
HAL Id: hal-01855850
https://inria.hal.science/hal-01855850

Submitted on 8 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimizing Progressive Query-By-Example over
Pre-Clustered Large Image Databases

Anicet Kouomou-Choupo, Laure Berti-Équille, Annie Morin

To cite this version:
Anicet Kouomou-Choupo, Laure Berti-Équille, Annie Morin. Optimizing Progressive Query-By-
Example over Pre-Clustered Large Image Databases. BDA 2005 - Actes des Journées Bases de Données
Avancées, Oct 2005, Saint Malo, France. pp.215-226, �10.1145/1160939.1160946�. �hal-01855850�

https://inria.hal.science/hal-01855850
https://hal.archives-ouvertes.fr

Optimizing Progressive Query-By-Example over
Pre-Clustered Large Image Databases

Anicet Kouomou-Choupo
IRISA - Campus de Beaulieu
35042 Rennes cedex, France

+33 299847157

Anicet.Kouomou_Choupo@irisa.fr

Laure Berti-Équille
IRISA - Campus de Beaulieu
35042 Rennes cedex, France

+33 299847390

Laure.Berti-Equille@irisa.fr

Annie Morin
IRISA - Campus de Beaulieu
35042 Rennes cedex, France

+33 299847222

Annie.Morin@irisa.fr

ABSTRACT
The typical mode for querying in an image content-based
information system is query-by-example, which allows the
user to provide an image as a query and to search for
similar images (i.e., the nearest neighbors) based on one or
a combination of low-level multidimensional features of the
query example. Off-line, this requires the time-consuming
pre-computing of the whole set of visual descriptors over
the image database. On-line, one major drawback is that
multidimensional sequential NN-search is usually
exhaustive over the whole image set face to the user who
has a very limited patience. In this paper, we propose a
technique for improving the performance of image query-
by-example execution strategies over multiple visual
features. This includes first, the pre-clustering of the large
image database and then, the scheduling of the processing
of the feature clusters before providing progressively the
query results (i.e., intermediate results are sent continuously
before the end of the exhaustive scan over the whole
database). A cluster eligibility criterion and two filtering
rules are proposed to select the most relevant clusters to a
query-by-example. Experiments over more than 110 000
images and five MPEG-7 global features show that our
approach significantly reduces the query time in two
experimental cases: the query time is divided by 4.8 for 100
clusters per descriptor type and by 7 for 200 clusters per
descriptor type compared to a “blind” sequential NN-search
with keeping the same final query result. This constitutes a
promising perspective for optimizing image query-by-
example execution.

1. INTRODUCTION
The management of large collections of images adds
the problem of efficiently handling and searching an
overwhelming volume of digital contents and their
associated descriptions. Challenges include balancing
between rich content description and efficient storage
with fast access methods at various levels (from
pixels to semantics). Query-by-example exploits and
combines visual descriptors whose computing costs
increase proportionally to the database size. The

exhaustive processing of a very great number of
images with NN-searches turns to be quickly
unaffordable to users desiring quick response time.
Researchers from computer vision community have
proposed a plethora of image description and retrieval
methods that represent each image as a set of low-
level features and provide users with a query-by-
example similarity search to explore the database
contents. However, the convergence between
computer vision and database communities is not yet
achieved regarding the two following points:

1. The main current research work trend deals with
algorithmic approaches for nearest neighbors
searches and early stopping approaches that
focus on multidimensional but mainly mono-
descriptor datasets �[3],�[14],�[23].

2. Contrary to traditional databases where many
works have been carried out on query
optimization and more recently on adaptive
query processing �[1],�[9], very few works have
been proposed on image query-by-example
optimization.

Motivated by such observations, we present in this
paper a case study of how to apply a database
optimization approach to an image query-by-example
problem under the multi-descriptor paradigm. More
recently, Kiranyaz and Gabbouj �[11] defined the
notion of progressive query-by-example allowing
intermediate results before the end of the whole
database processing but the approach was limited to
the periodic execution of the same sub-query with
several descriptors on different portions of
multimedia databases (images and videos) with no
emphasis on scheduling the data subsets to process by
NN-searches, or on merging the results from
heterogeneous descriptors. Our research builds upon
the implementation of progressive content-based

image retrieval and upon previous experiments �[13]
that extended the work of Kiranyaz and Gabbouj. For
querying very large image databases, our assumption
is that i) pre-clustering the image descriptions, ii)
scheduling the NN-searches over the ranked set of
relevant descriptors, and ii i) presenting continuously
the intermediate results during the running query
should be more efficient and should offer more
flexibility to users. We propose then a system of
image retrieval that organizes image features into
clusters and schedules their processing for
progressive image retrieval. The system combines
multiple visual global features and uses filtering rules
to select the most relevant clusters to scan in priority.

The rest of the paper is organized as follows: Section
2 presents a synthesis of related work on indexing
techniques, selection and scheduling clusters for
image content-based retrieval. Our system is
described in Section 3. Experiments and results are
reported in Section 4. We conclude the paper in
Section 5 and also present our research perspectives.

2. RELATED WORK
In computer vision community, many methods have
been proposed to extract low-level visual images
features. Some works deal with local descriptor
extraction and try to build features that are invariant
to geometric transformations and robust to
illumination changes �[18],�[22]. Others suggest global
descriptors that are more simple information to cope
with and less memory space and time consuming
�[16],�[21]. However, one of the basic questions to
address in an image database system is to define
when two images may be considered similar.
Similarity of images has been characterized in the
literature through three important features: colour,
texture and shape �[20] and systems that combine
computer vision techniques to measure the similarity
between images are also proposed �[25]. In this paper,
we are essentially dealing with query-by-example on
general real-world images. Global features remain
best suited in this case and we privilege merging
results of several descriptors instead of defining new
distances on a combination of features. We assume
that each feature is effective separately and that
merging results is appropriate to answer multi-
descriptor queries. We then focus in this paper on the
efficiency of our approach.

The second question to address is indexing high-
dimensional descriptors. Large image databases have
to be indexed in order to make the retrieval efficient.
The general principle of indexation schemes is to
gather in the same cell all feature vectors that are
collocated in the multidimensional space. Cells can
then be included within a specific indexing structure
like trees. Indexation techniques that are either based
on data partitioning (such as R-Tree �[10]) or on space
partitioning (such as k-d-Tree �[2] or GridFile �[15])
are well adapted to low-dimensional vectors (≤ 16
dimensions according to �[24]). High dimensional data
spaces have some specific properties which severely
affect retrieval methods, making a sequential search
perform better. These property have been studied and
reported in �[4],�[24]. New indexation schemes have to
be defined and adapted to the high-dimensional
vectors. Cornacchia et al �[6] propose a system based
on Relational Array Mapping that naturally extends
existing database functionalities in terms of indexing
to cope with multidimensional arrays. The strength of
the system lies on a specific algebra (Relational Array
Mapping Algebra) to generate optimized query
execution plans and to improve expressiveness of the
database system. In our work however, we stay in
multidimensional space: we organize images into
clusters and we determine a ranked list of clusters per
query for efficiently and effectively retrieving the
most similar images according to all the available
descriptors in the database. This ranked list of the
most eligible clusters defines a query execution
strategy for the given query-by-example.

Once the questions of similarity of images and
indexing high-dimensional features have been
addressed, the objective is to define and to elaborate
efficient strategies for image retrieval. Retrieval
methods are closely related to the underlying
indexation schema. Nearest Neighbors algorithms
typically use the geometrical properties of cells to
eliminate those cells which can not have any impact
on the result of the current query �[5]. Filtering rules
are sometimes used for searching exact nearest
neighbors and for eliminating irrelevant cells,
avoiding the subsequent analysis of all the vectors
they contain, which, in turn, reduces response time.
But the “curse of dimensionality” phenomenon makes
these filtering rules ineffective on high-dimensional
datasets �[12],�[24],�[4],�[5]. There is therefore an
increasing interest in performing approximate NN-

searches, where the quality of result is traded off
against reduced query execution time. Weber and
Böhm with VA-File �[23] and Li et al. with Clindex
�[14] perform approximate NN-searches by
interrupting the search after having accessed an
arbitrarily fixed number of cells. These two
techniques are efficient in terms of response time, but
give no clue on the quality of the result returned to
the user. Berrani et al. �[3] control the precision of the
search by setting at run time the maximum probability
for a vector that would be in the exact answer set to
be missing in the approximate set of answers. They
use approximated cells’ radii which improve the
effectiveness of filtering rules and speed up the NN-
search. Our work does not currently use approximate
cells’ radius for mono-descriptor NN-search. Our
focus is at a higher multi-descriptor level over a pre-
clustered large database. Our approach is nevertheless
complementary. We defined approximate filtering
rules over eligible clusters with all descriptors taken
together and experimentally quantify the introduced
approximation on the result quality.

3. PROGRESSIVE CONTENT-BASED
IMAGE RETRIEVAL
Image query-by-example may use a combination of
several types of visual descriptors whose time-
consuming computing costs increase proportionally to
the database size. At the query-time, the exhaustive
processing of a very great number of images with
NN-search turns to be quickly unaffordable to users
desiring quick response time. In this context, our
twofold assumption is: i) pre-clustering the image
features of large databases and scheduling the NN-
search over a ranked set of relevant clusters of
descriptors should improve the performance of image
query-by-example and ii) sending continuously the
intermediate results of the search in progress should
offer more flexibility to the users.

3.1 Image Database Pre-Clustering
Image files are gathered on the hard disk and global
descriptions of the images are pre-computed for m
types of descriptors di (di ∈ D, i=1,2,…,m). For each
descriptors type di, the image descriptions are
organized into clusters with a k-means-l ike clustering
method which reuse the k-means principle but replace
the computed virtual centroid by the nearest existing
image (which will be called centroid for the sake of
simplicity). This approximation is introduced to allow

an appropriate computing of distances between image
query and clusters’ centroids for a given descriptor
type. Several clusters characteristics are stored in a
binary file: their size in term of number of elements
they contains, their centroid, and their position in the
binary file. For each descriptor type, an image is
described by a vector with variable length per
descriptor type. On the one hand, the choice of the
number of clusters as input for the k-means algorithm
�[8] remains a well-known difficult problem. Our first
experimental approach was to take a number of
clusters per descriptor type in order to have clusters
with almost the same size. Our previous experiments
reported in �[13] show that the equal number of
clusters per descriptor type does not change the
results from one descriptor type to another. Section 4
will give details on this choice. On the other hand,
k-means is not effective dealing with outliers, but our
interest is focused on search strategies and outliers’
management is not in the scope of this paper.
Moreover, it has been shown that minimizing the
search time suggests to generate uniformly sized
clusters �[19].

3.2 Image Querying by Example
Based on the pre-clustering of the image database,
our image retrieval process includes the following
steps (Figure 1): (i) the user submits an image query
to the system and all the features available for image
description are computed from the image query; (ii)
clusters characteristics related to the query are
scanned. For example, distances from the centroid of
clusters to the image query, maximum and minimum
distances from the query to clusters are computed at
this step; (iii) the clusters are ranked based on their
characteristics; (iv) filtering rules are applied to select
the most relevant clusters and to speed up the
retrieval process; (v) clusters scanning is scheduled to
provide to users the best results as soon as possible:
progressive query is executed based on the scheduling
of the clusters scan and intermediate results are
continuously presented to the user ; the process loops
from the step (iv) until there does not remain any
cluster to analyze.

Figure 1. Steps in the progressive retrieval process.

In a query-by-example scenario with a similarity
search target (comparable to searching similar images
on the web), users submit an image as a query to the
system to get in return the most similar images to the
image-query according to particular visual criteria.
Users may know how to choose visual descriptors.
However, it generally happens that they do not have
any idea of the most discriminating descriptor to use
for their query. For such a case, our approach finds
and assigns priorities on the clusters of image
descriptions and, consequently, proposes
continuously a list of ranked clusters for optimizing
the query-by-example execution. The following
section formalizes the key notions of our approach
that are: the cluster eligibility criterion and the
filtering rules upon which our method is based for
significantly improving the performance of image
query-by-example.

3.3 Selecting and Scheduling Feature Clusters
Let m be the number of features and n the number of
clusters for each descriptor type. We choose to
compute, for each cluster Cij (j=1, 2,..., n) of
descriptor type di (i=1,2,…,m), the distance from its
centroid to the submitted image-query, noted Iq. This
distance is noted for simplification: Dist(Iq,Cij).
Computing the distance depends on the nature of the
multidimensional feature. In the case of MPEG-7
global descriptors, the distance is generally a
quadratic or a weighted Manhattan distance. We
define the cost of a given cluster Cij, to be the vector
dimension of the descriptor type di multiplied by the
number of vectors that the cluster Cij contains. This

cost is noted Cost(Cij). We normalize Dist(Iq, Cij) and
Cost(Cij) for all di (i=1,2,…,m) in order to make them
independently comparable. NormDist(Iq,Cij) and
NormCost(Cij) indicate respectively the normalized
distance and the normalized cost of the cluster Cij.
These measures are defined by Eq. (1):

�
�
�

=
=−=

)(

),(

)(

)(

ij

ijq

CCostX

orCIDistX
 with

X

XEX
NormX

σ

(1)

)(XE and)(Xσ are respectively estimated by mean and

standard deviation of X for the descriptor type di.
These normalized measures are combined to define
the eligibility criterion of each cluster Cij for the
image-query Iq such as:

0}1,0{,

)(min)(

),(min),(),(

..1
..1

..1
..1

≠+∈

−+

−=

=
=

=
=

βαβα

β

α

andwith

CNormCostCNormCost

CINormDistCINormDistCIyeligibilit

ij

nj
mi

ij

ijq

nj
mi

ijqijq

 (2)

This formula is limited to the extreme cases of
behavior of normalized measures studied separately,
and the equally weighted combination of theses
measures. The study can be easily extended to the
general case of a weighted combination.

We also propose two filtering rules in our retrieval
process. More formally, for a descriptor type di, let Rij
be the radius of the cluster Cij. It is equal to the
distance between the centroid of Cij and its farthest
point. We define the minimum distance dmin between
the image query Iq and the cluster Cij by Eq. (3):

�
�
� >−

=
else

RCIDistifRCIDist
 CId i ji jqijijq

ijq 0

),(),(
),(min

(3)

The first rule (R1) has been adapted from �[3]. It
consists of discarding all clusters which the minimum
distance to the image query Iq is greater than a
computed threshold. It is stated as follows:

R1 : If
))NNk,d(I),R)C,(Dist(ICId qipipq

k)Card(C
1..np

ijq

ip

+≥
≥

=
minmin(),(min

 then Cij is irrelevant

(4)

where Card(Cip) is the number of vectors of the
cluster Cip (p=1,2,...,n), k the number of nearest
neighbors to search, and d(Iq, kNN) the distance
between the image query Iq and the current kth nearest
neighbour. The rule (R1) simply exploits a shape
property of clusters, ensuring the correctness of

Image
database

(i) (ii)

Query Features
Computing

Clusters
Characteristics

Scanning

Clusters Ranking
based on Clusters

Characteristics

Clusters Scheduling
and Scanning

Presentation of
intermediate results

Application of
filtering rules on

clusters

User: query
submission (iii)

(iv)

(v)

Loop

retrieved results, comparing to the sequential search.
It is however possible to use a rule stronger than the
rule (R1) which exploits the sensibility of the chosen
clustering method regarding outliers in order to
discard from the search, all clusters which the
minimum distance to an image query is not null. This
second rule is stated as follows:

R2: If 0),(min >ijq CId then Cij is irrelevant (5)

If the query belongs to the image database, it then
belongs to one cluster for a given descriptor and
intuitively, it is very probable the cluster contains
some neighbors of the query. According to the
definition of dmin (see Eq. (3)), the rule (R2) then
indicates the condition under which a cluster may be
supposed far from the query, and thus irrelevant.

3.4 Merging of Intermediate Query-by-
example Results
Our content-based image retrieval system searches for
the most similar images and gradually uses the
available descriptors. Intermediate results are
produced as soon as the NN-search has been done
over one of the most eligible clusters and they are
progressively merged together with the intermediate
results of the previous searching phases. The fusion
of the result lists obtained from the similarity search
on various multidimensional descriptors is a complex
problem. We use the merging function introduced in
our previous work �[13].

Consider at a given searching phase p, the similarity
search is done over the cluster Ci0 j of the descriptor

type di0
. We note {d1, d2,..., dm1

} the subset of m1

descriptors type corresponding to the clusters that
have already been processed at the end of the
searching phase p (m1 ≤ m). The Top N list of
intermediate results on the descriptor type di is noted
l i, 1 ≤ i ≤ m1. For the searching phase p, the list l i0 is

updated by taking into account the processing of
cluster Ci0 j. Then, the list l i0

 is merged with the other

lists l i (1 ≤ i ≤ m1, i ≠ i0) in order to obtain the final
Top N list of results. To cope with the problem of Top
N lists fusion, we define a scoring function for an
image I such as:

() () ()()

() [] () 1
lI if 0

 1
 ,1,0

2

1

1

1

1i

1

=
�
�
�

∉
∈

=∈

��
�

�
��
�

	
+=

=

=

m

i
i

i
dd

m

i
ddif

and
lIif

IfISwith

ISIfIS

ii

ii

α

α
(6)

()IS
id is the score of the image I for the descriptor

type di. It is proportional to the similarity between the
query-by-example Iq and I according to the descriptor
type di. αi (i=1..m1) are weights of descriptors type di.

This function takes into account the presence of an
image in the list of results for a given descriptor type
and the score of the image in that list. Hence, all
images appearing more often and that having high
scores in individual lists are relevant. The main
advantage of the proposed fusion function is its
granularity that allows merging intermediate result
lists after each cluster scan whatever the descriptor
type may be. Nevertheless, our experimental study on
the efficiency is comparative: we use the same fusion
function for both approaches, for the “blind”
sequential search and for our progressive and
selective execution strategy. No bias is introduced
regarding to the fusion of results lists. Moreover,
other methods of result aggregation as OMEDRANK
�[7] can be adapted and used.

4. EXPERIMENTS
To validate our propositions, we set up experiments
with 110,291 still images and five global MPEG-7
descriptors of color (named ColorLayout,
ScalableColor), texture (HomogeneousTexture,
EdgeHistogram) and shape (RegionShape). In the
following, descriptor types are abbreviated
respectively as CLD and SCD for color, HTD and
EHD for texture, and RSD for shape. CLD descriptor
type uses L2 distance but others are defined with L1
distance. The images are gathered into clusters for
each descriptor type with the k-means-like algorithm
described in Section 3.1. The images of our database
are provided by a photo agency. We do not have any
detail on their source to consider a robust plan of
sampling. The images are heterogeneous and mostly
dedicated to press agencies and professional users.
One hundred of images that do not belong to the
database have been chosen randomly as queries
examples for testing and evaluating our method
implemented in C++ under Linux (Pentium 4, 3 GHz,
with 1 Gb of main memory). The objective is to
organize the image set for optimizing the image

query-by-example execution. For each image query,
we search for their 15 nearest neighbors.

Without user’s relevance feedback, it is meaningless
to evaluate precision and recall and, also the
subjective quality of the retrieved results with no
prior knowledge on the application context or on the
underlying search targets. For this reason, we mainly
focused, in these experiments, on the problem of
performance, and we proposed to measure quality
relatively to the final result list obtained at the end of
a “blind” sequential NN-search. This definition of the
quality is of course relative but gives a good idea of
the gain on query time of our approach without
quality loss compared to the classical sequential
search. The relative quality is computed by counting
the number of common images in each intermediate
result list and those in the final result obtained at the
end of the “blind” sequential search.

In the following section 4.1, we test our method by
first studying parameters α and β of the cluster
eligibility formula in Eq. (2). Then, in the section 4.2,
we evaluate the two filtering rules proposed in (4) and
(5). A short study is made in section 4.3 to show the
interest of combination of feature for content-based
image retrieval.

4.1 Cluster Eligibility
We performed experiments on the eligibility measure
for different values of the necessary number of
clusters given as input to the k-means-like algorithm.
For the sake of simplicity, we choose to detail the
case of 100 clusters per descriptor type. Nevertheless,
we made experiments on 10, 50 and 100 clusters per
descriptor type that showed that the behavior we will
describe further is similar over the database whatever
the number of clusters may be. Figure 2 and Figure 3
represent respectively the variations of the relative
quality (compared to a “blind” sequential NN-search)
and the corresponding response time according to the
searching phases. A searching phase corresponds to
the end of a cluster scan with NN-search. Values in
parenthesis correspond to different values for the
parameters α and β in Eq. (2): (1,0) is associated to
α=1 and β=0; (1,1) corresponds to α=1 and β=1; and
(0,1) to α=0 and β=1.

The eligibility based on the distance from the cluster
centroid to the image-query obviously improves the
speed of the global search processing: the same result

than the one obtained in a “blind” sequential search is
reached much more quickly (as shown in Figure 2): a
“blind” sequential search will be carried out over 500
clusters (100 clusters × 5 descriptors) before sending
the final Top N list of results. In our approach, this
final list of results can be reached after the scan of
110 clusters (see the grey circles and the intersecting
dotted lines on the graphs).

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Number of clusters read

Av
era

ge
 nu

mb
er

of
NN

 fo
un

d

(1,0)
(1,1)
(0,1)

Figure 2. Relative quality of results depending on the
eligibility of clusters: 100 clusters per descriptor type.

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Number of clusters read

Av
era

ge
 tim

e (
se

c)

(1,0)
(1,1)
(0,1)

Figure 3. Query by example execution time depending on the
eligibility of clusters: 100 clusters per descriptor type.

For the case of 100 clusters per descriptor type, this
corresponds to a gain of about 77% on the average
time (i.e., 3.5s instead of 15s) compared to a “blind”
NN-search as it is shown in Figure 3.

4.2 Effectiveness of Filtering Rules
The effectiveness of the filtering rules defined
previously by (4) and (5) has been compared using
three values of the number of clusters per descriptor
type, respectively 10, 100, and 200 clusters per
descriptor type. We have then plotted variations of
the relative quality and the corresponding cumulated
time per searching phase in these three cases (Figure
4(a-c) and Figure 5(a-c)). Figure 4 confirms that the
filtering rule (R1) assures the correctness of the
retrieved results. Our experiments show that the
approximation introduced by the filtering rule (R2)
tends to be greater due the reduction of clusters radius
as the number of clusters per descriptor increases.
Concerning the effect of using the filtering rules on
the searching time, our experiments show that the

searching time decreases as the number of clusters
per descriptor increases. The filtering rules (R1) and
(R2) are then more efficient with small clusters
radius.

0 5 10 15 20 25 30 35 40 45 50
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Number of clusters read

Av
er

ag
e

nu
m

be
r o

f N
N

fo
un

d

Without filtering rule
Filtering rule (R1)
Filtering rule (R2)

(a) 10 clusters per descriptor type

0 50 100 150 200 250 300 350 400 450 500
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Number of clusters read

Av
er

ag
e

nu
m

be
r o

f N
N

fo
un

d

Without filtering rule
Filtering rule (R1)
Filtering rule (R2)

(b) 100 clusters per descriptor type

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Number of clusters read

Av
er

ag
e

nu
m

be
r o

f N
N

fo
un

d

Without filtering rule
Filtering rule (R1)
Filtering rule (R2)

(c) 200 clusters per descriptor type

Figure 4. Comparison of the filtering rules on the average
number of NN found.

For the case of 10 clusters per descriptor type,
Figures 4(a) and 5(a) show that: i) using a “blind”
sequential search, the system retrieves 15 nearest
neighbors over 15 in 16.8 seconds as average time; ii)
using the rule (R1), the system retrieves 15 nearest
neighbors over 15 in 12 seconds, which represents the
sequential searching time divided by 1.4; iii) using
the rule (R2), the system retrieves 15 nearest

neighbors over 15 in 10 seconds, which represents the
sequential searching time divided by 1.68.

For the case of 100 clusters per descriptor type,
Figures 4(b) and 5(b) show that: i) using a “blind”
sequential search, the system retrieves 15 nearest
neighbors over 15 in 16.8 seconds as average time; ii)
using the rule (R1), the system retrieves 15 nearest
neighbors over 15 in 8 seconds, which represents the
sequential searching time divided by 2.1; ii i) using
the rule (R2), the system retrieves 14.5 nearest
neighbors over 15 in 3.5 seconds, which represents
the sequential searching time divided by 4.8.

For the case of 200 clusters per descriptor type,
Figures 4(c) and 5(c) show that: i) using a “blind”
sequential search, the system retrieves 15 nearest
neighbors over 15 in 16.8 seconds as average time; ii)
using the rule (R1), the system retrieves 15 nearest
neighbors over 15 in 6.1 seconds, which represents
the sequential searching time divided by 2.76; iii)
using the rule (R2), the system retrieves 14 nearest
neighbors over 15 in 2.4 seconds, which represents
the sequential searching time divided by seven.

We then conclude that filtering rule (R2) is more
efficient than filtering rule (R1) in terms of searching
time according to Figure 5. Filtering rules (R1) and
(R2) improve the efficiency of retrieval. While the
rule (R1) preserves the correctness of results, the
important gain of time obtained with using the rule
(R2) is compensated by a light loss of result quality.
It is interesting to evaluate the impact of the rules on
the clusters scanning for each descriptor type.

0 5 10 15 20 25 30 35 40 45 50
0

1.2

2.4

3.6

4.8

6

7.2

8.4

9.6

10.8

12

13.2

14.4

15.6

16.8

18

Number of clusters read

Av
er

ag
e

tim
e

(s
ec

.)

Without filtering rule
Filtering rule (R1)
Filtering rule (R2)

(a) 10 clusters per descriptor type

0 50 100 150 200 250 300 350 400 450 500
0

1.2

2.4

3.6

4.8

6

7.2

8.4

9.6

10.8

12

13.2

14.4

15.6

16.8

18

Number of clusters read

Av
er

ag
e

tim
e

(s
ec

.)

Without filtering rule
Filtering rule (R1)
Filtering rule (R2)

(b) 100 clusters per descriptor type

0 100 200 300 400 500 600 700 800 900 1000
0

1.2

2.4

3.6

4.8

6

7.2

8.4

9.6

10.8

12

13.2

14.4

15.6

16.8

18

Number of clusters read

Av
er

ag
e

tim
e

(s
ec

.)

Without filtering rule
Filtering rule (R1)
Filtering rule (R2)

(c) 200 clusters per descriptor type

Figure 5. Comparison of the filtering rules on average time.

Tables 1 and 2 present the mean of scanned clusters
at the end of NN-search for each descriptor type.
Each row corresponds to one of the three cases of the
given number of clusters per descriptor type
(respectively 10, 100, and 200 per descriptor type).
As one could expect, much less clusters are scanned
using rule (R2) for the same result list.

We also realize that the rule (R1) is particularly
inefficient on clusters of EHD and RSD showing in
this way the sensibility of the rule to the descriptor
upon which it is applied.

Table 1. Number of scanned clusters for the filtering rule (R1)

CLD SCD HTD EHD RSD

10×5 10 10 7 10 10

100×5 53 62 44 78 94

200×5 83 103 72 144 190
Table 2. Number of scanned clusters for the filtering rule (R2)

CLD SCD HTD EHD RSD

10×5 8 9 6 8 10

100×5 21 26 23 35 78

200×5 23 32 27 46 141

The number of scanned clusters for the rule (R2)
gives an idea of clusters overlapping. According to
Table 2, clusters of descriptors EHD and RSD overlap
more than others, which explain the inefficiency of
the rule (R1). The rule (R2) may be used at the
beginning of the search process providing the user
with a first result near to the final one and then, the
rule (R1) can be used to keep on the search.

4.3 Interest of the Combination of Global
Features
This subsection aims at evaluating how the
combination of descriptors type may be useful in the
content-based image retrieval context. Images used to
perform experimentations on the global descriptors
type combination interest are provided by the
database MOVI1 which contains 32 sequences. Each
sequence represents the same scene (2 or 3D) taken in
different conditions (variation of the intensity of the
main light source, rotation, occlusion …). MPEG-7
descriptors of images of the database MOVI are
computed and added to that of 110,291 images used
to evaluate the performance of our retrieval system.
We arbitrarily choose one image in each MOVI’s
sequence as query and retrieved results for each
descriptor type are merged using function defined by
equation (6). We then compute the traditional recall,
precision and F-measure �[17] of the merged results.
No standard method exists to choose the appropriate
number of nearest neighbors to retrieve. As sequences
are of different lengths (in term of the number of
images they contain), we have chosen to retrieve for
each query the number of nearest neighbors equals to
the length of the sequence the query belongs to. In
these conditions, recall, precision, and F-measure
are all equal. In the following, we will only present
results based on the F-measure.

According to table 3, SCD and EHD descriptors type
have the best recognition rate. Hence, color and
texture descriptors perform well on our data.

Table 3. F-measure of the system with one descriptor type

Descriptor type F-measure

CLD 0.40

SCD 0.60

HTD 0.23

EHD 0.41

1Available at: http://www.irisa.fr/texmex/base_images/index.html

K
Clusters

Descriptor

Descriptor
K
Clusters

RSD 0.30

To each descriptor type, we affected a weight
proportional to its F-measure (see Table 3) and we
computed F-measure of systems obtained by the
combination of descriptor type. Results are consigned
in Table 4. This table shows that combining 4
descriptors type like CLD-SCD-HTD-EHD or 5
descriptors type like CLD-SCD-HTD-EHD-RSD, one
obtains a recognition rate of 63 %, which is better
than using only SCD descriptor (60 % of recognition
rate). We also remark that using combinations such
that CLD-SCD or HTD-EHD does not yield better
results than using SCD or EHD alone. Using HTD-
EHD-RSD is not better than using HTD-EHD. We then
conclude that in the CLD-SCD-HTD-EHD-RSD
combination, descriptors SCD and EHD play the most
interesting role in term of recognition. This
conclusion confirms observations made with the table
3.

Table 4. F-measure of the system with combination of
descriptors type.

Combination of descriptor type F-measure

CLD-SCD 0.60

HTD-EHD 0.41

CLD-SCD-RSD 0.60

HTD-EHD-RSD 0.41

CLD-SCD-HTD-EHD 0.63

CLD-SCD-HTD-EHD-RSD 0.63

5. CONCLUSION
In this paper, we have presented a novel approach for
improving the query-by-example execution
performance over a large image database compared to
a “blind” sequential NN-search using several low-
level global features. The proposed approach is based
on the pre-clustering of the database and on the use of
the cluster eligibility measure and two filtering rules
we defined to improve image query-by-example
performances compared to the “blind” search while
keeping the same quality of results.

Experiments over 110,291 images and five global
MPEG-7 descriptors have shown that our approach
provides the following interesting insights: (i) the
progressive query-by-example processing combines
advantageously several descriptors without any
knowledge on the descriptor types from users; (ii)

relevant clusters are automatically selected, ranked
and scheduled for NN-search using the cluster
eligibility measure; (iii) the use of filtering rules over
multi-descriptor clusters improves the query
processing: for 100 clusters per descriptor type, by
dividing by 4.8 the average time of a “blind”
sequential NN-search and for 200 clusters per
descriptor type, by dividing by 7 the average time,
which are very promising results.

The originality of the proposed approach is that it can
be applied to all kind of image databases with taking
advantage of the combination of several low-level
global features for query-by-example execution
strategies. However, several interesting issues remain
open. Our perspectives in convergence of image
processing and database techniques are twofold: i)
concerning the optimization of image query-by-
example execution strategies over several descriptors
without a priori knowledge on them, we are currently
exploring the techniques of adaptive query processing
and working on a query-by-example cost model for
improving the query time. We will pursue our
experimentations on data mining techniques
introduced in �[13] to improve query performance. In
addition, more formal study should be done to control
approximations introduced by filtering rules we
proposed; i i) concerning the evaluation of quality of
results (and for extending the notion of relative
quality we proposed by comparison to a “blind” NN-
search) without knowledge of user’s search target, we
are planning to extend our analysis and experiments
to more general query scenarios with including
precision, recall and users’ relevance feedback
tracking to have a more interactive system. This
implies that query execution has to be dynamically
adapted using optimal strategies of selecting and
scheduling clusters.

6. REFERENCES
[1] Babu S., Bizarro P., Adaptive Query Processing in the

Looking Glass. Proc. of the 2nd Biennial Conf. on
Innovative Data Systems Research (CIDR), Jan. 2005.

[2] Bentley J. L., Multidimensional binary search in
database applications. IEEE Trans. on Soft. Eng.,4(5),
1979, 333-340.

[3] Berrani S.A., Amsaleg L., Gros P., Approximate k-
Nearest Neighbor Searches: A New Algorithm with
Probabilistic Control of the Precision. Tech. Rep.
INRIA, n° 4675, 2002.

[4] Beyer K., Goldstein J., Ramakrishnan R., Shaft U.,
When Is "Nearest Neighbor" Meaningful? Proc. of the
8th Intl. Conf. ICDT, London, U. K., 1999.

[5] Böhm C., Berchtold S., Keim D., Searching in High-
dimensional Spaces: Index Structures for Improving
the Performance of Multimedia Databases. ACM
Comp. Surveys, (33)3, 2001.

[6] Cornacchia R., Ballegooij A., de Vries A. P., A Case
Study on Array Query Optimization. Proc. of the 1st
ACM Workshop Computer Vision meets Databases
(CVDB), 2004.

[7] Fagin R., Kumar R., Sivakumar D., Efficient similarity
search and classification via rank aggregation, Proc. of
the Conf. ACM SIGMOD, 2003, 301-312.

[8] Jain A. K., Dubes R. C., Algorithms for Clustering
Data. Prentice Hall, New Jersey, 1988.

[9] Gounaris A., Paton N., Fernandes A., Sakellariou R.,
Adaptive query processing. Proc. of the Conf. BNCOD,
LNCS, vol. 2405, 2002, 11-25.

[10] Guttman A., R-trees: A dynamic Index Structure for
Spatial Searching. Proc. of the Conf. ACM SIGMOD,
1984, 47-57.

[11] Kiranyaz S., Gabbouj M., A novel multimedia retrieval
technique: progressive query (why wait?). Proc. of Intl.
Workshop of Image Analysis, Portugal, 2004.

[12] Korn F., Pagel B., Faloutsos C., On the 'Dimensionality
Curse' and the 'Self-Similarity Blessing '. IEEE Trans.
on Knowledge and Data Engineering 13(1), 2001, 96-
111.

[13] Kouomou-Choupo A., Berti-Équille L., Visual Feature
Mining for Adapting Query-by-Example over Large
Image Databases. Proc. of Intl. Workshop on
Multidisciplinary, Video, and Audio retrieval and
Mining, Canada, 2004.

[14] Li C., Chang E., Garcia-Molina H., Wiederhold G.,
Clustering for Approximate Similarity Search in High-
Dimensional Spaces. IEEE Trans. on Knowledge and
Data Engineering, 14(4), 2002, 792-808.

[15] Nievergelt J., Hinterberger H., Sevcik K. C., The
GridFile: An adaptable, symmetric multikey file

structure. ACM Trans. on Database Systems, 9(1),
1984, 38-71.

[16] Obeid M., Jedynak B., Daoudi M., Image indexing and
retrieval using intermediate features. Proc. of the 9th

ACM/ICM, 2001, 531–533.

[17] Rijsbergen C. V., Information Retrieval, Butterworth,
1979.

[18] Schmid C., Mohr R., Local Grayvalue Invariants for
Image Retrieval, IEEE Trans. on Pattern Analysis and
Machine Intelligence, 19(5), 1997, 530-534.

[19] Sigurðardottir R., Hauksson H., Pór-Jónsson B.,
Amsaleg L., A Case Study of the Quality vs. Time
Trade-off for Approximate Image Descriptor Search.
Proc. of the 1st IEEE Intl. Workshop on Managing
Data for Emerging Multimedia Applications (EMMA),
Tokyo, Japan, 2005.

[20] Smeulders A., Worring M., Santini S., Gupta A., and
Jain R. Content-based image retrieval at the end of the
early years. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 22, 12 (Dec. 2000), 1349–1380.

[21] Tao Y. and Grosky W. Object-Based image retrieval
using point feature maps. Proc. of the Intl. Conf. on
Database Semantics (DS-8), 1999, 59-73.

[22] Tuytelaars T., Van Gool L., Content-Based Image
Retrieval Based on Local Affinely Invariant Regions.
Proc. of the 3rd Intl. Conf. on Visual Inf. Syst.
(Visual’99), 1999, 493-500.

[23] Weber R., Böhm K. Trading Quality for Time with
Nearest Neighbor Search. Proc. of the 7th Intl. Conf.
on EDBT, Konstanz, Germany, 2000.

[24] Weber R., Schek H., Blott S., A Quantitative Analysis
of Performance Study for Similarity-Search Methods in
High-Dimensional Spaces. Proc. of the 24th Intl. Conf.
on VLDB, New-York, US, 1998, 194-205.

[25] Yamane Y., Hoshiai T., Tsuda H., Katayama K., Ohta
M., Ishikawa H., Multi-Vector Feature Space Based on
Pseudo-Euclidean Space and Oblique Basis for
Similarity Searches of Images. Proc. of the 1st ACM
Workshop Computer Vision meets Databases (CVDB),
2004.

