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Abstract: Risk measures of a �nancial position are traditionally based on quantiles. Re-

placing quantiles with their least squares analogues, called expectiles, has recently received

increasing attention. The novel expectile-based risk measures satisfy all coherence require-

ments. We revisit their extreme value estimation for heavy-tailed distributions. First, we

estimate the underlying tail index via weighted combinations of top order statistics and

asymmetric least squares estimates. The resulting expectHill estimators are then used as

the basis for estimating tail expectiles and Expected Shortfall. The asymptotic theory of

the proposed estimators is provided, along with numerical simulations and applications to

actuarial and �nancial data.
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1 Introduction

The risk of a �nancial position Y is usually summarized by a risk measure. Value at Risk

(VaR) is arguably the most common risk measure used in practice. The VaR at probability

level � P p0; 1q is given by the � -quantile q� :� F Ð
Y p� q � inf t y P R : F pyq ¥ � u; where

F is the distribution function of Y. Koenker and Bassett [22] elaborated an absolute error

loss minimization framework extending this de�nition of quantiles as left continuous inverse

functions to the minimizers

q� Parg min
� PR

E t � � pY � � q � � � pYqu;

with equality if F is increasing, where� � pyq � | � � 1Ipy ¤ 0q| |y| and 1Ip�qis the indicator

function. There are di�erent sign conventions for VaR which co-exist in the literature. In

this paper, the position Y is a real-valued random variable whose values are the negative

of �nancial returns. The right-tail of the distribution of Y, for levels � close to one, then

corresponds to the negative of extreme losses. In actuarial science whereY is typically a

non-negative loss variable, the sign convention we have chosen implies that extreme losses

also correspond to levels� close to one. The positionY is therefore considered riskier as its

risk measure gets higher.

One of the major criticisms on VaRq� is its failure to ful�ll the subadditivity property in

general (Acerbi [1]), and hence it is not a coherent risk measure according to the axiomatic

foundations in Artzner et al. [2]. Furthermore, it fails to account for the size of losses beyond

the level � , since quantiles only depend on the frequency of tail losses and not on their

values (Dan��elssonet al. [8]). In both of these aspects, expectiles are a perfectly reasonable
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alternative to quantiles as they depend on both the tail realizations and their probability

(Kuan et al. [24]) and de�ne a coherent risk measure (Belliniet al. [4]). This is mainly due

to their conception as a least squares analogue of quantiles. More precisely, by substituting

the absolute deviations in the asymmetric loss function� � with squared deviations, Newey

and Powell [25] obtain the� th expectile of the distribution of Y as the minimizer

� � :� arg min
� PR

E t � � pY � � q � � � pYqu; (1)

with � � pyq � | � � 1Ipy ¤ 0q|y2. The additional term � � pYq ensures the existence of a unique

solution � � for distributions with �nite absolute �rst moment. Expectiles are determined by

tail expectations rather than tail probabilities, which allows for more prudent and reactive

risk management. Altering the shape of extreme losses may not change the quantile-VaR,

but it does impact all the expectiles (Taylor [31]). Another advantage of expectiles is that

they make more e�cient use of the available data since they rely on the distance to all ob-

servations and not only on the frequency of tail losses (Sobotka and Kneib [30]). Moreover,

using expectiles has the appeal of avoiding recourse to regularity conditions on the underlying

distribution (see e.g. Holzmann and Klar [21], Kr•atschmer and Z•ahle [23]). Perhaps most

importantly, expectiles induce the only coherent law-invariant risk measure that is elicitable

(Ziegel [33]). The property of elicitability corresponds to the existence of a natural backtest-

ing methodology. Also, expectiles are the only M-quantiles (Breckling and Chambers [6])

that are coherent risk measures (Belliniet al. [4]). Further theoretical and numerical merits

in favor of the adoption of expectiles in risk management can be found in Ehmet al. [14]

and Bellini and Di Bernardino [5].

In this article we �rst investigate the problem of estimating tail expectiles from the
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perspective of extreme value theory. This translates into considering bothintermediate and

extremeasymmetry levels, respectively,� � � n Ñ 1 such thatnp1� � nq Ñ 8 and � � � 1
n Ñ 1

such that np1 � � 1
nq Ñ c   8 , as n Ñ 8 . We focus on the Fr�echet maximum domain of

attraction of heavy-tailed distributions that perfectly describe the tail structure of most

actuarial and �nancial data (see,e.g., Embrechtset al. [18] and Resnick [26]). This problem

is, in comparison to extreme quantile estimation, still in full development. The absence of a

closed form expression for expectiles makes the extreme value analysis of their asymmetric

least squares estimators a much harder mathematical problem than for order statistics. Yet,

we have initiated a satisfactory solution to this problem in an earlier paper [10] by proposing

intermediate and extreme expectile estimators and developing their asymptotic theory. Very

recently, we have come up in [11] with powerful approximations of the tail empirical expectile

process. First, Theorem 1 in Daouiaet al. [11] derives an explicit joint asymptotic Gaussian

representation of the tail expectile and quantile processes. Second, Theorem 2 in [11] unravels

the discrepancy between the tail empirical expectile process and its population counterpart.

As these two theorems constitute the basic theoretical tools for our asymptotic analysis in

the present paper, they are brie
y described below in Theorem 1 along with the statistical

model in Section 2.

Built on these recent advances, Section 3 shows that the tail index of the underlying

Pareto-type distribution can be estimated in a novel and more general manner. This index

tunes the tail heaviness ofF and its knowledge is of utmost interest since it makes the

estimation of extreme quantiles and expectiles possible by means of appropriate extrapolation

techniques. We �rst construct asymmetric least squares estimators of the tail index and

derive their asymptotic normality in Theorem 2. We then construct a more general class
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of weighted estimators by computing a linear combination of these pure expectile-based

estimators and of the popular Hill estimator (Hill [20]). This inspired the nameexpectHill

estimators for this class. Thanks to the joint weighted Gaussian approximations of the

tail expectile and quantile processes in Theorem 1, we get the asymptotic normality of the

expectHillestimators and derive their joint convergence with both intermediate quantile and

expectile estimators in Theorem 3.

Built on the expectHill estimators themselves, we propose in Section 4 general weighted

estimators for intermediate expectiles� � n whose asymptotic normality, obtained in Theo-

rem 4, follows as a corollary of Theorem 3. Based on the ideas of Daouiaet al. [10, 11], the

weighted intermediate expectile estimators are then extrapolated to the very extreme expec-

tile level � 1
n that may approach one at an arbitrarily fast rate. The asymptotic properties of

the extrapolated � � 1
n

estimators are established in Theorem 5.

An important alternative to the VaR q� and its coherent least squares analogue� � is

Expected Shortfall (ES). It is favored by practitioners who are more concerned with the risk

exposure to a catastrophic event that may wipe out an investment in terms of the size of

potential losses. The conventional quantile-based ES at level� equals

QES� :�
1

1 � �

» 1

�
qt dt:

It is coherent (Acerbi [1]) and identical, when the �nancial positionY is continuous, to

the so-called Conditional Value at RiskErY|Y ¡ q� s (Rockafellar and Uryasev [28, 29]).

Similarly to this intuitive tail conditional expectation, Taylor [31] has introduced and used

the expectile-based formErY|Y ¡ � � s as the basis for estimating the standard quantile-

based measureErY|Y ¡ q� s. Given that both conditional expectationsErY|Y ¡ q� s and
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ErY|Y ¡ � � s are not coherent risk measures in general, Daouiaet al. [11] have suggested to

estimate the coherent ES form QES� on the basis of its expectile-based analogue

XES� :�
1

1 � �

» 1

�
� t dt;

obtained by substituting the expectile� t in place of the quantileqt in QES� . This de�nition

is more convenient thanErY|Y ¡ � � s as it induces a proper coherent risk measure (see

Proposition 2 in [11]), while keeping the intuitive meaning of the conditional expectation,

when � Ñ 1, since XES� � ErY|Y ¡ � � s (see Proposition 3 in [11]). In addition to this

asymptotic equivalence, the tail values XES� and ErY|Y ¡ � � s share exactly the same

estimators, for both intermediate and extreme expectile levels� � � n and � � � 1
n .

The proposed estimation procedures in Daouiaet al. [11] for both extreme values XES� 1
n

and QES� 1
n

are mainly based on the classical Hill estimator of the tail index. In Section 5,

we extend their extrapolation devices by using the generalized weightedexpectHillestimator;

see Theorems 6-7. In particular, when the ultimate interest is in estimating the traditional

form QES� 1
n

in the case of real-valued pro�t-loss distributions, our composite asymmetric

least squares estimators perform better than the rival estimators of Daouiaet al. [11] and

El Methni et al. [15]. Section 6 contains our experiments with simulated data and Section 7

presents applications to medical insurance data and �nancial returns data. The proofs and

auxiliary results are deferred to the Supplementary Material document.
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2 Statistical model and basic tools

In this paper we consider the class of heavy-tailed distributions, referred to as the Fr�echet

maximum domain of attraction, with tail index 0   
   1. The survival function of these

Pareto-type distributions has the form

F pyq:� 1 � F pyq � y� 1{ 
 `pyq; (2)

for y ¡ 0 large enough, wherè is a slowly varying function at in�nity, i.e., a positive

function on p0; 8q satisfying `ptyq{̀ ptq Ñ 1, ast Ñ 8 , for any y ¡ 0. The index
 tunes the

tail heaviness ofF : the larger the index, the heavier the right tail. LetY be the actuarial

or �nancial position of interest having survival function F , and let Y� � minpY;0q denote

the negative part of Y. Then, together with condition E|Y� |   8 , the assumption
   1

ensures the existence of the �rst moment ofY, and hence the existence of expectiles. By

Corollary 1.2.10 in de Haan and Ferreira [12], the model assumption (2) is equivalent to

lim
tÑ8

Uptxq
Uptq

� x 
 for all x ¡ 0; (3)

whereUptq :� q1� t � 1 � inf t y P R : 1{F pyq ¥ tu stands for the tail quantile function of Y.

Under (2) or equivalently (3), it has been found that

� �

q�
� p 
 � 1 � 1q� 
 as � Ñ 1 (4)

(Bellini and Di Bernardino [5]). A re�ned asymptotic expansion of � � {q� with a precise

quanti�cation of the bias term is obtained in Proposition 1(i) of Daouiaet al. [11] under the

7



following second-order regular variation condition:

C2p
; �; A q For all x ¡ 0,

lim
tÑ8

1
Aptq

�
Uptxq
Uptq

� x 


�
� x 
 x � � 1

�

where� ¤ 0 is a constant parameter andA is an auxiliary function converging to 0 at in�nity

and having ultimately constant sign. Hereafter,px � � 1q{� is to be understood as logx when

� � 0.

Assumption C2p
; �; A q is a standard condition in extreme value theory, which controls

the rate of convergence in (3). The monographs of Beirlantet al. [3] and de Haan and

Ferreira [12] give abundant examples of commonly used continuous distributions satisfying

C2p
; �; A q, along with thorough discussions on the interpretation and the rationale behind

this second-order condition.

Suppose we observe independent copiest Y1; : : : ; Ynuof the random variableY and denote

by Y1;n ¤ Y2;n ¤ � � � ¤ Yn;n their nth order statistics. Let the expectile level� � � n approach

one at anintermediate rate in the sense thatnp1� � nq Ñ 8 asn Ñ 8 . A natural estimator

of the corresponding intermediate expectile� � n is given by its empirical version

r� � n � arg min
uPR

n¸

i � 1

� � n pYi � uq: (5)

Under conditionC2p
; �; A q, Daouiaet al. [11] prove in their Theorem 1 that the tail empirical

expectile process

p0; 1s Ñ R; s ÞÑr� 1�p 1� � n qs
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can be approximated by a sequence of Gaussian processes with drift and derive its joint

asymptotic behavior with the tail empirical quantile process

p0; 1s Ñ R; s ÞÑpq1�p 1� � n qs :� Yn� tnp1� � n qsu;n ;

wheret�ustands for the 
oor function. They also analyze in their Theorem 2 the di�erence

between the tail empirical expectile process and its population counterpart. For our purposes

below, we recall these two approximations in the following result.

Theorem 1 (Daouia et al., 2018b). Suppose thatE|Y� |2   8 . Assume further that con-

dition C2p
; �; A q holds, with 0   
   1{2. Let � n Ñ 1 be such thatnp1 � � nq Ñ 8 and
a

np1 � � nqApp1 � � nq� 1q � Op1q. Then there exists a sequenceWn of standard Brownian

motions such that, for any" ¡ 0 su�ciently small,

pq1�p 1� � n qs

q� n

� s� 


�

1 �
1

a
np1 � � nq



a


 � 1 � 1s� 1Wn

�
s


 � 1 � 1




�
s� � � 1

�
App1 � � nq� 1q � oP

�
s� 1{2� "

a
np1 � � nq

��

and
r� 1�p 1� � n qs

� � n

� s� 


�
1 � p s
 � 1q


 p
 � 1 � 1q


q� n

pEpYq � oPp1qq

�
1

a
np1 � � nq


 2
a


 � 1 � 1s
 � 1
» s

0
Wnptqt � 
 � 1 dt

�
p1 � 
 qp
 � 1 � 1q� �

1 � 
 � �
�

s� � � 1
�

App1 � � nq� 1q

� oP

�
s� 1{2� "

a
np1 � � nq

��

uniformly in s P p0; 1s.
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If in addition �   0, then

r� 1�p 1� � n qs

� 1�p 1� � n qs
� 1 �

1
a

np1 � � nq

 2

a

 � 1 � 1s
 � 1

» s

0
Wnptqt � 
 � 1 dt

� oP

�
s� 1{2� "

a
np1 � � nq

�

uniformly in s P p0; 1s.

The assumptions that 
 P p0; 1{2q and E|Y� |2   8 essentially guarantee that the loss

variable has a �nite variance. This is the case in most studies on actuarial and �nancial data

where the realized values of
 have been found to lie well below 1{2; see,e.g., the R package

CASdatasets, Daouia et al. [10] and the references therein.

The extra condition �   0, in the second part of Theorem 1, is required in most ex-

trapolation results formulated in the extreme value literature under conditionC2p
; �; A q;

see,e.g., Chapter 4 of de Haan and Ferreira [12] regarding extreme quantile estimation and

Daouia et al. [10] for extreme expectile estimation. Note also that, in contrast to the �rst

part of Theorem 1, the second part avoids the error terms that are proportional to 1{q� n and

App1 � � nq� 1q.

This theorem, already proved in Daouiaet al. [11], constitutes the main intermediate

theoretical tool for our ultimate interest in constructing general weighted estimators of the

tail index and extreme expectiles, as well as of Expected Shortfall risk measures.

3 Estimation of the tail index

In this section, we �rst construct purely expectile-based estimators of the tail index
 and

derive their asymptotic distributions. We shall then construct a more general class of esti-
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mators by combining both intermediate empirical expectiles and quantiles. The basic idea

stems from Theorem 1 which suggests the following approximation:

» 1

0
log

�
r� 1�p 1� � n qs

� � n

�

ds �
» 1

0
logps� 
 qds � 


where� n Ñ 1 is such thatnp1 � � nq Ñ 8 . One can then estimate
 by

q
 � n :�
» 1

0
log

�
r� 1�p 1� � n qs

r� � n

�

ds:

A computationally more viable option is to use a discretized version of the integral estimator

q
 � n on a regularl � grid of points in r0; 1s, namely:

r
 � n ;l :�
1
l

l¸

i � 1

log

�
r� 1�p 1� � n qpi � 1q{l

r� � n

�

wherel � lpnq Ñ 8 . A particularly interesting example is

r
 � n :�
1

tnp1 � � nqu

tnp1� � n qu¸

i � 1

log

�
r� 1�p i � 1q{n

r� 1� tnp1� � n qu{n

�

(6)

or, equivalently, r
 � n � r
 1� tnp1� � n qu{n; tnp1� � n qu. This simple estimator has exactly the same

form as the popular Hill estimator (Hill [20])

p
 � n �
1

tnp1 � � nqu

tnp1� � n qu¸

i � 1

log
�

pq1�p i � 1q{n

pq1� tnp1� � n qu{n



(7)

with the tail empirical quantile processpq in (7) replaced by its asymmetric least squares

analoguer� . Beirlant et al. [3] and de Haan and Ferreira [12] provide an extensive overview
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of the asymptotic theory for the Hill estimator p
 � n . The next theorem gives the asymptotic

normality of the three new estimatorsq
 � n , r
 � n ;l and r
 � n . Its proof essentially consists in

writing

log

�
r� 1�p 1� � n qs

r� � n

�

� log

�
r� 1�p 1� � n qs

� � n

�

� log

�
r� � n

� � n

�

before integrating and crucially using Theorem 1 twice in order to control both of the loga-

rithms on the right-hand side.

Theorem 2. Suppose thatE|Y� |2   8 . Assume further that conditionC2p
; �; A q holds,

with 0   
   1{2. Let � n Ñ 1 be such thatnp1 � � nq Ñ 8 , and suppose that the bias

conditions
a

np1 � � nqApp1 � � nq� 1q Ñ � 1 P R and
a

np1 � � nq{q� n Ñ � 2 P R are satis�ed.

Then:

(i)
a

np1 � � nqpq
 � n � 
 q

dÝÑ N
�

p1 � 
 qp
 � 1 � 1q� �

p1 � � qp1 � 
 � � q
� 1 � EpYq


 2p
 � 1 � 1q



 � 1
� 2;

2
 3

1 � 2




:

(ii) If l � lpnq ful�lls
a

np1 � � nqlogpnp1 � � nqq{l Ñ 0, then (i) holds with q
 � n replaced by

r
 � n ;l . Especially, (i) holds withq
 � n replaced byr
 � n .

Before using the estimatorr
 � n to construct a more general class of tail index estimators,

we formulate a couple of remarks about its theoretical and practical behavior.

Remark 1. The conditions involving the auxiliary function A in Theorem 2 are also re-

quired to derive the asymptotic normality of the conventional Hill estimatorp
 � n in (7), with

asymptotic bias � 1{p1 � � q and asymptotic variance
 2 [see Theorem 3.2.5 in de Haan and

Ferreira ([12], p.74)]. Theorem 2 also features a further bias condition involving the quantile
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function q; this was to be expected in view of Theorem 1, of which a consequence is that

the remainder term in the approximation � 1�p 1� � n qs{ � � n � s� 
 depends on bothA and q.

Yet, it is straightforward to eliminate this bias component: note that the centered variable

Z � Y � EpYq is also heavy-tailed, with the same extreme value parameters asY, and thus

the estimator q
 Z
� n

constructed on theZ i � Yi � EpYq satis�es

a
np1 � � nqpq
 Z

� n
� 
 q dÝÑ N

�
p1 � 
 qp
 � 1 � 1q� �

p1 � � qp1 � 
 � � q
� 1;

2
 3

1 � 2




:

This suggests to de�nepZ i � Yi � Y n , where Y n is the sample mean, and then to consider

the estimator q
 pZ
� n

. Due to the translation equivariance of expectiles, the gap betweenq
 pZ
� n

and q
 Z
� n

has the same order as|Y n � EpYq| � OPp1{
?

nq. It follows that q
 pZ
� n

has the same

asymptotic distribution as q
 Z
� n

, and is therefore a bias-reduced version ofq
 � n which eliminates

the quantile component of the bias.

Remark 2. The selection of� n is a di�cult problem in general, since any sort of opti-

mal choice will involve the unknown parameter� as well as the functionA; for a discussion

about the optimal choice of� n in the Hill estimator based on mean-squared error, see Hall and

Welsh [19]. A usual practice for selecting a reasonable estimatep
 � n is, in the reparametriza-

tion � n � 1 � k{n, to plot the graph of k ÞÑp
 1� k{n for k P t1; 2; : : : ; n � 1u, and then to

pick out a value of k corresponding to the �rst stable part of the plot [see,e.g., de Haan

and Ferreira ([12], Section 3)]. There have been a number of attempts at formalizing this

procedure, including Resnick and St�aric�a [27], Dreeset al. [13], and more recently El Methni

and Stup
er [16, 17]. The Hill plot may be, however, so unstable that reasonable values

of k (which would correspond to estimates close to the true value of
 ) may be hidden in
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the graph. The least squares analoguer
 1� k{n in (6) is, in contrast to p
 1� k{n , based on ex-

pectiles that enjoy superior regularity properties compared to quantiles (see Proposition 1

in Holzmann and Klar [21]). One may thus expect thatr
 1� k{n a�ords smoother and more

stable plots compared to those of the Hill estimatorp
 1� k{n . This advantage is illustrated

in Section A of the Supplementary Material document, where we examine the behavior of

p
 and r
 on two concrete actuarial and �nancial data sets. It can be seen thereon that the

plots of k ÞÑr
 1� k{n are indeed far smoother than the arguably wiggly plots ofk ÞÑp
 1� k{n .

It could, however, happen thatr
 has a higher bias than the Hill estimator. This is for

instance the case if|� | is large, since a large|� | means that the underlying distribution is, in

its right tail, very close to a multiple of the Pareto distribution for which the Hill estimator

is unbiased. An e�cient way to take advantage of the desirable properties of bothr
 and p


in a large class of models is by using their linear combination for estimating
 . For � P R,

we then de�ne the more general estimator


 � n
p� q:� � p
 � n � p 1 � � qr
 � n : (8)

We shall call this linear combination theexpectHill estimator. For example, the simple mean


 � n
p1{2qwould represent an equal balance between the use of large asymmetric least squares

statistics in (6) and top order statistics in (7). The convergence of theexpectHill estimator

is, however, a highly non-trivial problem as it hinges, by construction, on both the tail

expectile and quantile processes. The explicit joint asymptotic Gaussian representation of

these two processes, obtained in Theorem 1, is a pivotal tool for our analysis, and enables us

to address the convergence problem in its full generality. We establish below the asymptotic
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normality of the expectHill estimator, along with its joint convergence with intermediate

sample quantiles and expectiles.

Theorem 3. Suppose that the conditions of Theorem 2 hold. Then, for any� PR,

a
np1 � � nq

�


 � n
p� q � 
;

pq� n

q� n

� 1;
r� � n

� � n

� 1

�
dÝÑ N pm� ; V � q

wherem� is the 1 � 3 vector m� :� p b� ; 0; 0q, with

b� �
� 1

1 � �

�
� � p 1 � � q

p1 � 
 qp
 � 1 � 1q� �

1 � 
 � �



� p 1 � � qEpYq


 2p
 � 1 � 1q



 � 1
� 2; (9)

and V � is the 3 � 3 symmetric matrix with entries

V � p1; 1q � 
 2

�
� 2

�
3 � 4

1 � 2


� 2
p
 � 1 � 1q


1 � 


�
� 2�

�
1

1 � 2

�

p
 � 1 � 1q


1 � 


�
�

2

1 � 2




;

V � p1; 2q � p 1 � � q
 rp
 � 1 � 1q
 � 1 � 
 logp
 � 1 � 1qs;

V � p1; 3q �

 3

p1 � 
 q2

�
� p
 � 1 � 1q
 � p 1 � � q

1 � 

1 � 2


�
;

V � p2; 2q � 
 2; V � p2; 3q � 
 2

�
p
 � 1 � 1q


1 � 

� 1



; V � p3; 3q �

2
 3

1 � 2

:

As an immediate consequence, we have for any� PR,

a
np1 � � nq

�

 � n

p� q � 

� dÝÑ N pb� ; v� q where v� � V � p1; 1q: (10)

This remains valid if r
 � n is replaced in (8) by the continuous versionq
 � n , or any other

discretized versionr
 � n ;l provided
a

np1 � � nqlogpnp1 � � nqq{l Ñ 0.
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Remark 3. The optimal value of the weighting coe�cient � in (8), which minimizes the

asymptotic variance v� of 
 � n
p� q, only depends on the tail index
 and has the explicit

expression

� p
 q �
p1 � 
 q � p 1 � 2
 qp
 � 1 � 1q


p1 � 
 qp3 � 4
 q � 2p1 � 2
 qp
 � 1 � 1q

:

Its plot against 
 P p0; 1{2q is given in Section B of the Supplementary Material document.

It can be seen thereon that the simple mean
 � n
p1{2q of p
 � n and r
 � n , with � � 1{2, a�ords

a middle course betweenp
 � n � 
 � n
p1q and r
 � n � 
 � n

p0q in terms of asymptotic variance. In

terms of smoothness,
 � n
p1{2q o�ers a middle course as well, as shown in Section A of the

Supplementary Material document.

4 Extreme expectile estimation

In this section, we �rst return to intermediate expectile estimation by making use of the

general class of
 estimators t 
 � n
p� qu� PR to construct alternative estimators for high expec-

tiles � � n such that � n Ñ 1 and np1 � � nq Ñ 8 as n Ñ 8 . Then we extrapolate the obtained

estimators to the very high expectile levels that may approach one at an arbitrarily fast rate.

Alternatively to the asymmetric least squares estimatorr� � n de�ned in (5), one may use

the asymptotic connection� � n � p 
 � 1 � 1q� 
 q� n , described in (4), to de�ne the following

semiparametric estimator of� � n :

p� � n p� q:�
�

 � n

p� q� 1 � 1
� � 
 � n

p� q
pq� n :

Even more generally, one may combine the two estimatorsp� � n p� qand r� � n to de�ne, for � PR,
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the weighted estimator

� � n
p�; � q:� � p� � n p� q � p 1 � � qr� � n :

When � � 1, we recover the particular expectile estimator� � n
p� q :� � � n

p1; � q introduced

in Daouia et al. [11]. The limit distribution of the more general variant � � n
p�; � q crucially

relies on the asymptotic dependence structure in Theorem 3 between
 � n
p� q, pq� n and r� � n .

Theorem 4. Suppose that the conditions of Theorem 2 hold. Then, for any�; � PR,

a
np1 � � nq

�
� � n

p�; � q
� � n

� 1

�
dÝÑ �

�
b� � rp 1 � 
 q� 1 � logp
 � 1 � 1qs	 � � �

�
� p 1 � � q�

where the bias componentb� is b� � � 1b1;� � � 2b2;� with

b1;� �
p1 � 
 q� 1 � logp
 � 1 � 1q

1 � �

�
� � p 1 � � q

p1 � 
 qp
 � 1 � 1q� �

1 � 
 � �

�

�
p
 � 1 � 1q� �

1 � 
 � �
�

p
 � 1 � 1q� � � 1
�

;

b2;� � � 
 p
 � 1 � 1q
 EpYq
�

1 � p 1 � � qrp1 � 
 q� 1 � logp
 � 1 � 1qs




 � 1



;

and p	 � ; � ; � q is a trivariate Gaussian centered random vector with covariance matrixV �

as in Theorem 3.

Let us now extend the estimation procedure far into the right tail, where few or no

observations are available. This translates into considering the expectile level� � � 1
n Ñ 1

such that np1� � 1
nq Ñ c P r0; 8q , asn Ñ 8 . To estimate the extreme expectile� � 1

n
, the basic

idea is to extrapolate a consistent expectile estimator of intermediate order� n to the very

high level � 1
n . To do so, note that on the one hand we have� � 1

n
{ � � n � q� 1

n
{q� n in view of (4).
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On the other hand, we have the classical Weissman extrapolation formula

q� 1
n

q� n

�
Upp1 � � 1

nq� 1q
Upp1 � � nq� 1q

�
�

1 � � 1
n

1 � � n


 � 


as � n and � 1
n approach one (Weissman [32]). Thus, we arrive at the expectile approximation

� � 1
n

�
�

1 � � 1
n

1 � � n


 � 


� � n : (11)

By substituting our expectHill estimator 
 � n
p� q and the general weighted intermediate es-

timator � � n
p�; � q, respectively, in place of
 and � � n , we get the extrapolated expectile

estimator

�
�
� 1

n
p�; � q:�

�
1 � � 1

n

1 � � n


 � 
 � n
p� q

� � n
p�; � q: (12)

The special case� � 1 corresponds to the estimator�
�
� 1

n
p� q :� �

�
� 1

n
p1; � q introduced by

Daouia et al. [11]. We extend this estimator by using the generalizedexpectHill estimator


 � n
p� q instead of the Hill estimator p
 � n . The next theorem gives the asymptotic behavior of

�
�
� 1

n
p�; � q.

Theorem 5. Suppose that the conditions of Theorem 2 hold. Assume also that�   0 and

np1 � � 1
nq Ñ c   8 with

a
np1 � � nq{logrp1 � � nq{p1 � � 1

nqs Ñ 8 . Then, for any �; � PR,

a
np1 � � nq

logrp1 � � nq{p1 � � 1
nqs

�
�

�
� 1

n
p�; � q

� � 1
n

� 1

�
dÝÑ N pb� ; v� q

with pb� ; v� q as in (9) and (10).

One can observe that the limiting distribution of �
�
� 1

n
p�; � q is controlled by the asymptotic
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distribution of 
 � n
p� q. This is a consequence of the fact that the convergence of�

�
� 1

n
p�; � q is

governed by that of the extrapolation factorrp1� � 1
nq{p1� � nqs� 
 � n p� q. The latter approximates

the theoretical factor rp1 � � 1
nq{p1 � � nqs� 
 in the extrapolation (11) at a slower rate than

both the speed of convergence of� � n
p�; � q to � � n , given by Theorem 4, and the speed of

convergence to 0 of the bias term that is incurred by the use of (11) and that can be

controlled by Theorem 1.

5 Estimation of tail Expected Shortfall

This section aims to estimate both expectile- and quantile-based forms of Expected Shortfall,

XES� :�
1

1 � �

» 1

�
� t dt; QES� :�

1
1 � �

» 1

�
qt dt; (13)

at a very extreme security level� that may approach one at an arbitrarily fast rate. To do

so, Daouiaet al. [11] have already suggested to start by estimating these risk measures at

an intermediate level� n Ñ 1 such that np1 � � nq Ñ 8 , before extrapolating the resulting

estimates to the far tail by making use of the traditional Hill estimatorp
 � n of the tail index 
 .

Here, we extend their device by using the generalizedexpectHillestimator 
 � n
p� q in place of

p
 � n . The following asymptotic connections, established in Proposition 3 of Daouiaet al. [11],

will prove instrumental in the estimation procedure.
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Proposition 1 (Daouia et al., 2018b). Assume thatE|Y� |   8 and that Y has a Pareto-type

distribution (2) with tail index 0   
   1. Then

XES�

QES�
�

� �

q�
�

ErY|Y ¡ � � s
ErY|Y ¡ q� s

and
XES�

� �
�

1
1 � 


�
ErY|Y ¡ � � s

� �
; � Ñ 1:

5.1 Expectile-based Expected Shortfall

Under the model assumptions thatE|Y� |   8 and Y has a heavy-tailed distribution (2),

we wish to estimate an extreme value of the expectile-based form XES� 1
n
, where� 1

n Ñ 1 and

np1 � � 1
nq Ñ c   8 . By Proposition 1, we have

XES� 1
n

XES� n

�
� � 1

n

� � n

as n Ñ 8 :

It follows from the approximation (11) that XES� 1
n

�
�

1� � 1
n

1� � n

	 � 

XES� n : Then, by replacing


 with 
 � n
p� q and XES� n with its empirical counterpart

‚XES� n :�
1

1 � � n

» 1

� n

r� t dt;

we obtain the extrapolated XES� 1
n

estimator

‚XES
�

� 1
n
p� q:�

�
1 � � 1

n

1 � � n


 � 
 � n
p� q

‚XES� n : (14)

One may also estimate XES� 1
n

by using the asymptotic equivalence XES� 1
n

� p 1� 
 q� 1� � 1
n

in Proposition 1. By substituting 
 and � � 1
n

with their estimators 
 � n
p� q and �

�
� 1

n
p�; � q,
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described respectively in (8) and (12), we de�ne the alternative XES� 1
n

estimator

XES
�
� 1

n
p�; � q:� r 1 � 
 � n

p� qs� 1 �
�
� 1

n
p�; � q (15)

for the weights �; � P R. A last option for estimating XES� 1
n

is motivated by the di�erent

asymptotic equivalence XES� 1
n

�
� � 1

n
q� 1

n
QES� 1

n
in Proposition 1. This yields the XES� 1

n
estimator

zXES
�

� 1
n
p�; � q:�

zQES
�

� 1
n
p� q

pq�
� 1

n
p� q

�
�
� 1

n
p�; � q (16)

for the estimators pq�
� 1

n
p� q of q� 1

n
and zQES

�

� 1
n
p� q of QES� 1

n
de�ned as

pq�
� 1

n
p� q :�

�
1 � � 1

n

1 � � n


 � 
 � n
p� q

pq� n ; (17)

zQES
�

� 1
n
p� q :�

�
1 � � 1

n

1 � � n


 � 
 � n
p� q 1

tnp1 � � nqu

tnp1� � n qu¸

i � 1

Yn� i � 1;n : (18)

In the special case� � 1, the latter estimators are identical to the popularq� 1
n

estimator of

Weissman [32] and to the extrapolated QES� 1
n

estimator of El Methni et al. [15], respectively.

The next result provides the convergence of the three estimators‚XES
�

� 1
n
p� q, XES

�
� 1

n
p�; � q

and zXES
�

� 1
n
p�; � q of XES� 1

n
.
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Theorem 6. Assume that the conditions of Theorem 5 hold. Then, for any�; � PR,

a
np1 � � nq

logrp1 � � nq{p1 � � 1
nqs

�
‚XES

�

� 1
n
p� q

XES� 1
n

� 1

�
dÝÑ N pb� ; v� q;

a
np1 � � nq

logrp1 � � nq{p1 � � 1
nqs

�
XES

�
� 1

n
p�; � q

XES� 1
n

� 1

�
dÝÑ N pb� ; v� q;

and

a
np1 � � nq

logrp1 � � nq{p1 � � 1
nqs

�
zXES

�

� 1
n
p�; � q

XES� 1
n

� 1

�
dÝÑ N pb� ; v� q

with pb� ; v� q as in (9) and (10).

The three estimators share the same asymptotic behavior from a theoretical point of

view. However, our experience with simulated data in Section 6.2.1 indicates that‚XES
�

� 1
n
p� q

is more e�cient in the case of real-valued pro�t-loss distributions with heavy left and right

tails, while zXES
�

� 1
n
p�; � q a�ords advantageous estimates in the case of non-negative heavy-

tailed loss distributions.

5.2 Quantile-based Expected Shortfall

In this section, we return to the estimation of the usual form QESpn
of tail Expected Short-

fall, for a pre-speci�ed tail probability pn Ñ 1 with np1 � pnq Ñ c   8 . The general-

ized Weissman-type estimatorszQES
�

pn
p� q, de�ned in (18), already provide a �rst family of

weighted estimators. Here, we wish to derive alternative families of composite expectile-

based estimators from the three XES� 1
n

estimators introduced above, where� 1
n � � 1

nppnq is

to be determined. The starting point is the asymptotic equivalences QESpn
� ErY|Y ¡ qpn s

and XES� 1
n

� ErY|Y ¡ � � 1
n
s in Proposition 1. The basic idea is then to pick out� 1

n so that

� � 1
n

� qpn , and hence QESpn
� XES� 1

n
. In this way, QESpn

inherits the extreme value esti-
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mators of XES� 1
n

itself, namely ‚XES
�

� 1
n
p� q, XES

�
� 1

n
p�; � q and zXES

�

� 1
n
p�; � q described in (14),

(15) and (16). Yet, it remains to estimate the extreme expectile level� 1
nppnq:� � 1

n such that

� � 1
n

� qpn . It has been found in Proposition 3 of Daouiaet al. [10] that such a level satis�es

1 � � 1
nppnq � p 1 � pnq



1 � 


as n Ñ 8 ;

under the model assumption of heavy tails (2) with tail index 0  
   1. Built on our novel

expectHill estimator 
 � n
p� q of 
 , we can then estimate� 1

nppnq by

p� 1
nppnq:� 1 � p 1 � pnq


 � n
p� q

1 � 
 � n
p� q

: (19)

By substituting this estimated value in place of� 1
nppnq � � 1

n in the extrapolated estima-

tors ‚XES
�

� 1
n
p� q, XES

�
� 1

n
p�; � qand zXES

�

� 1
n
p�; � q, we obtain composite estimators that estimate

XES� 1
n ppn q � QESpn

: Note that the composite expectile-based estimatorzXES
�

p� 1
n ppn qp�; 1q, ob-

tained for the special weight� � 1, is actually identical to the quantile-based estimator

zQES
�

pn
p� q de�ned in (18).

The asymptotic properties of the extrapolated estimators‚XES
�

� 1
n
p� q, XES

�
� 1

n
p�; � q and

zXES
�

� 1
n
p�; � q, stated in Theorem 6, still hold true for their composite versions as estimators

of QESpn
, with the same conditions.
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Theorem 7. Suppose the conditions of Theorem 5 hold withpn in place of � 1
n . Then, for

any �; � PR,

a
np1 � � nq

logrp1 � � nq{p1 � pnqs

�
‚XES

�

p� 1
n ppn qp� q

QESpn

� 1

�
dÝÑ N pb� ; v� q;

a
np1 � � nq

logrp1 � � nq{p1 � pnqs

�
XES

�
p� 1

n ppn qp�; � q

QESpn

� 1

�
dÝÑ N pb� ; v� q;

and

a
np1 � � nq

logrp1 � � nq{p1 � pnqs

�
zXES

�

p� 1
n ppn qp�; � q

QESpn

� 1

�
dÝÑ N pb� ; v� q

with pb� ; v� q as in (9) and (10).

6 Numerical simulations

In order to illustrate the behavior of the presented estimation procedures of the tail in-

dex 
 and the two expected shortfall forms XES� 1
n

and QESpn
, we consider the Student

t-distribution with 1 {
 degrees of freedom, the Fr�echet distributionF pxq � e� x � 1{ 

; x ¡ 0,

and the Pareto distribution F pxq � 1 � x � 1{ 
 ; x ¡ 1. The �nite-sample performance of the

di�erent estimators is evaluated through their relative Mean-Squared Error (MSE) and bias,

computed over 200 replications. All the experiments have sample sizen � 500 and true tail

index 
 P t0:35; 0:45u (motivated by our real data applications where the realized values of


 were found to vary between 0:35 and 0:45). In our estimators we used the extreme levels

� 1
n � pn � 1� 1{n and the intermediate level� n � 1� k{n, where the integerk can be viewed

as the e�ective sample size for tail extrapolation. To save space, all �gures illustrating our

simulation results are deferred to Section C of the Supplementary Material document.
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6.1 Estimation of the tail index

Our Monte-Carlo simulations in Supplement C.1 indicate that theexpectHill estimator


 1� k{np� q, introduced in (8) with the weight � � 1{2, is more e�cient relative to the stan-

dard Hill estimator p
 1� k{n , given in (7), for both Student and Fr�echet distributions. In the

case of the real-valued Student distribution, it may be seen therein that
 1� k{np1
2q performs

better than p
 1� k{n in terms of MSE, for all values ofk, without sacri�cing too much qual-

ity in terms of bias, especially for the larger value of
 . We arrive at the same tentative

conclusion in the case of the Fr�echet distribution. By contrast, in the special case of the

Pareto distribution, the Hill estimator p
 1� k{n is exactly the maximum likelihood estimator of


 and is unbiased, whereas theexpectHill estimator 
 1� k{np1
2q � 1

2pp
 1� k{n � r
 1� k{nq is biased

in this case. Unsurprisingly, the Monte Carlo results obtained here indicate thatp
 1� k{n is

the winner.

6.2 Expected Shortfall estimation

6.2.1 Estimates of XES � 1
n

Before comparing the �nite-sample performance of‚XES
�

� 1
n
p� qdescribed in (14),XES

�
� 1

n
p�; � q

in (15) and zXES
�

� 1
n
p�; � q in (16), as estimators of XES� 1

n
, we �rst investigated the accuracy

of each estimator in terms of the associated weights� and � . Then we compared the

three estimators with each other by using the best choice of� and � in each scenario; see

Supplement C.2. In particular, we arrive at the following tentative conclusion:‚XES
�

� 1
n
p� q

seems to be the winner in the case of the real-valued Student distribution for� � 1, while

zXES
�

� 1
n
p�; � q appears to be the most e�cient in the case of the non-negative Fr�echet and
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Pareto distributions, for � P t0:5; 1u and � � 1.

6.2.2 Estimates of QES pn

We have also undertaken simulation experiments to evaluate the �nite-sample performance of

the composite expectile-based estimators‚XES
�

p� 1
n ppn qp� q, XES

�
p� 1

n ppn qp�; � q and zXES
�

p� 1
n ppn qp�; � q

studied in Theorem 7, with p� 1
nppnq being described in (19). They estimate the same con-

ventional expected shortfall QESpn
as the direct quantile-based estimatorzQES

�

pn
p� qde�ned

in (18). In Supplement C.3, we �rst examined the accuracy of each estimator for various

values of� and � , and then we compared the four estimators with each other. We arrive at

the following tentative conclusions:

� In the case of the (real-valued) Student distribution, the best estimator seems to be

‚XES
�

p� 1
n ppn qp� � 0q;

� In the cases of Fr�echet and Pareto distributions (both positive), the best estimators

seem to be, respectively,XES
�
p� 1

n ppn qp� � 0:5; � � 1qand zQES
�

pn
p� � 1q � zXES

�

p� 1
n ppn qp� �

1; � � 1q.

6.2.3 Con�dence intervals for QES pn

By Theorem 7 we have

?
k

logrk{np1 � pnqs

�
‚XES

�

p� 1
n ppn qp� q

QESpn

� 1

�
dÝÑ N pb� p
 q; v� p
 qq;

where b� p
 q :� b� and v� p
 q :� v� are described in (9) and (10), respectively. Under the

bias condition � 1 � � 2 � 0 in Theorem 2, the asymptotic bias in (9) reduces tob� p
 q � 0.
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With this condition, the (symmetric) expectile-based asymptotic con�dence interval with

con�dence level 100#% has the form €CI#pkq � ‚XES
�

p� 1
n ppn qp� q � I ; where I stands for the

interval

I :�
�
1 � zp1� #q{2 log

�
k

np1 � pnq


 b
v�

�

 1� k{np� q

�
{k

�
;

with zp1� #q{2 being the p1 � #q{2� quantile of the standard Gaussian distribution. Like-

wise, the con�dence intervals derived from the asymptotic normality ofXES
�
p� 1

n ppn qp� q and

zXES
�

p� 1
n ppn qp�; � q, in Theorem 7, can be expressed respectively as

CI#pkq � XES
�
p� 1

n ppn qp�; � q � I ; xCI#pkq � zXES
�

p� 1
n ppn qp�; � q � I :

Note also that the quantile-based con�dence interval, derived from the asymptotic normality

of zQES
�

pn
p� q � zXES

�

p� 1
n ppn qp�; 1q, is just xCI#pkqfor � � 1. In Supplement C.4, we compared the

average lengths and the achieved coverages of the three 95% asymptotic con�dence intervals

€CI0:95pkq, CI0:95pkq and xCI0:95pkq. It follows that

� €CI0:95pkq performs best in the case of the Student distribution, for the selected weight

� � 1;

� xCI0:95pkq performs quite well in the case of the Fr�echet distribution, for the selected

weights � � 1 and � � 1;

� CI0:95pkq performs quite well in the case of the Pareto distribution, for the selected

weights � � 1 and � � 0:5.
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7 Applications

This section applies our expectile-based method to estimate the tail expected shortfall on

medical insurance data and �nancial returns data.

7.1 Medical insurance data

We �rst illustrate the methodology via the Society of Actuaries group medical insurance

large claims data discussed in Beirlantet al. [3] and Daouiaet al. [11], among others. The

database containsn � 75,789 claim amounts exceeding 25,000 USD, collected over the year

1991 from 26 insurers. The scatterplot and histogram of the log-claim amounts, shown in

Figure 1(a), clearly exhibit an important right-skewness. Beirlantet al. ([3], p.123) have

argued that the underlying distribution satis�es the model assumption (2) with a
 estimate

around 0:35. A popular measure to assess the magnitude of future unexpected higher claim

amounts is the expected shortfall QESpn
de�ned in (13). Insurance companies typically

are interested in an extremely low exceedance probability, say 1� pn � 1{100,000, which

corresponds to a rare event that occurs on average only once every 100,000 cases.

In this setting of non-negative data with heavy right tail, our experience with simulated

data indicates that XES
�
p� 1

n ppn qp� � 0:5; � � 1q and zQES
�

pn
p� � 1q provide the best extrapo-

lated pointwise estimates of the extreme value QESpn
in terms of MSE and bias. As such,

these are the estimates we adopt here. For the sake of simplicity, they will be denoted by

XES
�
p� 1

n ppn q and zQES
�

pn
, respectively.

The evolution of the composite expectile-based estimatorXES
�
p� 1

n ppn q as a function of the

sample fractionk is represented in Figure 1(b) as rainbow curve, for the selected range of in-
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termediate values ofk � 10; 11; : : : ; 700. The e�ect of theexpectHillestimate
 1� k{np� � 0:5q

on XES
�
p� 1

n ppn q is highlighted by a colour-scheme, ranging from dark red (low
 1� k{n ) to dark

violet (high 
 1� k{n ). This 
 estimate seems to mainly vary within the intervalr0:35; 0:36s,

which corresponds to the stable (green) part of the plot. The curvek ÞÑXES
�
p� 1

n ppn q exceeds

overall the sample maximumYn;n � 4:51 million (indicated by the horizontal pink dashed

line). To select a reasonable pointwise estimate, we applied a simple automatic data-driven

device that consists �rst in computing the standard deviations ofXES
�
p� 1

n ppn q over a mov-

ing window large enough to cover 20% of the possible values ofk in the selected range

10 ¤ k ¤ 700. Then the k where the standard deviation is minimal de�nes the desired

sample fraction. The resulting estimateXES
�
p� 1

n ppn q � 5:99 million is obtained for the value

k � 208 in the windowr119; 259s.

The graph of the pure quantile-based estimatorzQES
�

pn
against k is superimposed in the

same �gure as dashed black curve. It is broadly similar to that ofXES
�
p� 1

n ppn q, but the latter

is smoother and more stable. The pointwise estimatezQES
�

pn
� 6:37 million is indicated by

the minimal standard deviation achieved atk � 222 over the windowr119; 259s. It is more

pessimistic (in risk assessment terminology) thanXES
�
p� 1

n ppn q � 5:99 million, probably due to

the instability of the quantile-based plot in dashed black.

Our experience with simulated data also indicates that reasonably good asymptotic 95%

con�dence intervals for QESpn
, in terms of average lengths and achieved coverages, are pro-

vided by xCI0:95pkq, constructed viazQES
�

pn
, andCI0:95pkqconstructed onXES

�
p� 1

n ppn qp� � 1; � �

0:5q. The two con�dence intervalsCI0:95pkqand xCI0:95pkqare superimposed in Figure 1(b) as

well, respectively, in dotted blue and solid grey lines. ThoughCI0:95pkq gives slightly more

pessimistic con�dence bounds thanxCI0:95pkq, both con�dence intervals point towards similar
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conclusions. In particular, the stable parts of their lower boundaries (aroundk P r100; 500s)

remain quite conservative as they are very close to the maximum recorded claim amount.

We �nally comment on the estimator p� 1
nppnq of the extreme expectile level� 1

nppnq which

ensures thatXES
�
p� 1

n ppn q is an asymptotically normal estimator for both XES� 1
n ppn q and QESpn

.

The graph of p� 1
nppnq against k is displayed in Figure 1(c) as rainbow curve, and the corre-

sponding optimal pointwise estimate is indicated by the horizontal dashed black line. As is

to be expected from (19), since our estimate of
 is less than 1{2, this selected optimal level

p� 1
nppnq � 0:9999944 is higher than the pre-speci�ed relative frequencypn � 0:99999 indicated

by the horizontal dashed pink line.

7.2 Financial returns data

In this section, we apply our method to estimate the ES for three large US �nancial insti-

tutions. We consider the same investment banks as in the study of Caiet al. [7], namely

Goldman Sachs, Morgan Stanley and T. Rowe Price. All of these banks had a market cap-

italization greater than 5 billion USD at the end of June 2007. The dataset consists of the

negative log-returnspYi q on their equity prices at a daily frequency during 10 years from

July 3rd, 2000, to June 30th, 2010. The choice of the frequency of data and time hori-

zon follows the same setup as in Caiet al. [7] and Daouiaet al. [10]. This results in the

sample sizen � 2513. We use our composite expectile-based method to estimate the stan-

dard quantile-based expected shortfall QESpn
, or equivalently the expectile-based expected

shortfall XES� 1
n ppn q, with an extreme relative frequencypn � 1 � 1

n that corresponds to a

once-per-decade rare event.

In this setting of real-valued pro�t-loss distributions, our experience with simulated data
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Figure 1: (a) Scatterplot and histogram of the log-claim amounts. (b) The ES plotsk ÞÑ
XES

�
p� 1

n ppn qp� � 0:5; � � 1q as rainbow curve, andk ÞÑzQES
�

pn
p� � 1q in dashed black, along

with the constant sample maximumYn;n in horizontal dashed pink. The con�dence intervals
CI0:95pkq in dotted blue lines andxCI0:95pkq in solid grey lines. (c) The plot ofk ÞÑp� 1

nppnq as
rainbow curve, along with the selected optimal pointwise estimate in horizontal dashed black
line, and the constant tail probabilitypn in horizontal dashed pink.
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indicates that the composite estimator‚XES
�

p� 1
n ppn qp� q provides the best QESpn

estimates in

terms of MSE and bias for the special weight� � 0, while it provides reasonably good

asymptotic 95% con�dence intervals€CI0:95pkq for the di�erent weight � � 1. In the estima-

tion, we employ the intermediate sequence� n � 1 � k{n as before, for the selected range

of valuesk � 1; : : : ; 150. For our comparison purposes, we use as a benchmark the direct

quantile-based estimatorzQES
�

pn
p� � 1q � zXES

�

p� 1
n ppn qp� � 1; � � 1q of El Methni et al. [15],

as well as the corresponding asymptotic 95% con�dence intervalxCI0:95pkq. We will denote

in the sequel the rival estimates‚XES
�

p� 1
n ppn qp� � 0q and zQES

�

pn
p� � 1q simply as ‚XES

�

p� 1
n ppn q

and zQES
�

pn
.

For each bank, we superimpose in Figure 2 the plots of the two estimates‚XES
�

p� 1
n ppn q and

zQES
�

pn
againstk, as rainbow and dashed black curves respectively, along with the competing

con�dence intervals€CI0:95pkq in dotted blue lines andxCI0:95pkq in solid grey lines. The e�ect

of the expectHill estimate 
 1� k{np� � 0q � r
 1� k{n on the estimate ‚XES
�

p� 1
n ppn q is highlighted

by a colour-scheme, ranging from dark red (lowr
 1� k{n ) to dark violet (high r
 1� k{n ).

We have already provided some Monte Carlo evidence that the composite expectile-based

estimates‚XES
�

p� 1
n ppn q and con�dence intervals€CI0:95pkq are e�cient and accurate relative to

the pure quantile-based estimateszQES
�

pn
and con�dence intervals xCI0:95pkq, respectively.

Their superiority in terms of plots' stability and con�dence intervals' length can clearly be

visualized in Figure 2 for the three banks. The �nal ES levels based on minimizing the

standard deviations of the estimates, computed over a moving window covering 20% of the

possible values ofk, are reported in Table 1, along with the asymptotic 95% con�dence

intervals of the ES. Based on the reliable‚XES
�

p� 1
n ppn q estimates (in the second column), the ES

levels for Goldman Sachs and T. Rowe Price seem to be very close (around� 30% to� 34%),
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whereas the ES level for Morgan Stanley is almost twice higher (around� 60%). ThezQES
�

pn

estimates (in the fourth column) point also towards similar pessimistic results. The lower

con�dence bands (in third and �fth columns) are themselves quite conservative since they

are almost equal to the maximum losses (in the last column) for the three banks.

The theory for our ES estimator‚XES
�

p� 1
n ppn q and for the estimator zQES

�

pn
of El Methni et

al. [15] is derived for independent and identically distributed random variablesY1; : : : ; Yn .

For this application to �nancial returns, the potential serial dependence may then a�ect

the estimation results. Similarly to our extreme value analysis under mixing conditions in

Daouia et al. [9], our convergence results may work under serial dependence with enlarged

asymptotic variances. A practical solution already employed by Caiet al. [7] to reduce

substantially the potential serial dependence in this particular dataset is by using weekly

loss returns in the same sample period (i.e. sums of the daily loss returns during each

week). This results in a sample of sizen � 522. The plots of the two estimates and the

asymptotic 95% con�dence intervals, againstk P r1; 80s, are superimposed in Figure 3 for the

three banks, along with the new sample maxima. The �nal pointwise results are reported

in Table 2. By comparing the obtained estimates for the daily and weekly losses, it may be

seen that the results are qualitatively robust to the change from daily to weekly data. In

particular, the ‚XES
�

p� 1
n ppn q levels for Goldman Sachs and T. Rowe Price are still almost equal,

while the estimated level for Morgan Stanley remains almost twice higher. Quantitatively,

these ES estimates are much more conservative: around� 40% to � 43% for Goldman Sachs

and T. Rowe Price, and around� 87% for Morgan Stanley.
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Figure 2: Results based on daily loss returns of the three investment banks: (a) Goldman
Sachs, (b) Morgan Stanley, and (c) T. Rowe Price, withn � 2513and pn � 1 � 1{n. The
estimates‚XES

�

p� 1
n ppn qp� � 0qas rainbow curve andzQES

�

pn
p� � 1qas dashed black curve, along

with the asymptotic95% con�dence intervals €CI0:95pkq in dotted blue lines andxCI0:95pkq in
solid grey lines. The sample maximumYn;n indicated in horizontal dashed pink line.
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Bank ‚XES
�
p� 1

n ppn q
€CI0:95 zQES

�
pn

xCI0:95 Yn;n

Goldman Sachs 0.345 (0.210, 0.506) 0.393 (0.235, 0.544) 0.210
Morgan Stanley 0.598 (0.376, 0.785) 0.601 (0.316, 0.984) 0.299
T. Rowe Price 0.308 (0.171, 0.411) 0.301 (0.177, 0.437) 0.197

Table 1: ES levels of the three investment banks, with the95% con�dence intervals and the
sample maxima. Results based on daily loss returns, withn � 2513and pn � 1 � 1

n .

Bank ‚XES
�
p� 1

n ppn q
€CI0:95 zQES

�
pn

xCI0:95 Yn;n

Goldman Sachs 0.436 (0.194, 0.620) 0.495 (0.226, 0.680) 0.365
Morgan Stanley 0.874 (0.384, 1.305) 0.883 (0.366, 1.478) 0.904
T. Rowe Price 0.401 (0.213, 0.511) 0.407 (0.216, 0.548) 0.305

Table 2: Results based on weekly loss returns, withn � 522 and pn � 1 � 1
n .

Supplementary Material

The supplement to this article contains simulation results along with the proofs of all our

theoretical results.
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