
HAL Id: hal-01854161
https://inria.hal.science/hal-01854161

Submitted on 6 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Timed Path Conditions in MATLAB/Simulink
Marcus Mikulcak, Paula Herber, Thomas Göthel, Sabine Glesner

To cite this version:
Marcus Mikulcak, Paula Herber, Thomas Göthel, Sabine Glesner. Timed Path Conditions in MAT-
LAB/Simulink. 5th International Embedded Systems Symposium (IESS), Nov 2015, Foz do Iguaçu,
Brazil. pp.64-76, �10.1007/978-3-319-90023-0_6�. �hal-01854161�

https://inria.hal.science/hal-01854161
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Timed Path Conditions in MATLAB/Simulink∗

Marcus Mikulcak, Paula Herber, Thomas Göthel, and Sabine Glesner

Technische Universität Berlin
Ernst-Reuter-Platz 7, 10587 Berlin, Germany

marcus.mikulcak@tu-berlin.de

Abstract MATLAB/Simulink is a widely-used industrial tool for the
development of complex embedded systems. However, due to the com-
plexity and the dynamic character of the developed models, their analysis
is a difficult challenge, in particular if timing aspects are involved. In
this paper, we present an approach for the construction of timed path
conditions for MATLAB/Simulink models. Timed path conditions allow
for fine-grained conclusions about the existence of possibly critical paths
through a model containing time-dependent elements. With the help of
timed path conditions, it is possible to identify interference and non-
interference between model parts. Furthermore, they have the potential
to reduce the complexity of models to improve verifiability, reason about
compliance with security policies as well as generate feasible, efficient test
cases. We demonstrate the applicability of our approach with a shared
buffer for public as well as confidential data.

1 Introduction

In the area of safety-critical embedded software, such as in the automotive and
aerospace domain, programming errors can lead to disastrous and, if occurring,
often fatal accidents. At the same time, the complexity of such systems has
increased dramatically over recent years. To cope with the steadily increasing
complexity, current design processes rely more and more on models. One of
the most widely-used tools for model-based design is MATLAB/Simulink [11]
by MathWorks, which supports the graphical design and simulation of time-
continuous as well as time-discrete systems using block diagrams. Simulink is
very well-suited to grasp the structure of a design on high abstraction levels
and to visualize its behavior by simulation. However, due to the complexity and
the dynamic character of the developed models, the analysis of a given model
is a difficult challenge, in particular if timing aspects are considered. At the
same time, knowledge about the existence of certain paths and the conditions
under which they are executed is highly desirable. In particular, if a Simulink
model becomes the main artifact in a model-based design process, the analysis
of its properties becomes crucial for the correctness and reliability of the whole
development process. With the help of (timed) path conditions, it is possible

∗Funded by the German Federal Ministry of Education and Research as part of the
research project CISMo



2 Marcus Mikulcak, Paula Herber, Thomas Göthel, and Sabine Glesner

to identify interference and non-interference between model parts and, thus,
to reason about compliance with security policies. Furthermore, (timed) path
conditions can be used to compute areas of low dynamic coupling for subsequent
model separation. With that, they have the potential to reduce the complexity
of Simulink models and thus to improve verifiability and testability. Finally, they
provide a basis for generating feasible, efficient test cases for quality assurance.

In this paper, we present an approach for the construction of timed path
conditions in Simulink. The main challenge we face is that all dependencies in
a given design must be considered. Thereby, dependencies might be indirectly
introduced via control flow, or delayed, which introduces dependencies between
signals from different time slices. In our approach, we start with a static over-
approximation of all potential dependencies on a path between a timed output
signal and a timed input signals and collect all control flow conditions. Then, for
each path, we compute a set of constraints on all input signals by performing
a backward propagation of control flow conditions, which also takes timing
dependencies into account. The result of our analysis is a precise description
of the timed dependencies between input and output signals, represented by
timed path conditions that solely depend on model-wide input variables. We
demonstrate the applicability of our approach by computing timed path conditions
for a case study containing a shared buffer for public as well as confidential data.

2 Preliminaries

In this section, we describe the basic concepts and tools employed by our approach.

2.1 Path Conditions

In general, path conditions [9] describe sufficient conditions for paths to be
executed. In [5,6], path conditions are used to capture all paths where information
might flow from a source to a target. In contrast to static analyses, which consider
all syntactically possible dependencies, path conditions take data and control
flow conditions into account. With that, they exclude, for example, information
flow which is only possible if disjoint control flow conditions are satisfied. Thus,
a path condition based analysis is more precise than classical static analyses.

2.2 MATLAB/Simulink

MATLAB/Simulink [11] is an add-on to the MATLAB IDE by MathWorks that
enables graphical modeling and simulation of reactive systems. In its data-flow
oriented notation, Simulink employs blocks which are connected using signals.
Additionally, each block and signal is assigned a set of parameters.

Simulation of Simulink models is performed using solvers which compute the
output of each block according to its semantics. Variable step solvers aim at
automatically finding a simulation step size for each block in the model to achieve
a level of precision set by the model developer. Fixed step solvers use a fixed



Timed Path Conditions in MATLAB/Simulink† 3

simulation step size at the expense of precision while increasing performance. The
former class of solvers is commonly used for hybrid or purely time-continuous
systems, while the latter is used for time-discrete models.

2.3 Information Flow Analysis

The protection of confidentiality of information inside a software system is a long-
standing and increasingly important problem in the areas of general computing
as well as embedded systems. Protecting not only the data itself but also the
integrity of the functionality that produces and handles data is a goal of software
non-interference policies [3]. Such policies, based on the assignment of security
levels to data elements, describe rules between which levels information flow
is allowed or forbidden [15]. When aiming at assuring confidentiality, data is
prohibited to flow to inappropriate locations, while in the context of integrity,
data is prohibited to flow from inappropriate sources. As non-interference refers
to the absence of information flow, it ensures both confidentiality and integrity.

3 Related Work

Path conditions [9] are heavily used in the area of symbolic execution and
automatic test generation. The use of path conditions to increase granularity of
information flow analysis has first been proposed in [10]. In this work, the authors
describe the combination of program slicing and Constraint Logic Programming
(CLP) to increase the precision of slicing for C programs, implemented in the
VALSOFT Slicing System. They consider purely static slicing as too conservative
and propose the extraction of conditions on the edges of the generated Program
Dependence Graphs (PDGs). Subsequently, the concatenation of these conditions
along paths of interest are analyzed by a constraint solver. However, due to the
inherent differences between C and MATLAB/Simulink, their approach cannot
directly be transferred to Simulink. For example, their work does not take timing
behavior into account. They report that the precision of slicing operations can
be considerably raised by the use of path conditions.

In [14], the authors present an approach for slicing of Simulink models. Their
algorithm identifies model parts that influence the computation of a given block.
However, as their approach does not have the characteristics of an Information
Flow Analysis (IFA), i. e., does neither consider conditions nor timing along
model paths, it only provides a coarse-grained dependency analysis.

In [18], the authors present an adaptation of the concept of path conditions to
MATLAB/Simulink. The authors describe the translation of Simulink models into
Lustre, a synchronous data-flow programming language [4]. On this basis, they
define an IFA notation and calculate path conditions on the translated models.
Their approach has been implemented in the Gryphon tool suite and tested using
the example shown in Figure 1, which we adapted from their publication. With
their approach, they are able to show non-interference between confidential and
public data paths using path conditions. However, they assume that the timing



4 Marcus Mikulcak, Paula Herber, Thomas Göthel, and Sabine Glesner

0

1

*, 2

mode_switch

 ~= 0

conf_out

 ~= 0

pub_out

0

Constant

Mem

1
operation_mode (i_1)

2
confidential_data (i_2)

3
public_data (i_3)

2
confidential_data_output (o_2)

3
public_data_output (o_3)

1
operation_mode_output (o_1)

0

Constant Erase

== 1

comp_conf

== 2

compare_public

Figure 1: A shared buffer for public as well as confidential data

dependencies do not influence the information flow. Although they discuss that
this assumptions is violated in their own case study, they provide no solution that
takes timing dependencies into account. Possible solutions to this problem have
been presented in [17], [12] and [7] via further translations of Simulink models
into Lustre, SIGNAL and UCLID, respectively. However, as these approaches
rely on a translation of models into a target language using different functional
and timing semantics, properties of the original systems are lost. For example,
the translation to Lustre maps Simulink signals onto mathematical data types,
thereby losing the possibility to perform bit-precise analyses of data.

4 Timed Path Conditions in MATLAB/Simulink

In this section, we present our approach for the computation of timed path
condition in MATLAB/Simulink. The main idea is to transfer the concept of path
conditions from sequential programming languages like C to the Simulink modeling
language. The main challenges are to take both data and control dependencies
into account and to cope with timing dependencies. Data dependencies can simply
be resolved by following signal lines where each connection corresponds to a
direct dependency. Control dependencies are more difficult to compute as they
introduce conditional dependencies which are locally resolved. To overcome this
problem, we propagate control flow dependencies backwards through the model
to the input signals. With that, we can decide whether a certain path actually
exists on a very fine-grained level. For both data and control dependencies, we
have to take timing dependencies into account. An output might only depend
on an input at certain points of time, and sophisticated routing policies might
even take advantage of timing delays to make sure that two signals can never
interfere. A motivating example for this case is given in the following subsection
and used as a running example throughout this paper.

In order to take timing dependencies into account, we introduce the concept
of time slices, and incorporate timing dependencies into our approach for the



Timed Path Conditions in MATLAB/Simulink† 5

computation of timed path conditions by expressing all dependencies with respect
to relative time slices. For the computation of timed path conditions, we use a
two-step approach: (1) We (statically) identify all paths in a given Simulink model
and collect all path conditions on each path. (2) For each path, we propagate all
local control flow conditions backwards through the model in order to compute
timed path conditions that solely depend on input variables.

In the following subsections, we first present our running example. Then, we
introduce assumptions that define a Simulink subset our approach is currently
able to safely analyze. In Section 4.3, we present our notations. Then, we present
the computation of path conditions in Section 4.4.

4.1 Running Example

To illustrate our approach, we use a simplified version of the shared buffer
presented in [18] (see Figure 1).1 In this model, information of two different
security levels (public and confidential) is fed into a shared buffer, which is
implemented as a Mem block. According to the current operation mode, confidential
(mode 1) or public (mode 2) information is saved in the buffer and passed to the
corresponding output, or the contents of the buffer are erased (mode 0).

The most interesting aspect of this example is that it makes use of a so-
phisticated routing scheme to avoid security violations. Although confidential
and public data share the same memory block as buffer, the routing conditions
are intended to ensure that confidential input data can never flow to the public
output. To this end, the operation mode defines which input should be routed to
the output. The designer did, however, not take the timing behavior of the Mem
block into account. When examining the timing of the output signals we discover
that if the operation mode switches from confidential to public, the outputs
register a spike of the data previously stored in Mem: the confidential contents
are sent to the public output. By computing path conditions without taking
timing dependencies into account, one would falsely assume that information
flow is impossible, as the control flow conditions along the path from confidential
input to public output are disjoint. This shows that we can only safely use path
conditions for Simulink models if we take timing behavior into account.

4.2 Assumptions

In order to apply our approach for the computation of timed path conditions, a
given Simulink model has to fulfill the following assumptions:

1. It uses a time-discrete, fixed-step solver.
2. It does not contain algebraic loops or loop subsystems.
3. Only scalar signals are used.
4. So far, all blocks have to use the same sample time.

1Our simplified version does not contain the Stateflow controller used to set the
operation mode present in the original.



6 Marcus Mikulcak, Paula Herber, Thomas Göthel, and Sabine Glesner

5. For conditional execution, we support Enabled and routing blocks so far.
6. Control signals only pass through simple arithmetic blocks without feedback.

The first two assumptions are acceptable as we target Simulink models from
the field of discrete embedded controller design, where time-continuous solvers,
loop subsystems, and algebraic loops are rarely used. Assumptions 3 to 5 are
imposed due to the current state of our implementation, we are confident that our
approach can easily be extended to vector or matrix signals, varying sample times,
and other conditional subsystems. Assumption 6 is the most serious restriction
regarding typical Simulink models of interest. However, many practical Simulink
models only use simple control logics. An extension of our approach to support
more complex blocks and subsystems is subject to future work.

4.3 Notations

We use the following notations: B denotes the set of blocks and S the set of
signals in a given model. In addition, we use I and O as the sets of incoming
and outgoing ports of a model, respectively. To describe paths, we use the
set P (bl, bk) that contains all paths between blocks bl and bk. On a path bl to bk,
we denote the condition for information to flow through a block bm as c(bm, bl, bk).
While arithmetic blocks always establish a connection between all input and
output signals (c(bi, ∗, ∗) = true), routing blocks and conditional subsystems
only establish a connection under certain conditions.

In order to take timing dependencies into account, we denote the dependency
of an output signal to the set of input variables at a certain point of time as
(note that tmax designates the maximum time slice depth over all paths):

otn = d(it1, . . . i
t−tmax
1 , . . . , itk, . . . i

t−tmax
k )

If a path starts at source block b0 and passes through b1, . . . , bn−1 to the
target bn, the timed condition for the complete path p(b0, bn) is denoted by:

C
(
p(b0, bn)

)
=

n−1∧
i=1

c(bi, bi−1, bi+1)
t−ti

As described above, each atomic path condition applies to the connecting signals
between two neighboring blocks and not to the complete set of input and output
signals. Intersecting paths through the same routing block therefore create
different sets of conditions.

4.4 Computation of Timed Path Conditions

In this section, we describe our approach to compute timed path conditions for
Simulink models. As mentioned above, we propose a two-step approach where
we first identify all paths and collect all path conditions on each path, and
then propagate all local control flow conditions backwards through the model in



Timed Path Conditions in MATLAB/Simulink† 7

order to compute timed path conditions that solely depend on input variables.
In the following, we first describe how we compute the set of all (potential)
paths using a backwards depth-first search. Then, we explain how we determine
timing dependencies and how we extract (local) path conditions for each path.
Finally, we present our approach for the backward propagation of the local path
conditions to achieve the final timed path conditions that solely depend on input
variables. We illustrate each step using our running example from Section 4.1.

Finding Paths In the first step, we identify all potential paths between the
model inports I and outports O. This is a first step to make it possible to analyze
confidentiality of data as well as integrity of the model functionality, as data
flowing to and from inappropriate sources can be detected (see Section 2.3). In
order to find all paths P (ik, ol), we traverse the model from ol recursively.

Our path detection starts the model traversal with a given outport block ol and
implements a depth-first recursive search for all paths ik to ol while marking al-
ready visited blocks. This makes it possible to detect cycles along paths throughout
the model. After completion of the path detection, the sets P (i, o)

∣∣ (i ∈ I, o ∈ O
)

contain all paths from all input and output ports and can be analyzed further.

Running Example The results of the first step of our algorithm, the sets P (i, o)
of our example, are shown in Figure 2.

P (i1, o1) =
{
⟨i1, o1⟩

}
P (i2, o1) = P (i3, o1) = ∅
P (i1, o2) =

{
⟨i1, comp_conf, conf_out, o2⟩, ⟨i1, mode_switch, Mem, conf_out, o2⟩

}
P (i2, o2) =

{
⟨i2, mode_switch, Mem, conf_out, o2⟩

}
P (i3, o2) =

{
⟨i3, conf_out, Mem, mode_switch, o2⟩

}
P (i1, o3) =

{
⟨i1, compare_public, pub_out, o3⟩, ⟨i1, mode_switch, Mem, pub_out, o3⟩

}
P (i2, o3) =

{
⟨i2, mode_switch, Mem, pub_out, o3⟩

}
P (i3, o3) =

{
⟨i3, mode_switch, Mem, pub_out, o3⟩

}
Figure 2: Detected paths through the model

Identifying Timing Dependencies With the complete set of paths between
all model inports and outports, the next step in our analysis is the determination
of the timing dependencies on each path p(ik, ol). Three different cases can occur:
(1) Untimed: The path neither contains time-dependent model elements nor is
part of a feedback loop. (2) Fixed-Delay: The path contains time-dependent
model elements but is not part of a feedback loop. (3) Feedback loop: The path
is part of a feedback loop.

To compute the timing dependencies for a given set of paths, we iterate over
each path and analyze it regarding time-dependent model elements and their
parameters. If no timed element is found and the path is not part of a feedback
loop, the untimed dependency relation otl = d(itk) is established.



8 Marcus Mikulcak, Paula Herber, Thomas Göthel, and Sabine Glesner

If the path is not part of a feedback loop but time-dependent model elements
are encountered along the path during the iteration, a fixed-delay relation can
be established and type and parameters of the blocks decide its magnitude. As
explained above, we only consider discretely timed models with a fixed simulation
step size so far. The behavior of a Delay, UnitDelay and a Mem block is therefore
similar. Each time a Mem block is encountered, the magnitude of the fixed delay
for the current path is increased by 1. When encountering a Delay block, after
confirming the correct sampling time, its DelayLength parameter is read and
added to the delay magnitude m of the current path, which yields otl = d(it−m

k ).
A path that is part of a feedback loop presents an infinite delay relation.

Running Example The result of the application of this step to our running
example is shown in Table 1. As illustrated, information from the data inputs
does never arrive at the outputs in the same time slice, as there are no paths
between i2t, i3t and o2t, o3t. Only information from the previous time slice arrives
at the outports. This also presents an indicator for the existence of a security
violation between the confidential data input and the public data output. At
each time t, confidential information from the previous time slice t − 1 is still
held inside the system and is released in case of a change in mode of operation in
the form of a spike. Note that we use the index c to denote indirect information
flow through the control signal of routing blocks [1].

Table 1: Timing relations between ports of our shared buffer example
it1 it−1

1 it2 it−1
2 it3 it−1

3

ot1 p(it1, o
t
1) ∅ ∅ ∅ ∅ ∅

ot2 p(it1, o
t
2)c p(it−1

1 , ot2)c ∅ p(it−1
2 , ot2) ∅ p(it−1

3 , ot2)

ot3 p(it1, o
t
3)c p(it−1

1 , ot3)c ∅ p(it−1
2 , ot3) ∅ p(it−1

3 , ot3)

Extracting Path Conditions After the identification of timing dependencies,
in the next step of our analysis, we extract the conditions necessary for information
to flow along paths. These conditions are dependent on the type of the block
and its semantics. While it is true for blocks from the functionality and timing
categories, routing blocks are analyzed further to extract their behavior. Thus,
we iterate over each path in P (I,O) to check for the existence of routing blocks
and create a set C

(
p(it−c

k , otl)
)

that holds the extracted conditions. If a routing
block br in time slice t−d with inputs sctrl, s1, . . . , sn, output sout and neighboring
blocks bl and bo is found, the necessary condition for the current path is extracted
and saved for later analysis by the constraint solving tool. The condition is formed
depending on the type of the encountered routing block.

Running Example The goal of our running example, presented in Section 4.1, is
to prove whether there is information flow between the confidential inport and
the public outport. In the face of multiple routing blocks and a time-dependent
model element, we will only consider one path in this example application of our
approach: p(it−1

2 , ot3). After this step, the set of path conditions on this path is:

C
(
p(it−1

2 , ot3)
)
=

{
sctrl(pub_out)t ̸= 0, sctrl(mode_switch)t−1 == 1

}



Timed Path Conditions in MATLAB/Simulink† 9

Backward Propagation of Path Conditions As shown above, a single condi-
tion is extracted for each routing block on each path. However, as these individual
conditions only contain local information about a single control signal, we prop-
agate these control flow signals backwards to the inports of the model. This
requires to take the functionalities of each block between the control signal and
the inports into account. It elevates the local information about control signals
in path conditions to model-wide conditions for information flow, which solely
depend on input signals. To accomplish this, we analyze each control signal sepa-
rately and iterate over each path from the signal to its drivers while collecting
the functionality of each block. We denote the resulting dependencies as:

sctrl(br) = d(it1, . . . , i
t−tmax
1 , . . . , it−tmax

j , . . . , it−tmax
j )

For a single block bl, we define its functionality as so(bl) = fbl(si1 , . . . , sin).
When considering a complete path p(b1, bn), the resulting function fp is formed by
the composition of each output function along the path according to its structural
connections. For example, a linear chain of blocks yields:

fp := fb1 ◦ fb2 ◦ . . . ◦ fbn

Note that for each block type, a specific set of parameters is extracted and
its resulting functionality is recorded. We currently support the following block
types on control paths: Bias, Gain, Abs, Compare, Add, Product.

While we support untimed and fixed-delay timing relations over control paths,
i. e., the existence of multiple time slices along these paths, we presently do not
support feedback loops inside control flow paths, as no conclusion can be drawn
under these circumstances. We plan to extend our approach with feedback loops
and support for additional block types in control flow paths in future work.

Running Example Using the previously created set of path conditions C(it−1
2 , ot3)

as an input, this step of our analysis propagates the local path conditions of the
routing blocks backwards and collects the functionality of each block along these
paths. The model inports driving the control signals in C can be found in the first
row of Table 1. There, untimed dependencies between i1, the mode of operation
and ot2 as well as ot3 leading through the control signals of the routing blocks can
be found and the paths between the control signal and the inport i1 are identified:

p(it1, sctrl(mode_switch)) = {it−1
1 }

p(it1, sctrl(pub_out)) = {compare_public, it1}
Subsequently, we need to record the functionality of each block along these

paths. The first path presents the trivial case that the control signal is directly
connected to the inport of the model, we can therefore note its function as:

sctrl(mode_switch) = fInport(i
t−1
1 ) = it−1

1

When collecting the functionality of the second path, we encounter a Compare



10 Marcus Mikulcak, Paula Herber, Thomas Göthel, and Sabine Glesner

block with a Const value of 2, which we translate into the following function:

sctrl(pub_out) = fCompare ◦ fInport(i
t
1) = it1 == 2

With both extracted control flow relations, we have raised the scope of the path
conditions from routing block-local to model-wide as path conditions are now
presented as directly depending on a set of model inputs instead of local signals.

C
(
p(ot3, i

t−1
2 )

)
=

{
(it1 == 2) ̸= 0, it−1

1 == 1
}

Translating and Solving Path Conditions We can analyze our timed path
conditions, which are expressed by sets of constraints, using a constraint solver.
We chose a format that resembles a set of constraints on signals. To translate this
representation into a set of constraints, we first declare all encountered signals as
decision variables, then to extract each condition as a constraint on the signals.
Finally, the solver is instructed to find an assignment to the decision variables
that does not violate any constraints. If such an assignment can be found, we can
conclude that the extracted conditions along the path overlap and there is indeed
the possibility for information flow. If the constraint system is unsatisfiable, the
path conditions prohibit information flow.

Running Example The result from translating the path conditions extracted
in the previous step into a constraint system is shown in Listing 1.1. Decision
variables are declared first, then the two conditions extracted from the routing
blocks along the path are shown. When solving the constraint system, we conclude
that it is in fact satisfiable due to the timing annotation at the input signal i1,
allowing for information to flow from confidential to public signals.

1 var int: i_1_t;
2 var int: i_1_t_sub_1;
3 constraint (i_1_t == 2) != false;
4 constraint i_1_t_sub_1 == 1;
5 solve satisfy;

Listing 1.1: The translated constraint system

5 Evaluation

To evaluate our approach, we have implemented the analysis described above
in Java. Our implementation uses an existing Simulink model parser originally
developed for the Methods of Model Quality (MeMo) project [8]. We made our
computation and implementation accessible via an Eclipse plug-in. While in its
current state, our backward propagation algorithm only supports a small subset
of simple blocks, we are confident that it still can be applied to a broad range
of practical examples as this part of our approach must only be applied to the
part of the design that models control signals. As a CLP language, we chose
MiniZinc [13] for its simplicity and the possibility to be translated into multiple
solver back ends. As a back end, we utilize the Gecode [16] constraint solver.



Timed Path Conditions in MATLAB/Simulink† 11

Table 2 shows the results of our analysis of the running example. With a
complexity linear to the size of the model, our algorithm extracts the timed path
conditions and passes them to the constraint solver. As can be seen in the table,
both the extraction of path conditions as well as the solving of each constraint
file by Gecode is performed in under 100ms.

For the two paths p(it−1
2 , ot2) and p(it−1

3 , ot3) connecting the confidential and
public inputs with their respective outputs, the satisfiable constraint system shows
that their path conditions overlap and information flow is therefore possible.
Additionally, their timing relation shows that information fed into the system at
time t exits the corresponding output in the next time slice.

The constraint systems created for the two paths p(it−1
2 , ot3) and p(it−1

3 , ot2),
on which confidential information crosses to the public output and vice versa,
are satisfiable and therefore show that although the designer intended to use the
operation mode to ensure non-interference, information flow does indeed occur
whenever the operation mode is changed. The security policy of non-interference
between the confidential and public data flows is therefore violated.

Table 2: Evaluation results

Path Constraints Sat
Time

Extraction Solver

p(it1, o
t
1) ∅ -

73ms

-

p(it−1
2 , ot2) {it−1

1 == 1, (it1 == 1) ̸= 0} ✓ 38ms

p(it−1
2 , ot3) {it−1

1 == 1, (it1 == 2) ̸= 0} ✓ 29ms

p(it−1
3 , ot2) {it−1

1 == 2, (it1 == 1) ̸= 0} ✓ 27ms

p(it−1
3 , ot3) {it−1

1 == 2, (it1 == 2) ̸= 0} ✓ 33ms

6 Conclusion

In this paper, we have presented an approach to extract timed path conditions
from Simulink models. These conditions can be used to reduce model complexity
and as an IFA tool to argue about the existence of paths between arbitrary blocks
in a model. We have shown how we find paths between inputs and outputs to
the model and how we determine timing dependencies of signals along these
paths. Further, we have demonstrated how we extract conditions from routing
blocks on paths and how we identify control flow relations between blocks to be
able to draw conclusions about the existence of paths using a constraint solving
tool. Using the example of a shared buffer for confidential as well as public data,
we have demonstrated the usability of our approach in the context of an IFA.
Thereby, we have shown how timed path conditions can be used to both detect
as well as rule out security policy violations.

To increase the precision of our approach, we are planning to extend its func-
tionality to include more parts of the Simulink design library, such as IndexVector
and Selector blocks to support non-scalar signals. Furthermore, we see high



12 Marcus Mikulcak, Paula Herber, Thomas Göthel, and Sabine Glesner

potential to increase the width of our approach by supporting Stateflow [11], an
extension to Simulink with functionality and semantics similar to state machines.
Stateflow is widely-used to model control logic within Simulink, i.e., to drive the
control signals of routing blocks within the model. Finally, we aim at extending
our approach to support more Simulink-specific features used in industrial ap-
plications, such as bit-precise variable modifications and the TargetLink block
set [2] used in the development of implementation-level Simulink models.

References

1. Denning, D.E., Denning, P.J.: Certification of programs for secure information flow.
Communications of the ACM (1977)

2. dSpace: TargetLink Embedded Code Generator. https://www.dspace.com (2015)
3. Goguen, J.A., Meseguer, J.: Security policies and security models. In: 2012 IEEE

Symposium on Security and Privacy. IEEE Computer Society (1982)
4. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow

programming language lustre. Proceedings of the IEEE (1991)
5. Hammer, C., Krinke, J., Snelting, G.: Information Flow Control for Java based on

Path Conditions in Dependence Graphs. In: IEEE International Symposium on
Secure Software Engineering (2006)

6. Hammer, C., Schaade, R., Snelting, G.: Static path conditions for Java. In: Pro-
ceedings of the third ACM SIGPLAN workshop on Programming languages and
analysis for security. ACM (2008)

7. Herber, P., Reicherdt, R., Bittner, P.: Bit-precise formal verification of discrete-time
MATLAB/Simulink Models using SMT solving. In: Embedded Software (EMSOFT),
2013 Proceedings of the International Conference on (2013)

8. Hu, W., Wegener, J., Stürmer, I., Reicherdt, R., Salecker, E., Glesner, S.: MeMo -
Methods of Model Quality. In: MBEES (2011)

9. King, J.C.: Symbolic execution and program testing. Communications of the ACM
(1976)

10. Krinke, J., Snelting, G.: Validation of measurement software as an application of
slicing and constraint solving. Information and Software Technology (1998)

11. MathWorks: MATLAB/Simulink. http://www.mathworks.com/products/simulink/
(2015)

12. Messaoud, S.: Translating Discrete Time Simulink to SIGNAL. Ph.D. thesis, Virginia
Tech (2014)

13. NICTA: The MiniZinc Constraint Programming Language.
http://www.minizinc.org/ (2014)

14. Reicherdt, R., Glesner, S.: Slicing MATLAB/Simulink Models. In: Software Engi-
neering (ICSE), 2012 34th International Conference on. IEEE (2012)

15. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. Selected
Areas in Communications, IEEE Journal on (2003)

16. Schulte, C., Lagerkvist, M., Tack, G.: Gecode: Generic constraint development
environment. In: INFORMS Annual Meeting (2009)

17. Tripakis, S., Sofronis, C., Caspi, P., Curic, A.: Translating discrete-time Simulink
to Lustre. ACM Transactions on Embedded Computing Systems (TECS) (2005)

18. Whalen, M.W., Hardin, D., Wagner, L.G.: Model Checking Information Flow.
Springer US (2010)


	Timed Path Conditions in MATLAB/SimulinkFunded by the German Federal Ministry of Education and Research as part of the research project CISMo

