T. Hoßfeld, M. Seufert, M. Hirth, T. Zinner, P. Tran-gia et al., Quantification of YouTube QoE via Crowdsourcing, 2011 IEEE International Symposium on Multimedia, pp.494-499, 2011.
DOI : 10.1109/ISM.2011.87

G. Dimopoulos, I. Leontiadis, P. Barlet-ros, and K. Papagiannaki, Measuring Video QoE from Encrypted Traffic, Proceedings of the 2016 ACM on Internet Measurement Conference, IMC '16, pp.513-526, 2016.
DOI : 10.1145/2534169.2486025

R. K. Mok, E. W. Chan, and R. K. Chang, Measuring the quality of experience of HTTP video streaming, 12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011) and Workshops, pp.485-492, 2011.
DOI : 10.1109/INM.2011.5990550

M. J. Khokhar, N. A. Saber, T. Spetebroot, and C. Barakat, On Active Sampling of Controlled Experiments for QoE Modeling, Proceedings of the Workshop on QoE-based Analysis and Management of Data Communication Networks , Internet QoE '17, 2017.
DOI : 10.1109/CVPR.2014.541

URL : https://hal.archives-ouvertes.fr/hal-01525723

, RTR-Netz open dataset, 2017.

-. Mobiperf, , 2018.

J. D. Vriendt, D. D. Vleeschauwer, and D. C. Robinson, QoE model for video delivered over an LTE network using HTTP adaptive streaming, Bell Labs Technical Journal, vol.18, issue.4, pp.45-62, 2014.
DOI : 10.1002/bltj.21645

F. Wamser, P. Casas, M. Seufert, C. Moldovan, P. Tran-gia et al., Modeling the YouTube stack: From packets to quality of experience, Computer Networks, vol.109, 2016.
DOI : 10.1016/j.comnet.2016.03.020

, Linux Traffic Control, vol.11, 2018.

, Parametric bitstream-based quality assessment of progressive download and adaptive audiovisual streaming services over reliable transport, ITU-T Rec. P.1203, 2017.

S. S. Krishnan and R. K. Sitaraman, Video stream quality impacts viewer behavior, Proceedings of the 2012 ACM conference on Internet measurement conference, IMC '12, pp.211-224, 2012.
DOI : 10.1145/2398776.2398799

F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph et al., Understanding the impact of video quality on user engagement, SIGCOMM CCR, vol.41, issue.4, 2011.

B. Settles, Active learning literature survey, 2010.

, R2Lab, 2017.

V. Aggarwal, E. Halepovic, J. Pang, S. Venkataraman, and H. Yan, Prometheus, Proceedings of the 15th Workshop on Mobile Computing Systems and Applications, HotMobile '14, 2014.
DOI : 10.1145/2565585.2565600

I. Orsolic, D. Pevec, M. Suznjevic, and L. Skorin-kapov, YouTube QoE Estimation Based on the Analysis of Encrypted Network Traffic Using Machine Learning, 2016 IEEE Globecom Workshops (GC Wkshps), 2016.
DOI : 10.1109/GLOCOMW.2016.7849088

X. Che, B. Ip, and L. Lin, A Survey of Current YouTube Video Characteristics, IEEE MultiMedia, vol.22, issue.2, pp.56-63, 2015.
DOI : 10.1109/MMUL.2015.34

M. Seufert, N. Wehner, F. Wamser, P. Casas, A. et al., Unsupervised QoE field study for mobile YouTube video streaming with YoMoApp, 2017 Ninth International Conference on Quality of Multimedia Experience (QoMEX), pp.1-6, 2017.
DOI : 10.1109/QoMEX.2017.7965688

M. J. Khokhar, T. Spetebroot, and C. Barakat, An online sampling approach for controlled experimentation and qoe modeling, ICC 2018 IEEE International Conference on Communications, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01677378

A. Nikravesh, D. R. Choffnes, E. Katz-bassett, Z. M. Mao, and M. Welsh, Mobile Network Performance from User Devices: A Longitudinal, Multidimensional Analysis, Proceedings of PAM 2014, pp.12-22, 2014.
DOI : 10.1007/978-3-319-04918-2_2

S. Rosen, H. Yao, A. Nikravesh, Y. Jia, D. Choffnes et al., Demo, Proceedings of the 12th annual international conference on Mobile systems, applications, and services, MobiSys '14, pp.353-353, 2014.
DOI : 10.1145/2594368.2601469