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ABSTRACT 
The typical mode for querying in an image content-based 
information system is query-by-example, which allows the 
user to provide an image as a query and to search for 
similar images (i.e., the nearest neighbors) based on one or 
a combination of low-level multidimensional features of the 
query example. Off-line, this requires the time-consuming 
pre-computing of the whole set of visual descriptors over 
the image database. On-line, one major drawback is that 
multidimensional sequential NN-search is usually 
exhaustive over the whole image set face to the user who 
has a very limited patience. In this paper, we propose a 
technique for improving the performance of image query-
by-example execution strategies over multiple visual 
features. This includes first, the pre-clustering of the large 
image database and then, the scheduling of the processing 
of the feature clusters before providing progressively the 
query results (i.e., intermediate results are sent continuously 
before the end of the exhaustive scan over the whole 
database). A cluster eligibility criterion and two filtering 
rules are proposed to select the most relevant clusters to a 
query-by-example. Experiments over more than 110 000 
images and five MPEG-7 global features show that our 
approach significantly reduces the query time in two 
experimental cases: the query time is divided by 4.8 for 100 
clusters per descriptor type and by 7 for 200 clusters per 
descriptor type compared to a “blind”  sequential NN-search 
with keeping the same final query result. This constitutes a 
promising perspective for optimizing image query-by-
example execution. 

1. INTRODUCTION 
The management of large collections of images adds 
the problem of efficiently handling and searching an 
overwhelming volume of digital contents and their 
associated descriptions. Challenges include balancing 
between rich content description and efficient storage 
with fast access methods at various levels (from 
pixels to semantics). Query-by-example exploits and 
combines visual descriptors whose computing costs 
increase proportionally to the database size. The 

exhaustive processing of a very great number of 
images with NN-searches turns to be quickly 
unaffordable to users desiring quick response time. 
Researchers from computer vision community have 
proposed a plethora of image description and retrieval 
methods that represent each image as a set of low-
level features and provide users with a query-by-
example similarity search to explore the database 
contents. However, the convergence between 
computer vision and database communities is not yet 
achieved regarding the two following points: 

1. The main current research work trend deals with 
algorithmic approaches for nearest neighbors 
searches and early stopping approaches that 
focus on multidimensional but mainly mono-
descriptor datasets �[3],�[14],�[23]. 

2. Contrary to traditional databases where many 
works have been carried out on query 
optimization and more recently on adaptive 
query processing �[1],�[9], very few works have 
been proposed on image query-by-example 
optimization.  

Motivated by such observations, we present in this 
paper a case study of how to apply a database 
optimization approach to an image query-by-example 
problem under the multi-descriptor paradigm. More 
recently, Kiranyaz and Gabbouj �[11] defined the 
notion of progressive query-by-example allowing 
intermediate results before the end of the whole 
database processing but the approach was limited to 
the periodic execution of the same sub-query with 
several descriptors on different portions of 
multimedia databases (images and videos) with no 
emphasis on scheduling the data subsets to process by 
NN-searches, or on merging the results from 
heterogeneous descriptors. Our research builds upon 
the implementation of progressive content-based 



image retrieval and upon previous experiments �[13] 
that extended the work of Kiranyaz and Gabbouj. For 
querying very large image databases, our assumption 
is that i) pre-clustering the image descriptions, ii) 
scheduling the NN-searches over the ranked set of 
relevant descriptors, and ii i) presenting continuously 
the intermediate results during the running query 
should be more efficient and should offer more 
flexibility to users. We propose then a system of 
image retrieval that organizes image features into 
clusters and schedules their processing for 
progressive image retrieval. The system combines 
multiple visual global features and uses filtering rules 
to select the most relevant clusters to scan in priority. 

The rest of the paper is organized as follows: Section 
2 presents a synthesis of related work on indexing 
techniques, selection and scheduling clusters for 
image content-based retrieval. Our system is 
described in Section 3. Experiments and results are 
reported in Section 4. We conclude the paper in 
Section 5 and also present our research perspectives. 

2. RELATED WORK 
In computer vision community, many methods have 
been proposed to extract low-level visual images 
features. Some works deal with local descriptor 
extraction and try to build features that are invariant 
to geometric transformations and robust to 
illumination changes �[18],�[22]. Others suggest global 
descriptors that are more simple information to cope 
with and less memory space and time consuming 
�[16],�[21]. However, one of the basic questions to 
address in an image database system is to define 
when two images may be considered similar. 
Similarity of images has been characterized in the 
literature through three important features: colour, 
texture and shape �[20] and systems that combine 
computer vision techniques to measure the similarity 
between images are also proposed �[25]. In this paper, 
we are essentially dealing with query-by-example on 
general real-world images. Global features remain 
best suited in this case and we privilege merging 
results of several descriptors instead of defining new 
distances on a combination of features. We assume 
that each feature is effective separately and that 
merging results is appropriate to answer multi-
descriptor queries. We then focus in this paper on the 
efficiency of our approach. 

The second question to address is indexing high-
dimensional descriptors. Large image databases have 
to be indexed in order to make the retrieval efficient. 
The general principle of indexation schemes is to 
gather in the same cell all feature vectors that are 
collocated in the multidimensional space. Cells can 
then be included within a specific indexing structure 
like trees. Indexation techniques that are either based 
on data partitioning (such as R-Tree �[10]) or on space 
partitioning (such as k-d-Tree �[2] or GridFile �[15]) 
are well adapted to low-dimensional vectors (≤ 16 
dimensions according to �[24]). High dimensional data 
spaces have some specific properties which severely 
affect retrieval methods, making a sequential search 
perform better. These property have been studied and 
reported in �[4],�[24]. New indexation schemes have to 
be defined and adapted to the high-dimensional 
vectors. Cornacchia et al �[6] propose a system based 
on Relational Array Mapping that naturally extends 
existing database functionalities in terms of indexing 
to cope with multidimensional arrays. The strength of 
the system lies on a specific algebra (Relational Array 
Mapping Algebra) to generate optimized query 
execution plans and to improve expressiveness of the 
database system. In our work however, we stay in 
multidimensional space: we organize images into 
clusters and we determine a ranked list of clusters per 
query for efficiently and effectively retrieving the 
most similar images according to all the available 
descriptors in the database. This ranked list of the 
most eligible clusters defines a query execution 
strategy for the given query-by-example. 

Once the questions of similarity of images and 
indexing high-dimensional features have been 
addressed, the objective is to define and to elaborate 
efficient strategies for image retrieval. Retrieval 
methods are closely related to the underlying 
indexation schema. Nearest Neighbors algorithms 
typically use the geometrical properties of cells to 
eliminate those cells which can not have any impact 
on the result of the current query �[5]. Filtering rules 
are sometimes used for searching exact nearest 
neighbors and for eliminating irrelevant cells, 
avoiding the subsequent analysis of all the vectors 
they contain, which, in turn, reduces response time. 
But the “curse of dimensionality”  phenomenon makes 
these filtering rules ineffective on high-dimensional 
datasets �[12],�[24],�[4],�[5]. There is therefore an 
increasing interest in performing approximate NN-



searches, where the quality of result is traded off 
against reduced query execution time. Weber and 
Böhm with VA-File �[23] and Li et al. with Clindex 
�[14] perform approximate NN-searches by 
interrupting the search after having accessed an 
arbitrarily fixed number of cells. These two 
techniques are efficient in terms of response time, but 
give no clue on the quality of the result returned to 
the user. Berrani et al. �[3] control the precision of the 
search by setting at run time the maximum probability 
for a vector that would be in the exact answer set to 
be missing in the approximate set of answers. They 
use approximated cells’  radii which improve the 
effectiveness of filtering rules and speed up the NN-
search. Our work does not currently use approximate 
cells’  radius for mono-descriptor NN-search. Our 
focus is at a higher multi-descriptor level over a pre-
clustered large database. Our approach is nevertheless 
complementary. We defined approximate filtering 
rules over eligible clusters with all descriptors taken 
together and experimentally quantify the introduced 
approximation on the result quality. 

3. PROGRESSIVE CONTENT-BASED 
IMAGE RETRIEVAL 
Image query-by-example may use a combination of 
several types of visual descriptors whose time-
consuming computing costs increase proportionally to 
the database size. At the query-time, the exhaustive 
processing of a very great number of images with 
NN-search turns to be quickly unaffordable to users 
desiring quick response time. In this context, our 
twofold assumption is: i) pre-clustering the image 
features of large databases and scheduling the NN-
search over a ranked set of relevant clusters of 
descriptors should improve the performance of image 
query-by-example and ii) sending continuously the 
intermediate results of the search in progress should 
offer more flexibility to the users. 

3.1 Image Database Pre-Clustering  
Image files are gathered on the hard disk and global 
descriptions of the images are pre-computed for m 
types of descriptors di (di ∈ D, i=1,2,…,m). For each 
descriptors type di, the image descriptions are 
organized into clusters with a k-means-l ike clustering 
method which reuse the k-means principle but replace 
the computed virtual centroid by the nearest existing 
image (which will be called centroid for the sake of 
simplicity). This approximation is introduced to allow 

an appropriate computing of distances between image 
query and clusters’  centroids for a given descriptor 
type. Several clusters characteristics are stored in a 
binary file: their size in term of number of elements 
they contains, their centroid, and their position in the 
binary file. For each descriptor type, an image is 
described by a vector with variable length per 
descriptor type. On the one hand, the choice of the 
number of clusters as input for the k-means algorithm 
�[8] remains a well-known difficult problem. Our first 
experimental approach was to take a number of 
clusters per descriptor type in order to have clusters 
with almost the same size. Our previous experiments 
reported in �[13] show that the equal number of 
clusters per descriptor type does not change the 
results from one descriptor type to another. Section 4 
will give details on this choice. On the other hand, 
k-means is not effective dealing with outliers, but our 
interest is focused on search strategies and outliers’  
management is not in the scope of this paper. 
Moreover, it has been shown that minimizing the 
search time suggests to generate uniformly sized 
clusters �[19]. 

3.2 Image Querying by Example 
Based on the pre-clustering of the image database, 
our image retrieval process includes the following 
steps (Figure 1): (i) the user submits an image query 
to the system and all the features available for image 
description are computed from the image query; (ii) 
clusters characteristics related to the query are 
scanned. For example, distances from the centroid of 
clusters to the image query, maximum and minimum 
distances from the query to clusters are computed at 
this step; (iii) the clusters are ranked based on their 
characteristics; (iv) filtering rules are applied to select 
the most relevant clusters and to speed up the 
retrieval process; (v) clusters scanning is scheduled to 
provide to users the best results as soon as possible: 
progressive query is executed based on the scheduling 
of the clusters scan and intermediate results are 
continuously presented to the user ; the process loops 
from the step (iv) until there does not remain any 
cluster to analyze. 



 
Figure 1. Steps in the progressive retrieval process. 

In a query-by-example scenario with a similarity 
search target (comparable to searching similar images 
on the web), users submit an image as a query to the 
system to get in return the most similar images to the 
image-query according to particular visual criteria. 
Users may know how to choose visual descriptors. 
However, it generally happens that they do not have 
any idea of the most discriminating descriptor to use 
for their query. For such a case, our approach finds 
and assigns priorities on the clusters of image 
descriptions and, consequently, proposes 
continuously a list of ranked clusters for optimizing 
the query-by-example execution. The following 
section formalizes the key notions of our approach 
that are: the cluster eligibility criterion and the 
filtering rules upon which our method is based for 
significantly improving the performance of image 
query-by-example. 

3.3 Selecting and Scheduling Feature Clusters 
Let m be the number of features and n the number of 
clusters for each descriptor type. We choose to 
compute, for each cluster Cij (j=1, 2,..., n) of 
descriptor type di (i=1,2,…,m), the distance from its 
centroid to the submitted image-query, noted Iq. This 
distance is noted for simplification: Dist(Iq,Cij). 
Computing the distance depends on the nature of the 
multidimensional feature. In the case of MPEG-7 
global descriptors, the distance is generally a 
quadratic or a weighted Manhattan distance. We 
define the cost of a given cluster Cij, to be the vector 
dimension of the descriptor type di multiplied by the 
number of vectors that the cluster Cij contains. This 

cost is noted Cost(Cij). We normalize Dist(Iq, Cij) and 
Cost(Cij) for all di (i=1,2,…,m) in order to make them 
independently comparable. NormDist(Iq,Cij) and 
NormCost(Cij) indicate respectively the normalized 
distance and the normalized cost of the cluster Cij. 
These measures are defined by Eq. (1): 
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This formula is limited to the extreme cases of 
behavior of normalized measures studied separately, 
and the equally weighted combination of theses 
measures. The study can be easily extended to the 
general case of a weighted combination. 

We also propose two filtering rules in our retrieval 
process. More formally, for a descriptor type di, let Rij 
be the radius of the cluster Cij. It is equal to the 
distance between the centroid of Cij and its farthest 
point. We define the minimum distance dmin between 
the image query Iq and the cluster Cij by Eq. (3): 
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The first rule (R1) has been adapted from �[3]. It 
consists of discarding all clusters which the minimum 
distance to the image query Iq is greater than a 
computed threshold. It is stated as follows: 
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where Card(Cip) is the number of vectors of the 
cluster Cip (p=1,2,...,n), k the number of nearest 
neighbors to search, and d(Iq, kNN) the distance 
between the image query Iq and the current kth nearest 
neighbour. The rule (R1) simply exploits a shape 
property of clusters, ensuring the correctness of 
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retrieved results, comparing to the sequential search. 
It is however possible to use a rule stronger than the 
rule (R1) which exploits the sensibility of the chosen 
clustering method regarding outliers in order to 
discard from the search, all clusters which the 
minimum distance to an image query is not null. This 
second rule is stated as follows: 

R2: If 0),(min >ijq CId  then Cij is irrelevant (5) 

If the query belongs to the image database, it then 
belongs to one cluster for a given descriptor and 
intuitively, it is very probable the cluster contains 
some neighbors of the query. According to the 
definition of dmin (see Eq. (3)), the rule (R2) then 
indicates the condition under which a cluster may be 
supposed far from the query, and thus irrelevant. 

3.4 Merging of Intermediate Query-by-
example Results 
Our content-based image retrieval system searches for 
the most similar images and gradually uses the 
available descriptors. Intermediate results are 
produced as soon as the NN-search has been done 
over one of the most eligible clusters and they are 
progressively merged together with the intermediate 
results of the previous searching phases. The fusion 
of the result lists obtained from the similarity search 
on various multidimensional descriptors is a complex 
problem. We use the merging function introduced in 
our previous work �[13]. 

Consider at a given searching phase p, the similarity 
search is done over the cluster Ci0 j of the descriptor 

type di0
. We note {d1, d2,..., dm1

} the subset of m1 

descriptors type corresponding to the clusters that 
have already been processed at the end of the 
searching phase p (m1 ≤ m). The Top N list of 
intermediate results on the descriptor type di is noted 
l i, 1 ≤ i ≤ m1. For the searching phase p, the list l i0 is 

updated by taking into account the processing of 
cluster Ci0 j. Then, the list l i0

 is merged with the other 

lists l i (1 ≤ i ≤ m1, i ≠ i0) in order to obtain the final 
Top N list of results. To cope with the problem of Top 
N lists fusion, we define a scoring function for an 
image I such as: 
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( )IS
id  is the score of the image I for the descriptor 

type di. It is proportional to the similarity between the 
query-by-example Iq and I according to the descriptor 
type di. αi (i=1..m1) are weights of descriptors type di. 

This function takes into account the presence of an 
image in the list of results for a given descriptor type 
and the score of the image in that list. Hence, all 
images appearing more often and that having high 
scores in individual lists are relevant. The main 
advantage of the proposed fusion function is its 
granularity that allows merging intermediate result 
lists after each cluster scan whatever the descriptor 
type may be. Nevertheless, our experimental study on 
the efficiency is comparative: we use the same fusion 
function for both approaches, for the “blind”  
sequential search and for our progressive and 
selective execution strategy. No bias is introduced 
regarding to the fusion of results lists. Moreover, 
other methods of result aggregation as OMEDRANK 
�[7] can be adapted and used. 

4. EXPERIMENTS 
To validate our propositions, we set up experiments 
with 110,291 still images and five global MPEG-7 
descriptors of color (named ColorLayout, 
ScalableColor), texture (HomogeneousTexture, 
EdgeHistogram) and shape (RegionShape). In the 
following, descriptor types are abbreviated 
respectively as CLD and SCD for color, HTD and 
EHD for texture, and RSD for shape. CLD descriptor 
type uses L2 distance but others are defined with L1 
distance. The images are gathered into clusters for 
each descriptor type with the k-means-like algorithm 
described in Section 3.1. The images of our database 
are provided by a photo agency. We do not have any 
detail on their source to consider a robust plan of 
sampling. The images are heterogeneous and mostly 
dedicated to press agencies and professional users. 
One hundred of images that do not belong to the 
database have been chosen randomly as queries 
examples for testing and evaluating our method 
implemented in C++ under Linux (Pentium 4, 3 GHz, 
with 1 Gb of main memory). The objective is to 
organize the image set for optimizing the image 



query-by-example execution. For each image query, 
we search for their 15 nearest neighbors. 

Without user’s relevance feedback, it is meaningless 
to evaluate precision and recall and, also the 
subjective quality of the retrieved results with no 
prior knowledge on the application context or on the 
underlying search targets. For this reason, we mainly 
focused, in these experiments, on the problem of 
performance, and we proposed to measure quality 
relatively to the final result list obtained at the end of 
a “blind”  sequential NN-search. This definition of the 
quality is of course relative but gives a good idea of 
the gain on query time of our approach without 
quality loss compared to the classical sequential 
search. The relative quality is computed by counting 
the number of common images in each intermediate 
result list and those in the final result obtained at the 
end of the “blind”  sequential search. 

In the following section 4.1, we test our method by 
first studying parameters α and β of the cluster 
eligibility formula in Eq. (2). Then, in the section 4.2, 
we evaluate the two filtering rules proposed in (4) and 
(5). A short study is made in section 4.3 to show the 
interest of combination of feature for content-based 
image retrieval. 

4.1 Cluster Eligibility 
We performed experiments on the eligibility measure 
for different values of the necessary number of 
clusters given as input to the k-means-like algorithm. 
For the sake of simplicity, we choose to detail the 
case of 100 clusters per descriptor type. Nevertheless, 
we made experiments on 10, 50 and 100 clusters per 
descriptor type that showed that the behavior we will 
describe further is similar over the database whatever 
the number of clusters may be. Figure 2 and Figure 3 
represent respectively the variations of the relative 
quality (compared to a “blind”  sequential NN-search) 
and the corresponding response time according to the 
searching phases. A searching phase corresponds to 
the end of a cluster scan with NN-search. Values in 
parenthesis correspond to different values for the 
parameters α and β in Eq. (2): (1,0) is associated to 
α=1 and β=0; (1,1) corresponds to α=1 and β=1; and 
(0,1) to α=0 and β=1. 

The eligibility based on the distance from the cluster 
centroid to the image-query obviously improves the 
speed of the global search processing: the same result 

than the one obtained in a “blind”  sequential search is 
reached much more quickly (as shown in Figure 2): a 
“blind”  sequential search will be carried out over 500 
clusters (100 clusters × 5 descriptors) before sending 
the final Top N list of results. In our approach, this 
final list of results can be reached after the scan of 
110 clusters (see the grey circles and the intersecting 
dotted lines on the graphs). 
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Figure 2. Relative quality of results depending on the 
eligibility of clusters: 100 clusters per descriptor type. 
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Figure 3. Query by example execution time depending on the 
eligibility of clusters: 100 clusters per descriptor type. 

For the case of 100 clusters per descriptor type, this 
corresponds to a gain of about 77% on the average 
time (i.e., 3.5s instead of 15s) compared to a “blind”  
NN-search as it is shown in Figure 3. 

4.2 Effectiveness of Filtering Rules 
The effectiveness of the filtering rules defined 
previously by (4) and (5) has been compared using 
three values of the number of clusters per descriptor 
type, respectively 10, 100, and 200 clusters per 
descriptor type. We have then plotted variations of 
the relative quality and the corresponding cumulated 
time per searching phase in these three cases (Figure 
4(a-c) and Figure 5(a-c)). Figure 4 confirms that the 
filtering rule (R1) assures the correctness of the 
retrieved results. Our experiments show that the 
approximation introduced by the filtering rule (R2) 
tends to be greater due the reduction of clusters radius 
as the number of clusters per descriptor increases. 
Concerning the effect of using the filtering rules on 
the searching time, our experiments show that the 



searching time decreases as the number of clusters 
per descriptor increases. The filtering rules (R1) and 
(R2) are then more efficient with small clusters 
radius. 
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(a) 10 clusters per descriptor type 
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(b) 100 clusters per descriptor type 
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(c) 200 clusters per descriptor type 

Figure 4. Comparison of the filtering rules on the average 
number of NN found. 

For the case of 10 clusters per descriptor type, 
Figures 4(a) and 5(a) show that: i) using a “blind”  
sequential search, the system retrieves 15 nearest 
neighbors over 15 in 16.8 seconds as average time; ii) 
using the rule (R1), the system retrieves 15 nearest 
neighbors over 15 in 12 seconds, which represents the 
sequential searching time divided by 1.4; iii) using 
the rule (R2), the system retrieves 15 nearest 

neighbors over 15 in 10 seconds, which represents the 
sequential searching time divided by 1.68. 

For the case of 100 clusters per descriptor type, 
Figures 4(b) and 5(b) show that: i) using a “blind”  
sequential search, the system retrieves 15 nearest 
neighbors over 15 in 16.8 seconds as average time; ii) 
using the rule (R1), the system retrieves 15 nearest 
neighbors over 15 in 8 seconds, which represents the 
sequential searching time divided by 2.1; ii i) using 
the rule (R2), the system retrieves 14.5 nearest 
neighbors over 15 in 3.5 seconds, which represents 
the sequential searching time divided by 4.8.  

For the case of 200 clusters per descriptor type, 
Figures  4(c) and 5(c) show that: i) using a “blind”  
sequential search, the system retrieves 15 nearest 
neighbors over 15 in 16.8 seconds as average time; ii) 
using the rule (R1), the system retrieves 15 nearest 
neighbors over 15 in 6.1 seconds, which represents 
the sequential searching time divided by 2.76; iii)  
using the rule (R2), the system retrieves 14 nearest 
neighbors over 15 in 2.4 seconds, which represents 
the sequential searching time divided by seven. 

We then conclude that filtering rule (R2) is more 
efficient than filtering rule (R1) in terms of searching 
time according to Figure 5. Filtering rules (R1) and 
(R2) improve the efficiency of retrieval. While the 
rule (R1) preserves the correctness of results, the 
important gain of time obtained with using the rule 
(R2) is compensated by a light loss of result quality. 
It is interesting to evaluate the impact of the rules on 
the clusters scanning for each descriptor type. 
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(a) 10 clusters per descriptor type 
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(b) 100 clusters per descriptor type 
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(c) 200 clusters per descriptor type 

Figure 5. Comparison of the filtering rules on average time. 

Tables 1 and 2 present the mean of scanned clusters 
at the end of NN-search for each descriptor type. 
Each row corresponds to one of the three cases of the 
given number of clusters per descriptor type 
(respectively 10, 100, and 200 per descriptor type). 
As one could expect, much less clusters are scanned 
using rule (R2) for the same result list. 

We also realize that the rule (R1) is particularly 
inefficient on clusters of EHD and RSD showing in 
this way the sensibility of the rule to the descriptor 
upon which it is applied. 

Table 1. Number of scanned clusters for the filtering rule (R1) 

 
CLD SCD HTD EHD RSD 

10×5 10 10 7 10 10 

100×5 53 62 44 78 94 

200×5 83 103 72 144 190 
Table 2. Number of scanned clusters for the filtering rule (R2) 

 

 
CLD SCD HTD EHD RSD 

10×5 8 9 6 8 10 

100×5 21 26 23 35 78 

200×5 23 32 27 46 141 

 

The number of scanned clusters for the rule (R2) 
gives an idea of clusters overlapping. According to 
Table 2, clusters of descriptors EHD and RSD overlap 
more than others, which explain the inefficiency of 
the rule (R1). The rule (R2) may be used at the 
beginning of the search process providing the user 
with a first result near to the final one and then, the 
rule (R1) can be used to keep on the search. 

4.3 Interest of the Combination of Global 
Features 
This subsection aims at evaluating how the 
combination of descriptors type may be useful in the 
content-based image retrieval context. Images used to 
perform experimentations on the global descriptors 
type combination interest are provided by the 
database MOVI1 which contains 32 sequences. Each 
sequence represents the same scene (2 or 3D) taken in 
different conditions (variation of the intensity of the 
main light source, rotation, occlusion …). MPEG-7 
descriptors of images of the database MOVI are 
computed and added to that of 110,291 images used 
to evaluate the performance of our retrieval system. 
We arbitrarily choose one image in each MOVI’s 
sequence as query and retrieved results for each 
descriptor type are merged using function defined by 
equation (6). We then compute the traditional recall, 
precision and F-measure �[17] of the merged results. 
No standard method exists to choose the appropriate 
number of nearest neighbors to retrieve. As sequences 
are of different lengths (in term of the number of 
images they contain), we have chosen to retrieve for 
each query the number of nearest neighbors equals to 
the length of the sequence the query belongs to. In 
these conditions,   recall, precision, and F-measure 
are all equal. In the following, we will only present 
results based on the F-measure. 

According to table 3, SCD and EHD descriptors type 
have the best recognition rate. Hence, color and 
texture descriptors perform well on our data.  

Table 3. F-measure of the system with one descriptor type 

Descriptor type F-measure 

CLD 0.40 

SCD 0.60 

HTD 0.23 

EHD 0.41 

                                                                 
1Available at:  http://www.irisa.fr/texmex/base_images/index.html 
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RSD 0.30 

To each descriptor type, we affected a weight 
proportional to its F-measure (see Table 3) and we 
computed F-measure of systems obtained by the 
combination of descriptor type. Results are consigned 
in Table 4. This table shows that combining 4 
descriptors type like CLD-SCD-HTD-EHD or 5 
descriptors type like CLD-SCD-HTD-EHD-RSD, one 
obtains a recognition rate of 63 %, which is better 
than using only SCD descriptor (60 % of recognition 
rate). We also remark that using combinations such 
that CLD-SCD or HTD-EHD does not yield better 
results than using SCD or EHD alone. Using HTD-
EHD-RSD is not better than using HTD-EHD. We then 
conclude that in the CLD-SCD-HTD-EHD-RSD 
combination, descriptors SCD and EHD play the most 
interesting role in term of recognition. This 
conclusion confirms observations made with the table 
3.  

Table 4. F-measure of the system with combination of 
descriptors type. 

Combination of descriptor type F-measure 

CLD-SCD 0.60 

HTD-EHD 0.41 

CLD-SCD-RSD 0.60 

HTD-EHD-RSD 0.41 

CLD-SCD-HTD-EHD 0.63 

CLD-SCD-HTD-EHD-RSD 0.63 

 

5. CONCLUSION 
In this paper, we have presented a novel approach for 
improving the query-by-example execution 
performance over a large image database compared to 
a “blind”  sequential NN-search using several low-
level global features. The proposed approach is based 
on the pre-clustering of the database and on the use of 
the cluster eligibility measure and two filtering rules 
we defined to improve image query-by-example 
performances compared to the “blind”  search while 
keeping the same quality of results. 

Experiments over 110,291 images and five global 
MPEG-7 descriptors have shown that our approach 
provides the following interesting insights: (i) the 
progressive query-by-example processing combines 
advantageously several descriptors without any 
knowledge on the descriptor types from users; (ii) 

relevant clusters are automatically selected, ranked 
and scheduled for NN-search using the cluster 
eligibility measure; (iii) the use of filtering rules over 
multi-descriptor clusters improves the query 
processing: for 100 clusters per descriptor type, by 
dividing by 4.8 the average time of a “blind”  
sequential NN-search and for 200 clusters per 
descriptor type, by dividing by 7 the average time, 
which are very promising results. 

The originality of the proposed approach is that it can 
be applied to all kind of image databases with taking 
advantage of the combination of several low-level 
global features for query-by-example execution 
strategies. However, several interesting issues remain 
open. Our perspectives in convergence of image 
processing and database techniques are twofold: i) 
concerning the optimization of image query-by-
example execution strategies over several descriptors 
without a priori knowledge on them, we are currently 
exploring the techniques of adaptive query processing 
and working on a query-by-example cost model for 
improving the query time. We will pursue our 
experimentations on data mining techniques 
introduced in �[13] to improve query performance. In 
addition, more formal study should be done to control 
approximations introduced by filtering rules we 
proposed; i i) concerning the evaluation of quality of 
results (and for extending the notion of relative 
quality we proposed by comparison to a “blind”  NN-
search) without knowledge of user’s search target, we 
are planning to extend our analysis and experiments 
to more general query scenarios with including 
precision, recall and users’  relevance feedback 
tracking to have a more interactive system. This 
implies that query execution has to be dynamically 
adapted using optimal strategies of selecting and 
scheduling clusters. 
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