
HAL Id: hal-01856027
https://inria.hal.science/hal-01856027

Submitted on 9 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lessons Learned from Ontology Design
Jean-André Benvenuti, Laure Berti-Equille, Eric Jacopin

To cite this version:
Jean-André Benvenuti, Laure Berti-Equille, Eric Jacopin. Lessons Learned from Ontology Design.
9th International Protégé Conference, Jul 2006, Stanford, CA, United States. pp.1-4. �hal-01856027�

https://inria.hal.science/hal-01856027
https://hal.archives-ouvertes.fr


Lessons Learned From Ontology Design

(Extended Abstract — Submitted to Protégé 2006)

Jean-André Benvenuti1 Laure Berti–Équille2

Éric Jacopin1

1Macclia, Écoles de Saint-Cyr Cotquidan, France

{jean.benvenuti,eric.jacopin}@st-cyr.terre.defense.gouv.fr

2IRISA, Université de Rennes 2, France

berti@irisa.fr

Introduction Since 2001, we are involved in the development of a system named SABRE [1, 2, 3, 4] for
supporting the training of military students in the French Army; we expressed the knowledge of the environment
and concepts of military work as ontologies using Protégé. We consider that the ontology contains explicit
descriptions of the concepts (represented by words: e.g. ”to serve one’s homeland”) used in our military
domain. The knowledge is also at stake in the military training and then must be understandable by the
students. Finally, not only our ontology must produce usable data structures, but it also must be accepted by
the French Army instructors. The SABRE system must consequently possess the necessary data structures so
that this knowledge can be edited, filed, recalled, checked with that of the students’, stored for future reference,
and be used for a training session. However, building ontologies and designing the data structures for such
a knowledge-based system are not easy tasks; we recently found that some set-theory-based characteristics
extracted from the ”under work” ontology could considerably help the ontology builder. This paper describes
our experience on building the ontology of the French Military training using Protégé and how this step-by-step
process could be supported and guided on-the-fly by systematically checking the theoretical properties of the
instance sets of the ontology.

During the design of an ontology for military training [1, 2], we partially solved the ambiguity (getting
different interpretations for identical values of different slots), completeness (adding interpretations for all val-
ues) and minimality (avoiding intractability) problems with extra design and rules [4]. We here present several
(polynomial-time) functions which can automatically detect where to add relevant interpretation rules or com-
plete our ontology (adding classes and slots) for assisting the ontology design.

Illustrative Example This paragraph illustrates the problem we encoutered in the case of ontology design
in the domain of military training with the help of a geometrical problem (for the sake of simplicity). Then we
present a set of routines which aims at pointing to the classes, slots and instances which are either incomplete
or need rules for further interpretation.

On the left of the following figure is an UML class diagram (a) where Polygon and Point are two classes; at
least 3 ordered Points can be the vertices of 1 Polygon (adapted from [8, page 68]). (b) is correct with respect to
the UML class diagram (a); Triangle1 and Square are instances of Polygon and Triangle2 is an instance of
Polygon whose vertices are made from vertices of Triangle1 and Square. Triangle1 has vertices {P1,P2,P3},
Square has vertices {P4,P5,P6,P7} and Triangle2 has vertices {P1,P5,P7}:

1



(a)

vertices
{ordered}

Point

Polygon

1

3..*

(b)

Triangle1

Triangle2 Square

May {P1,P5,P7}, instances of Point and vertices of Triangle2, be also vertices Triangle1 and Square? The
correctness of drawing (b) with respect to the UML class diagram (a) entails a positive answer to this question1.

Now consider the following set of coordinates of instances of Point that can be attached to figure (b):
{(0, 0), (0, 2), (2, 2), (0, 3), (0, 5)}; which of these coordinates are that of the points of Triangle2? It should be
obvious that the answer to this question is impossible, providing that many informations are missing (which
may not be available), such as the orientation of the axes and the position of their origin.

As illustrated by this geometrical discussion, disambiguization and completeness are the problems we encoun-
tered when editing the knowledge of the French Military Training and designing our ontology with Protégé [1].
Our objective is to activate this knowledge so as to educate military staff to the recently designed French sol-
dier’s code [5, 6, 7]; the proposed pedagogical method [5] is to confront the learner to a concrete case, describing
a real-life military situation where the learner is demanded to act as an actor of the concrete case and play
his rôle throughout. In the context of the French Military Training ontology designed from several referential
documents [6, 7], the word “discipline” may have different interpretations depending on the articles studied in
the current pedagogical training session: for example, in the context of the 10th article of the French Soldier’s
Code, “discipline” should be interpreted as close as possible as “reserve”(i.e., “secrecy”). But in the 2nd article,
“discipline” should be interpreted as close as possible as “courage”. The previous question now stands as follows:
which of the learner’s behaviours activate the articles and themes of the current pedagogical session? To answer
this question, we first designed a set of rules to interpret the behaviours along the pedagogical session [2, 3, 4].
However, as we came to discover that some part of our military ontology did not need rules, we came to design
a set of functions to automatically detect our need for disambiguization rules (or for enriching our ontology).
The next paragraph formally describes these functions.

Towards automatic detection of ambiguities in ontologies? We begin by an analogy with linear algebra,
where eigenvalues are the coordinates of the eigenvectors defining the main axes of a vector space (all vectors
of a vector space can be written as a combination of these eigenvectors). We thus use the word eigen together
with: (i) values of a slot of a class, (ii) a slot of a class, (iii) all instances of a class and finally (iv) a class, to
denote that the values of the slot of an instance of a class can uniquely determine this instance.

let V be a set;
let c be a class with a slot s taking as value a subset of V ;
let I(c) be the set of instances of class c;
let V(s, i) be the set of values of the slot s of the instance i of class c;

1Note that object-oriented design answers “no” [8, page 68]: “The general rule is that, although a class may be a component of
many other classes, any instance must be a component of only one owner. [. . . ] The “no sharing” rule is the key to composition.
Another assumption is that if you delete [a] polygon, it should automatically ensure that any owned Points also are deleted.”

2



function GetEigenValues(s, i):
let V ← V(s, i);
for all j ∈ I(GetClass(i)) with j 6= i do

V ← V \V(s, j)
end for all;
return V;

function EigenSlotQ(s, i):
return (GetEigenValues(s, i)6= ∅);

let S(c) be the set of slots of class c;

function EigenInstanceQ(i):
for all s ∈ S(GetClass(i)) do

when EigenSlotQ(s,i) throw true

end for all;
return false;

function EigenClassQ(c):
return (

∧
i∈I(c)EigenInstanceQ(i));

When EigenSlotQ(s,i) returns true, its EigenValues uniquely determine the instance i; which means, in our
case of ontology for military training, that at least one behaviour the learner is asked to play correspond to only
one article of the soldier’s code or else only one pedagogical theme, thus avoiding the need for interpretation of
the behaviour in the context of the article or the theme of the pedagogical session.

When EigenInstanceQ(i) returns true, it has at least one EigenSlot, which, in our case of ontology for
military training, means that an article has at least one behaviour as unique representative.

Finally, EigenClassQ(c) returns true when all its instances have at least one unique representative.
Here is what these functions return in the case of (b):

GetEigenValues(vertices, Triangle1) {P2,P3}
GetEigenValues(vertices, Triangle2) ∅
GetEigenValues(vertices, Square) {P4,P7}
EigenSlotQ(vertices, Triangle1) true
EigenSlotQ(vertices, Triangle2) false
EigenSlotQ(vertices, Square) true
EigenInstanceQ(Triangle1) true
EigenInstanceQ(Triangle2) false
EigenInstanceQ(Square) true
EigenClassQ(Polygon) false

As vertices is not an EigenSlot of Triangle2, Polygon is not an EigenClass. We either need to add rules to
interpret the coordinates correctly, or add at least one slot to Polygon (e.g. barycenter) to distinguish between
polygons, or further add classes.

Conclusion The set of functions presented in this paper greatly helped to automatically detect the need
to design rules to interpret ambiguous values in our ontology (in the setting of the use of this ontology in a
pedagogical session) and ultimately to complete design. These functions run in polynomial time in the number
of values of the same slot across all the instances of the same class.

In the final paper, we will describe in details the lessons learned from the design of the French Military
Training ontology design and, using the previous functions, formalize the concept of minimality for an ontology
that we have been unable to present here due to space limitations.

3



References

[1] Jean-André Benvenuti, Laure Berti–quille & Éric Jacopin, Ontological Parsing of XML Documents:
A Use Case in the Domain of Training Military Staff, in: Proceedings of the 21st International Conference
on Distance Education (ICDE’04), Hong-Kong (February 2004), 10 pages.

[2] Jean-André Benvenuti, Laure Berti–quille & Éric Jacopin, From Ontology to Inference, in: Poster
Proceedings of Ingénierie des Connaissances (IC’04), Lyon (May 2004) (in french), 2 pages.

[3] Jean-André Benvenuti, Laure Berti–quille & Éric Jacopin, The Sabre Project: an Intelligent Tu-
toring System for Military Behaviours, Poster at the CNRS Summer School, Autrans (Juillet 2004) (in
french), 2 pages.

[4] Jean-André Benvenuti, Laure Berti–quille & Éric Jacopin, When Protégé and Rules become Parsing
for Learning, Workshop on Protégé with Rules, Madrid (July 2005), 3 pages.

[5] Commandement de la Formation de l’Armée de Terre, Guide pour l’enseignement des principes de l’Exercice
du Métier des Armes et du Code du Soldat, Saint-Maixent l’cole (2002), 92 pages.

[6] État-Major de l’Armée de Terre, l’Exercice du Métier des Armes dans l’Armée de Terre : Fondements et
Principes, SIRPA Terre (1999), 41 pages.

[7] État-Major de l’Armée de Terre, Code du Soldat et Guide du Comportement, Directive no 004496/DEF/-
EMAT/CAB du 28 juin 1999, 21 pages.

[8] Martin Fowler, UML Distilled: A Brief Guide to the Standard Object Modeling Language, Addison-Wesley
(3rd Edition, 2004), 175 pages.

4


