstraction techniques may pave the way to omit re-validations.

5 Evaluation

In this chapter we will evaluate our methodology by the usage of the three test
systems illustrated in Figure 4. Tasks with no input edge are considered as to
be independent, i.e. triggered by event streams. The scheduling policies of each
ECU is �xed priority with interruption, and the policy of the CAN bus is also
�xed priority but (of course) without interruption. The parameters of the tasks
are detailed in the table of Figure 5, where p is the period of a task, ecec. is the
execution time which may be a single value or an interval, if bcet 6= wcet, and
pr is the priority of a task.

In our evaluation we compare the time needed for an analysis of each resource
and the times needed to store and load a corresponding state space, and check

State-based Timing Analysis 9

Fig. 5. Task parameters.

the re�nement of the state spaces of the resources. The idea is to demonstrate
that the analyses times of the resources is always much larger than the times
needed to store and to load the state spaces, and to check whether � if a change
occurred � the old state space is a re�nement of the new one.

Note that all times were measured on the same machine to preserve compa-
rability. Each check has been performed �ve times. The times illustrated here
are the average times of all measurements.

The measured times are illustrated in the table of Figure 6. As an example:
To analyze the timings of ECU2 of System2 we need 6, 75 seconds. In contrast
to this, the re�nement check of the of state spaces (new and old) of ECU2 only
takes 0, 015 seconds. The cell Sum is the sum of the cells Re�nement, Load and
Store and is used to compare the times needed to perform these three steps
against the plain veri�cation time.

As an example we illustrated some cases graphically in Figure 7.
The result of our evaluation is that the larger the state space of a resource

is (and therefore the veri�cation time of that resource), the larger the di�erence
between the veri�cation time and the computation times needed to load, save,
and check the re�nement of the old and new state spaces is. Thus, for larger
systems our re�nement methodology is a real gain for our analysis approach.
Note that of course, if the re�nement check fails, i.e. the new state space of a
resource is not a re�nement, than we have extra analysis times which we would
not have if we always perform the plain veri�cation directly. But fortunately
these re�nement checking times are not that large. Actually the complexity of
the re�nement check is n(n− 1) where n is the number of states.

6 Conclusion and Outlook

We illustrated the implementation of our impact analysis approach which is ap-
plied when architectural changes occur during the design state of a system. We
evaluated our approach by measuring the computation times needed to perform

10 Tayfun Gezgin, Björn Koopmann, and Achim Rettberg

Fig. 6. Measured average computation times.

Fig. 7. Computation times for a) ECU1 in System1 (left), b) ECU2 on System2
(center), and c) ECU3 on System3.

the full veri�cation, the storage and load of state spaces, and the computation
of the re�nement check, and compared these times. The result is that for larger
systems our re�nement methodology is a real gain for our analysis approach.
Currently, we investigate new abstraction techniques which will yield more ac-
curate results than the classical analysis techniques and will boost the scalability
of our approach.

References

1. Gezgin, T., Stierand, I., Henkler, S., Rettberg, A.: State-based scheduling analy-
sis for distributed real-time systems. Design Automation for Embedded Systems
(2013) 1�18

State-based Timing Analysis 11

2. Gezgin, T., Henkler, S., Stierand, I., Rettberg, A.: Impact analysis for timing
requirements on real-time systems. In: Embedded and Real-Time Computing Sys-
tems and Applications (RTCSA), 2014 IEEE 20th International Conference on.
(Aug 2014) 1�10

3. Tindell, K., Clark, J.: Holistic schedulability analysis for distributed hard real-time
systems. Microprocess. Microprogram. 40 (April 1994) 117�134

4. Gutierrez, J., Gutierrez Garcia, J., Gonzalez Harbour, M.: On the schedulabil-
ity analysis for distributed hard real-time systems. In: Proc. of the Euromicro
Workshop on Real-Time Systems. (1997) 136�143

5. Thiele, L., Chakraborty, S., Gries, M., Maxiaguine, A., Greutert, J.: Embedded
software in network processors - models and algorithms. In: Proc. of the First
Workshop on Embedded Software. EMSOFT, London, UK, Springer (2001) 416�
434

6. Henia, R., Hamann, A., Jersak, M., Racu, R., Richter, K., Ernst, R.: System level
performance analysis - the symta/s approach. Computers and Digital Techniques,
IEE Proceedings 152 (2005) 148�166

7. Wandeler, E.: Modular Performance Analysis and Interface-Based Design for Em-
bedded Real-Time Systems. PhD thesis, Swiss Federal Institute of Technology
Zurich (2006)

8. Lampka, K., Perathoner, S., Thiele, L.: Analytic real-time analysis and timed au-
tomata: a hybrid method for analyzing embedded real-time systems. In: EMSOFT
'09: Proc. of the seventh ACM international conference on Embedded software.
(2009) 107�116

9. Phan, L.T.X., Lee, J., Easwaran, A., Ramaswamy, V., Chen, S., Lee, I., Sokolsky,
O.: Carts: A tool for compositional analysis of real-time systems. SIGBED Rev.
8(1) (March 2011) 62�63

10. David, A., Illum, J., Larsen, K.G., Skou, A.: Model-based framework for schedula-
bility analysis using uppaal 4.1. In Nicolescu, G., Mosterman, P., eds.: Model-Based
Design for Emb. Systems. (2009) 93�119

11. Hendriks, M., Verhoef, M.: Timed automata based analysis of embedded system
architectures. In: Parallel and Distributed Processing Symposium, 2006. IPDPS
2006. 20th International. (April 2006)

12. Perathoner, S., Wandeler, E., Thiele, L., Hamann, A., Schliecker, S., Henia, R.,
Racu, R., Ernst, R., Harbour, M.: In�uence of di�erent system abstractions on the
performance analysis of distributed real-time systems. In: Proceedings of the 7th
ACM & IEEE int. conference on Embedded software. EMSOFT (2007) 193�202

13. Fersman, E., Pettersson, P., Yi, W.: Timed automata with asynchronous processes:
schedulability and decidability. In: Proceedings of TACAS, Springer (2002)

14. Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., Sofronis, C.:
Multiple viewpoint contract-based speci�cation and design. In: Formal Methods
for Components and Objects. Volume 5382. Springer Berlin Heidelberg (2008)

15. Thiele, L., Chakraborty, S., Naedele, M.: Real-time calculus for scheduling hard
real-time systems. In: IEEE International Symposium on Circuits and Systems
(ISCAS). Volume 4. (2000) 101 �104 vol.4

16. Lehnert, S.: A review of software change impact analysis. Ilmenau University of
Technology, Tech. Rep (2011)

17. Richter, K., Racu, R., R.Ernst: Scheduling Analysis Integration for Heterogeneous
Multiprocessor SoC. In: Proc. RTSS. (2003)

18. Gezgin, T., Henkler, S., Stierand, I., Rettberg, A.: Evaluation of a state-based
real-time scheduling analysis technique. In: Industrial Informatics (INDIN), 2014
12th IEEE International Conference on. (July 2014) 158�163

12 Tayfun Gezgin, Björn Koopmann, and Achim Rettberg

checkInputStatus

checkAvailability

checkStructure

getStoredSTScomputeInputSTS

computeResource
 STS

getStoredSTS

checkRefinement

outputConsistent
 = true

outputConsistent
 = false

storeSTS

[noChangeOccured]

computeInputSTS

[false]

[changeOccured]

computeResource
 STS

[true]

[false] [true]

[false] [true]

Fig. 8.Methodology of the Impact Analysis (timing analysis combined with re�nement
check).

	Combining an Iterative State-based Timing Analysis with a Refinement Checking Technique
	Introduction
	Problem Domain
	State-based Timing Analysis
	Impact Analysis Methodology
	Concept
	Combination with Abstractions

	Evaluation
	Conclusion and Outlook

