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1 Introduction

The risk of a nancial position Y is usually summarized by a risk measure. Value at Risk
(VaR) is arguably the most common risk measure used in practice. The VaR at probability
level P ®;1qis given by the -quantile q : FPpq infty PR : Fpyg ¥ u where

F is the distribution function of Y. Koenker and Bassett [22] elaborated an absolute error
loss minimization framework extending this de nition of quantiles as left continuous inverse

functions to the minimizers
g PargminEt pY q pY qu;
PR

with equality if F is increasing, where pyq | Ipy & Oqg|ly| and 1p qis the indicator
function. There are di erent sign conventions for VaR which co-exist in the literature. In
this paper, the positionY is a real-valued random variable whose values are the negative
of nancial returns. The right-tail of the distribution of Y, for levels close to one, then
corresponds to the negative of extreme losses. In actuarial science whéres typically a
non-negative loss variable, the sign convention we have chosen implies that extreme losses
also correspond to levels close to one. The positiorY is therefore considered riskier as its
risk measure gets higher.

One of the major criticisms on VaRq s its failure to ful Il the subadditivity property in
general (Acerbi [1]), and hence it is not a coherent risk measure according to the axiomatic
foundations in Artzner et al. [2]. Furthermore, it fails to account for the size of losses beyond
the level , since quantiles only depend on the frequency of tail losses and not on their

values (Danelssonet al. [8]). In both of these aspects, expectiles are a perfectly reasonable



alternative to quantiles as they depend on both the tail realizations and their probability
(Kuan et al. [24]) and de ne a coherent risk measure (Belliret al. [4]). This is mainly due

to their conception as a least squares analogue of quantiles. More precisely, by substituting
the absolute deviations in the asymmetric loss function with squared deviations, Newey

and Powell [25] obtain the th expectile of the distribution of Y as the minimizer
argminEt pY q pY qu; (1)
PR

with  pyq | 1py = Oqgly?. The additional term  pY gensures the existence of a unique
solution  for distributions with nite absolute rst moment. Expectiles are determined by
tail expectations rather than tail probabilities, which allows for more prudent and reactive
risk management. Altering the shape of extreme losses may not change the quantile-VaR,
but it does impact all the expectiles (Taylor [31]). Another advantage of expectiles is that
they make more e cient use of the available data since they rely on the distance to all ob-
servations and not only on the frequency of tail losses (Sobotka and Kneib [30]). Moreover,
using expectiles has the appeal of avoiding recourse to regularity conditions on the underlying
distribution (see e.g. Holzmann and Klar [21], Kratschmer and Zahle [23]). Perhaps most
importantly, expectiles induce the only coherent law-invariant risk measure that is elicitable
(Ziegel [33]). The property of elicitability corresponds to the existence of a natural backtest-
ing methodology. Also, expectiles are the only M-quantiles (Breckling and Chambers [6])
that are coherent risk measures (Bellinet al. [4]). Further theoretical and numerical merits

in favor of the adoption of expectiles in risk management can be found in Ehet al. [14]
and Bellini and Di Bernardino [5].

In this article we rst investigate the problem of estimating tail expectiles from the

3



perspective of extreme value theory. This translates into considering bothtermediate and
extremeasymmetry levels, respectively, » N 1suchthatnpl ,qN8 and IN 1
suchthatnpl g N c 8 ,asn N8 . We focus on the Fechet maximum domain of
attraction of heavy-tailed distributions that perfectly describe the tail structure of most
actuarial and nancial data (see,e.g, Embrechtset al. [18] and Resnick [26]). This problem

IS, In comparison to extreme quantile estimation, still in full development. The absence of a
closed form expression for expectiles makes the extreme value analysis of their asymmetric
least squares estimators a much harder mathematical problem than for order statistics. Yet,
we have initiated a satisfactory solution to this problem in an earlier paper [10] by proposing
intermediate and extreme expectile estimators and developing their asymptotic theory. Very
recently, we have come up in [11] with powerful approximations of the tail empirical expectile
process. First, Theorem 1 in Daoui&t al. [11] derives an explicit joint asymptotic Gaussian
representation of the tail expectile and quantile processes. Second, Theorem 2 in [11] unravels
the discrepancy between the tail empirical expectile process and its population counterpart.
As these two theorems constitute the basic theoretical tools for our asymptotic analysis in
the present paper, they are brie y described below in Theorem 1 along with the statistical
model in Section 2.

Built on these recent advances, Section 3 shows that the tail index of the underlying
Pareto-type distribution can be estimated in a novel and more general manner. This index
tunes the tail heaviness ofF and its knowledge is of utmost interest since it makes the
estimation of extreme quantiles and expectiles possible by means of appropriate extrapolation
techniques. We rst construct asymmetric least squares estimators of the tail index and

derive their asymptotic normality in Theorem 2. We then construct a more general class



of weighted estimators by computing a linear combination of these pure expectile-based
estimators and of the popular Hill estimator (Hill [20]). This inspired the nameexpectHill
estimators for this class. Thanks to the joint weighted Gaussian approximations of the
tail expectile and quantile processes in Theorem 1, we get the asymptotic normality of the
expectHillestimators and derive their joint convergence with both intermediate quantile and
expectile estimators in Theorem 3.

Built on the expectHill estimators themselves, we propose in Section 4 general weighted

estimators for intermediate expectiles , whose asymptotic normality, obtained in Theo-

rem 4, follows as a corollary of Theorem 3. Based on the ideas of Daoeiaal. [10, 11], the
weighted intermediate expectile estimators are then extrapolated to the very extreme expec-
tile level ! that may approach one at an arbitrarily fast rate. The asymptotic properties of
the extrapolated . estimators are established in Theorem 5.

An important alternative to the VaR q and its coherent least squares analogue is
Expected Shortfall (ES). It is favored by practitioners who are more concerned with the risk

exposure to a catastrophic event that may wipe out an investment in terms of the size of

potential losses. The conventional quantile-based ES at levelequals

1 ))1
QES : 1 g dt:

It is coherent (Acerbi [1]) and identical, when the nancial positionY is continuous, to

the so-called Conditional Value at RiskErY|Y | q s (Rockafellar and Uryasev [28, 29]).
Similarly to this intuitive tail conditional expectation, Taylor [31] has introduced and used
the expectile-based formErY|Y j s as the basis for estimating the standard quantile-

based measur&rY|Y i gs Given that both conditional expectationsErY|Y | g sand
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ErY|Y | sare not coherent risk measures in general, Daoug al. [11] have suggested to

estimate the coherent ES form QESon the basis of its expectile-based analogue

XES : —— ¢ dt;

obtained by substituting the expectile ; in place of the quantileq in QES . This de nition
is more convenient thanErY|Y j s as it induces a proper coherent risk measure (see
Proposition 2 in [11]), while keeping the intuitive meaning of the conditional expectation,
when N 1, since XES ErY|Y | s (see Proposition 3 in [11]). In addition to this
asymptotic equivalence, the tail values XESand ErY|Y j s share exactly the same
estimators, for both intermediate and extreme expectile levels |, and L

The proposed estimation procedures in Daouiet al. [11] for both extreme values XES
and QES, are mainly based on the classical Hill estimator of the tail index. In Section 5,
we extend their extrapolation devices by using the generalized weightexpectHill estimator;
see Theorems 6-7. In particular, when the ultimate interest is in estimating the traditional
form QES; in the case of real-valued pro t-loss distributions, our composite asymmetric
least squares estimators perform better than the rival estimators of Daougt al. [11] and
El Methni et al. [15]. Section 6 contains our experiments with simulated data and Section 7
presents applications to medical insurance data and nancial returns data. The proofs and

auxiliary results are deferred to the Supplementary Material document.



2 Statistical model and basic tools

In this paper we consider the class of heavy-tailed distributions, referred to as the Fechet
maximum domain of attraction, with tail index 0 1. The survival function of these

Pareto-type distributions has the form

Fya: 1 Fpg vy Y pg (2)

for y i 0 large enough, where is a slowly varying function at in nity, i.e., a positive
function on p0; 8q satisfying ‘pyalfpq N 1, ast N8 , foranyy i 0. The index tunes the
tail heaviness ofF : the larger the index, the heavier the right tail. LetY be the actuarial
or nancial position of interest having survival function F, and let Y minpY;0q denote
the negative part of Y. Then, together with condition E|Y | 8 , the assumption 1
ensures the existence of the rst moment o¥, and hence the existence of expectiles. By

Corollary 1.2.10 in de Haan and Ferreira [12], the model assumption (2) is equivalent to

. Upxq 0
tlrlﬂrngm x forall xj O (3)

whereUpq: o : infty PR : 1{Fpyq ¥ tu stands for the tail quantile function of Y.

Under (2) or equivalently (3), it has been found that
p ' 1g as N1 (4)

(Bellini and Di Bernardino [5]). A re ned asymptotic expansion of {q with a precise

quanti cation of the bias term is obtained in Proposition 1(i) of Daouiaet al. [11] under the



following second-order regular variation condition:

Gp; ;A g Forallxj O,

i g U

where @ 0is a constant parameter andh is an auxiliary function converging to O at in nity

and having ultimately constant sign. Hereafterpx  1g{ is to be understood as log when
0.

Assumption Gp; ;A qis a standard condition in extreme value theory, which controls
the rate of convergence in (3). The monographs of Beirlamt al. [3] and de Haan and
Ferreira [12] give abundant examples of commonly used continuous distributions satisfying
Gp; ;A g along with thorough discussions on the interpretation and the rationale behind

this second-order condition.

by Yin & Yoo @ & Y., their nth order statistics. Let the expectile level n approach
one at anintermediate rate in the sense thampl ,q N 8 asn N 8 . A natural estimator

of the corresponding intermediate expectile . is given by its empirical version

n

rargmin’ . pY, ug (5)

n

Under conditionGp; ;A ¢ Daouiaet al. [11] prove in their Theorem 1 that the tail empirical
expectile process

;1SN R; sbNyp1 g



can be approximated by a sequence of Gaussian processes with drift and derive its joint

asymptotic behavior with the tail empirical quantile process

Iiﬁ;lSN R; SDMpl nqs: Yn tnpl nqsun;

wheret ustands for the oor function. They also analyze in their Theorem 2 the di erence
between the tail empirical expectile process and its population counterpart. For our purposes

below, we recall these two approximations in the following result.

Theorem 1 (Daouia et al., 2018b) Suppose thatE|Y |2 8 . Assume further that con-

dition Gp; ;A g holds, with0 1{2. Let , N 1 be such thatnpl ,g N 8 and
a___
npl  ,Apd .gq!qg Oplg Then there exists a sequendd/, of standard Brownian

motions such that, for any" j 0 su ciently small,

a
o1 oo s 1 31—7 1 1s w, S

q, npl  .q 11

s 1 s H2”
Apd  .q'g op aﬁ

101 ne p ! 1qg
and —2=—"% s 1lps 1qq7pEqu opplqq

1 a ))S

a_—— 2 1 1s 1 w,pqt ldt
npl nq 0

S | S 1
pl 1qp q Apd gl

q

s W2 " : ,
Op &d—— uniformly in s P [®; 1s

npl  nq



If in addition 0, then

r »

1 a s
LR 1 a—> 2 1 15 ' w,pqt ldt
1p1 noe npl  nq 0
g U2
Oop &———  uniformly in sP ®;1s
npl  nq

The assumptions that P @;1{2qand E|Y |> 8 essentially guarantee that the loss
variable has a nite variance. This is the case in most studies on actuarial and nancial data
where the realized values of have been found to lie well below{R; seee.g, the R package
CASdatasets Daouia et al. [10] and the references therein.

The extra condition 0, in the second part of Theorem 1, is required in most ex-
trapolation results formulated in the extreme value literature under conditionGp; ;A g
see,e.g, Chapter 4 of de Haan and Ferreira [12] regarding extreme quantile estimation and
Daouia et al. [10] for extreme expectile estimation. Note also that, in contrast to the rst
part of Theorem 1, the second part avoids the error terms that are proportional to{d , and
Apd .q'g

This theorem, already proved in Daouiaet al. [11], constitutes the main intermediate
theoretical tool for our ultimate interest in constructing general weighted estimators of the

tail index and extreme expectiles, as well as of Expected Shortfall risk measures.

3 Estimation of the tail index

In this section, we rst construct purely expectile-based estimators of the tail index and

derive their asymptotic distributions. We shall then construct a more general class of esti-
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mators by combining both intermediate empirical expectiles and quantiles. The basic idea

stems from Theorem 1 which suggests the following approximation:

» 1 »

r
1p 1l
|Og L ds
0 n

1

logps qds
0

where , N 1is suchthatnpl ,q N 8. One can then estimate by

» 1

g, : log

0

r
1pl nos ds:

n

A computationally more viable option is to use a discretized version of the integral estimator

g, on aregularl grid of points in r0; 15 namely:

"p1 w100
i1 n

wherel Imq N 8 . A particularly interesting example is

1 tnp:l. i r1pi 1g{n
ro. ——— log ——— (6)
tnpl nCH i1 I’1 tnpl  nadn
or, equivalently, r Mt nqnitnpl .qe THIS Simple estimator has exactly the same
form as the popular Hill estimator (Hill [20])
tnpl o
1 5 i
p . - - |Og M (7)
tnpl nd B thpl nodn

with the tail empirical quantile processq in (7) replaced by its asymmetric least squares

analogue'. Beirlant et al. [3] and de Haan and Ferreira [12] provide an extensive overview

11



of the asymptotic theory for the Hill estimator p ,. The next theorem gives the asymptotic

normality of the three new estimatorsq ,, r ., and r Its proof essentially consists in

N
writing

r r

_—rF- nP |og M |Og ' n

n n n

before integrating and crucially using Theorem 1 twice in order to control both of the loga-

rithms on the right-hand side.

Theorem 2. Suppose thatE|Y [> 8 . Assume further that conditionGp; ;A q holds,

with 0 1{2. Let , N 1 be such thatnpl ,q N 8, and suppose that the bias
conditions 2 nl  .Apd .gqN ;PR and 2 npl  ,0{g, N , PR are satis ed.
Then:

a___

() npl nom, q

. pl  ogp ' 1g p ' 19 | 2°3
WN g! PO AT o

a S .
@) If I Ipngfullls  npl ,glogmpl  ,qa{ N O, then (i) holds with q , replaced by

r ... Especially, (i) holds withq , replaced byr | .

Before using the estimator , to construct a more general class of tail index estimators,

we formulate a couple of remarks about its theoretical and practical behavior.

Remark 1. The conditions involving the auxiliary function A in Theorem 2 are also re-
quired to derive the asymptotic normality of the conventional Hill estimatorp , in (7), with
asymptotic bias :{pl  qand asymptotic variance ? [see Theorem 3.2.5 in de Haan and

Ferreira ([12], p.74)]. Theorem 2 also features a further bias condition involving the quantile

12



function q; this was to be expected in view of Theorem 1, of which a consequence is that
the remainder term in the approximation 1,1 ,{ , S depends on bothA and q.
Yet, it is straightforward to eliminate this bias component: note that the centered variable

Z Y EpYqis also heavy-tailed, with the same extreme value parameters s and thus

the estimator g* constructed on theZ; Y, EpY(qsatis es

a_ ’ P gp ' 1q 2°
n z i N :
p]' nqm n q pl qa q 1, 1 2
This suggests to dene®,  Y; Y,, whereY, is the sample mean, and then to consider
the estimator qf. Due to the translation equivariance of expectiles, the gap betweeqf
_ ?_
and g° has the same order a§Y, EpYq| Oppl{ nq It follows that qZ: has the same
asymptotic distribution as g , and is therefore a bias-reduced version gf, which eliminates

the quantile component of the bias.

Remark 2. The selection of , is a dicult problem in general, since any sort of opti-
mal choice will involve the unknown parameter as well as the functionA; for a discussion
about the optimal choice of , in the Hill estimator based on mean-squared error, see Hall and
Welsh [19]. A usual practice for selecting a reasonable estimatte is, in the reparametriza-
tion , 1 k{n, to plot the graph of k PNp; «, for k P t1;2;:::;n  1u, and then to
pick out a value ofk corresponding to the rst stable part of the plot [seee.g, de Haan
and Ferreira ([12], Section 3)]. There have been a number of attempts at formalizing this
procedure, including Resnick and Staria [27], Dreest al. [13], and more recently El Methni
and Stup er [16, 17]. The Hill plot may be, however, so unstable that reasonable values

of k (which would correspond to estimates close to the true value o) may be hidden in
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the graph. The least squares analogue, , in (6) is, in contrast to p; n, based on ex-
pectiles that enjoy superior regularity properties compared to quantiles (see Proposition 1
in Holzmann and Klar [21]). One may thus expect that ; , aords smoother and more
stable plots compared to those of the Hill estimatop; «,. This advantage is illustrated
in Section A of the Supplementary Material document, where we examine the behavior of
p and r on two concrete actuarial and nancial data sets. It can be seen thereon that the

plots of k PNr; y, are indeed far smoother than the arguably wiggly plots df PNp; .

It could, however, happen thatr has a higher bias than the Hill estimator. This is for
instance the case if | is large, since a larg¢ | means that the underlying distribution is, in
its right tail, very close to a multiple of the Pareto distribution for which the Hill estimator
is unbiased. An e cient way to take advantage of the desirable properties of both and p
in a large class of models is by using their linear combination for estimating For PR,

we then de ne the more general estimator

—.pa: p, Pl o, (8)

We shall call this linear combination theexpectHill estimator For example, the simple mean

~ . p{2qwould represent an equal balance between the use of large asymmetric least squares
statistics in (6) and top order statistics in (7). The convergence of thexpectHill estimator

is, however, a highly non-trivial problem as it hinges, by construction, on both the tail
expectile and quantile processes. The explicit joint asymptotic Gaussian representation of
these two processes, obtained in Theorem 1, is a pivotal tool for our analysis, and enables us

to address the convergence problem in its full generality. We establish below the asymptotic
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normality of the expectHill estimator, along with its joint convergence with intermediate

sample quantiles and expectiles.
Theorem 3. Suppose that the conditions of Theorem 2 hold. Then, for anyPR,

a_ r .
il g~ pg o 1 W Npm Vg

wherem isthel 3vectorm : p b ;0;0qg with

1 1 2 1 1
L 1qp 9 p1 ququ—lq 5 )

b - pl g

andV isthe3 3 symmetric matrix with entries

V pl1q 22

Vpb2g pl qrp ' 1g 1 logp

V pal; 3q o OFp
p ' 1qg 2%

V 2 2q %V ®23q 21—1;V|08;3q12-

As an immediate consequence, we have for anyP R,

a__ .
npl g~ ,pq YI‘{Ipr;vqwherev V L 1g (20)

This remains valid if r _ is replaced in (8) by the continuous versiorg ., or any other

a — .
discretized versiorr ., provided npl ,qglogmmpl  ,qq{ N O.
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Remark 3. The optimal value of the weighting coe cient in (8), which minimizes the
asymptotic variancev of — p g only depends on the tail index and has the explicit

expression
Pl q pl 2gp ' 1q .
Pl g8 49 200 2qgp ! 1q

Its plot against P ®; 1{2qis given in Section B of the Supplementary Material document.

P4

It can be seen thereon that the simple mean pl{2qof p , andr , with 1{2, aords
a middle course betweep , — plgandr , — pOgin terms of asymptotic variance. In
terms of smoothness;”  pl{2qo ers a middle course as well, as shown in Section A of the

Supplementary Material document.

4 Extreme expectile estimation

In this section, we rst return to intermediate expectile estimation by making use of the
general class of estimatorst™ p qupr to construct alternative estimators for high expec-
tiles _ suchthat , N 1andnpl ,qN8 asn N8 . Then we extrapolate the obtained
estimators to the very high expectile levels that may approach one at an arbitrarily fast rate.
Alternatively to the asymmetric least squares estimatof = de ned in (5), one may use

the asymptotic connection p ! 1q q,, described in (4), to de ne the following

n

semiparametric estimator of | :

1 1 .Pd

P.pa: pq n,:

Even more generally, one may combine the two estimatoPs p qand " . to de ne, for PR,
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the weighted estimator

p; g: Ppagpl q',:

When 1, we recover the particular expectile estimator pq: B AL, gintroduced
in Daouia et al. [11]. The limit distribution of the more general variant _p; qcrucially

relies on the asymptotic dependence structure in Theorem 3 betweenp g g, and " .

Theorem 4. Suppose that the conditions of Theorem 2 hold. Then, for any PR,

a___ ; .
npl on 1 YW b rpl qg! logp ' 1gs pl g
where the bias componeri is b 101 2bp. with
1o 11 11
by Pl q - ap q p1 qpl 1qp q
p*' g p*' 1g 1
1 )
b, p ' 1q9Epfg 1pl qd g’ logp ' lgs—r ;
andp ; ; gis a trivariate Gaussian centered random vector with covariance matri{

as in Theorem 3.

Let us now extend the estimation procedure far into the right tail, where few or no
observations are available. This translates into considering the expectile level N 1
suchthatnpl g N cP10;8q, asn N 8 . To estimate the extreme expectile 1, the basic
idea is to extrapolate a consistent expectile estimator of intermediate ordey to the very

high level . To do so, note that on the one hand we have:{ , q:{q, in view of (4).

17



On the other hand, we have the classical Weissman extrapolation formula

q; Upd .q'q 1 ;
q, Upd .qlq 1 .

as , and ! approach one (Weissman [32]). Thus, we arrive at the expectile approximation

Sk
H
=}

By substituting our expectHill estimator — p qand the general weighted intermediate es-
, Wwe get the extrapolated expectile

timator _np; g respectively, in place of and

estimator
1 1 Pa
. (12)

The special case 1 corresponds to the estimator pq: - 1pl; g introduced by

Daouia et al. [11]. We extend this estimator by using the generalizeexpectHill estimator

~ _p ginstead of the Hill estimatorp ,. The next theorem gives the asymptotic behavior of

1P G

Theorem 5. Suppose that the conditions of Theorem 2 hold. Assume also that 0 and
- a____ o
npll  gNc 8 with npl ,q{logpl  .g{d gsN8. Then, forany ; PR,
2 pl P q
n nd 1P, v
: 1 Y N ;vq
logrpl  no{d  jas :

with pb ;v gas in (9) and (10).
One can observe that the limiting distribution of - 1p; qis controlled by the asymptotic

18



distribution of = p g This is a consequence of the fact that the convergence_onfp; qis
governed by that of the extrapolation factorpl ~ 'q{il ,gs P 9 The latter approximates
the theoretical factorrpl  g{dl  .gs in the extrapolation (11) at a slower rate than
both the speed of convergence 6fnp; gto ., given by Theorem 4, and the speed of
convergence to O of the bias term that is incurred by the use of (11) and that can be

controlled by Theorem 1.

5 Estimation of tail Expected Shortfall

This section aims to estimate both expectile- and quantile-based forms of Expected Shortfall,

1 ))1 1 1
XES : 1 (dt; QES : I g dt; (13)

»

at a very extreme security level that may approach one at an arbitrarily fast rate. To do
so, Daouiaet al. [11] have already suggested to start by estimating these risk measures at
an intermediate level , N 1 such thatnpl  ,q N 8 , before extrapolating the resulting
estimates to the far tail by making use of the traditional Hill estimatorp , of the tail index

Here, we extend their device by using the generalizespectHillestimator — p gin place of

p .. The following asymptotic connections, established in Proposition 3 of Daoug al. [11],

will prove instrumental in the estimation procedure.
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Proposition 1 (Daouiaet al., 2018b) Assume thatE]Y | 8 and thatY has a Pareto-type

distribution (2) with tail index O 1. Then
XES EfY|Y i s XES 1 EYIYi s .
_— = = d X N 1
QES g EN[Y;gs ™ 1

5.1 Expectile-based Expected Shortfall

Under the model assumptions thatE]Y | 8 and Y has a heavy-tailed distribution (2),
we wish to estimate an extreme value of the expectile-based form XESwhere }N 1 and

nil  *qNc 8 . By Proposition 1, we have

XES : 1 -
XES . as nN8 :

n

It follows from the approximation (11) that XES 1 "1 XES ,: Then, by replacing

with = p gand XES, with its empirical counterpart

XES i dt;
1T,
we obtain the extrapolated XES: estimator
1 1 I |
XES :p q: 1 . XES ,: (14)
n

One may also estimate XES by using the asymptotic equivalence XES p1 q?!

in Proposition 1. By substituting and : with their estimators — p qand _nlp; o
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described respectively in (8) and (12), we de ne the alternative XEg estimator
XES.p; g:rl1 — pags' ip; ¢ (15)

for the weights ; P R. A last option for estimating XES . is motivated by the di erent

asymptotic equivalence XES q—i QES ; in Proposition 1. This yields the XES; estimator

OES .p q_
XES .p; | : 16
P9 Q.0 q Py q (16)

for the estimatorsqnlp gofqg: and QESnlp qof QES, de ned as

1 1 pq
p:pq T n.; 17)
n
OES O S RV (18)
&p g 1 n tnpl nQu i1 noonn

In the special case 1, the latter estimators are identical to the popularg : estimator of
Weissman [32] and to the extrapolated QES estimator of El Methni et al. [15], respectively.
The next result provides the convergence of the three estimatoS ,p g XES ;p; ¢

and XES ,p; qof XES ;.
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Theorem 6. Assume that the conditions of Theorem 5 hold. Then, for any PR,

a__

npl «q XES 1p @ ' _
oo .o igs xEs, L W Nmivg
a _
npl  nq XES :p; ¢ ’ _
oo had s xes;  * W Nmivg
R XES .p:
and L o9 P 9w Np ;v q

logrpl  nag{f  Jds  XES;
with pb ;v gas in (9) and (10).

The three estimators share the same asymptotic behavior from a theoretical point of
view. However, our experience with simulated data in Section 6.2.1 indicates theES .p g
is more e cient in the case of real-valued pro t-loss distributions with heavy left and right
tails, while XES 1p; qaords advantageous estimates in the case of non-negative heavy-

tailed loss distributions.

5.2 Quantile-based Expected Shortfall

In this section, we return to the estimation of the usual form QES of tail Expected Short-
fall, for a pre-specied tail probability p, N 1 with npl p,g N ¢ 8 . The general-
ized Weissman-type estimatorQESpnp g de ned in (18), already provide a rst family of
weighted estimators. Here, we wish to derive alternative families of composite expectile-
based estimators from the three XES estimators introduced above, where!  ‘mnqis
to be determined. The starting point is the asymptotic equivalences QES ErY[Y j s
and XES; ErY|Y i :sin Proposition 1. The basic idea is then to pick out} so that

1 ,, and hence QE5, ~ XES ;. In this way, QES, inherits the extreme value esti-

n
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mators of XES; itself, namely XES ;p g XES ;p; qand XES 1p; qdescribed in (14),
(15) and (16). Yet, it remains to estimate the extreme expectile levefgp,q: . such that

1 O, It has been found in Proposition 3 of Daouiat al. [10] that such a level satis es

as nN8 :

1 Mmpng pil Pn0ig

under the model assumption of heavy tails (2) with tail index O 1. Built on our novel
expectHill estimator — p gof , we can then estimate *pp,qby

_.Pa.

mg: 1 pl p, L 19
PN g Pl pnag pq (19)

By substituting this estimated value in place of ‘mnq Lin the extrapolated estima-
tors XES ,p g XES .p; gand XES 1p; G we obtain composite estimators that estimate

XES : QES, : Note that the composite expectile-based estimatdXES 1qg, ob-
nmnq n

ppon ol
tained for the special weight 1, is actually identical to the quantile-based estimator
QES, p gde ned in (18).

The asymptotic properties of the extrapolated estimatorsKES ;p g XES 1p; gand
XES 1p; g stated in Theorem 6, still hold true for their composite versions as estimators

of QES,,, with the same conditions.
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Theorem 7. Suppose the conditions of Theorem 5 hold wil, in place of . Then, for

any ; PR,
i pl XESpip,P d
n nd ppon g ¢ .
1 YW N v
ogl  nofL PGS QES, v g
a__ _
npl nd XESg}pp qp; q ¢
. 1 YR N TV
logrpl  na{d pnQs QES,, v g
a__
XES X .
and AL g s 9 gy Np:vq

logrpl  hg{dl  pnQs QES,,

with b ;v gas in (9) and (10).

6 Numerical simulations

In order to illustrate the behavior of the presented estimation procedures of the tail in-
dex and the two expected shortfall forms XES and QES, , we consider the Student
t-distribution with 1{ degrees of freedom, the Fechet distributiorFpxqg e * * ; x i 0,
and the Pareto distribution Fpxg 1 x Y ; xj 1. The nite-sample performance of the
di erent estimators is evaluated through their relative Mean-Squared Error (MSE) and bias,
computed over 200 replications. All the experiments have sample size 500 and true tail
index P t0:35; 0:45u (motivated by our real data applications where the realized values of
were found to vary between (B5 and 045). In our estimators we used the extreme levels
I py 1 1{nand the intermediate level , 1 k{n, where the integerk can be viewed

as the e ective sample size for tail extrapolation. To save space, all gures illustrating our

simulation results are deferred to Section C of the Supplementary Material document.
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6.1 Estimation of the tail index

Our Monte-Carlo simulations in Supplement C.1 indicate that theexpectHill estimator
"1 kP G introduced in (8) with the weight 1{2, is more e cient relative to the stan-
dard Hill estimator p; n, given in (7), for both Student and Fechet distributions. In the
case of the real-valued Student distribution, it may be seen therein that, I({np%q performs
better than p; «, in terms of MSE, for all values ofk, without sacri cing too much qual-
ity in terms of bias, especially for the larger value of . We arrive at the same tentative
conclusion in the case of the Fechet distribution. By contrast, in the special case of the
Pareto distribution, the Hill estimator p; y;, is exactly the maximum likelihood estimator of
and is unbiased, whereas thexpectHill estimator —, k{np%q %Fpl kin 1 knQis biased
in this case. Unsurprisingly, the Monte Carlo results obtained here indicate thal; i, is

the winner.

6.2 Expected Shortfall estimation
6.2.1 Estimates of XES

Before comparing the nite-sample performance KES ,p gdescribed in (14),XES Py q
in (15) and XES ;p; qin (16), as estimators of XES:, we rst investigated the accuracy
of each estimator in terms of the associated weights and . Then we compared the
three estimators with each other by using the best choice ofand in each scenario; see
Supplement C.2. In particular, we arrive at the following tentative conclusionXES ;p g
seems to be the winner in the case of the real-valued Student distribution for 1, while

XES :p; qappears to be the most e cient in the case of the non-negative Fechet and
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Pareto distributions, for P t0:5; 1u and 1.

6.2.2 Estimates of QES

We have also undertaken simulation experiments to evaluate the nite-sample performance of

the composite expectile-based estimatobsES,,,, o ¢ XES gand XES

pimpn P ptpnals
studied in Theorem 7, with ppp,q being described in (19). They estimate the same con-
ventional expected shortfall QES as the direct quantile-based estimatoQESpn p gde ned
in (18). In Supplement C.3, we rst examined the accuracy of each estimator for various
values of and , and then we compared the four estimators with each other. We arrive at

the following tentative conclusions:

In the case of the (real-valued) Student distribution, the best estimator seems to be

XESgtppn P 0

In the cases of Fechet and Pareto distributions (both positive), the best estimators

seem to be, respectively)XES 0:5; lgand®ES, p 1g XES

Pt pon P P Pon oP

1 1g

6.2.3 Condence intervals for QES

By Theorem 7 we have

?
k XESpnlppn P a

logrk{npl pnQs QES,,

1 W Nppgvpaq

wherebp g: b andv pqg: v are described in (9) and (10), respectively. Under the

bias condition ; > 0in Theorem 2, the asymptotic bias in (9) reducestb p q O.
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With this condition, the (symmetric) expectile-based asymptotic con dence interval with
con dence level 108% has the form€l,pkq XESpim,qP d | ; wherel stands for the

interval
b

1 Zy sqp log 1 kP g {k ;

npl  pnq
with zy #qp being the pl ~ #qg{2 quantile of the standard Gaussian distribution. Like-
wise, the con dence intervals derived from the asymptotic normality oKES,, ;o g and

5\’(ES%lppn ;G in Theorem 7, can be expressed respectively as

Clerkg  XESppm s 9 1 Elugkg XESy,, P 9 |

Note also that the quantile-based con dence interval, derived from the asymptotic normality
of QES, p 4 XESyp, P: 1 is just Elxpkqfor 1. In Supplement C.4, we compared the
average lengths and the achieved coverages of the three 95% asymptotic con dence intervals

€l0.055kq Clo.gspkgand Elg.gspka It follows that

@I0;95|d<q performs best in the case of the Student distribution, for the selected weight

1

Elo.os0kq performs quite well in the case of the Fechet distribution, for the selected

weights 1 and 1;

Clo.gspkq performs quite well in the case of the Pareto distribution, for the selected

weights 1 and 0:5.
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7 Applications

This section applies our expectile-based method to estimate the tail expected shortfall on

medical insurance data and nancial returns data.

7.1 Medical insurance data

We rst illustrate the methodology via the Society of Actuaries group medical insurance
large claims data discussed in Beirlangt al. [3] and Daouiaet al. [11], among others. The
database containgh 75,789 claim amounts exceeding 25,000 USD, collected over the year
1991 from 26 insurers. The scatterplot and histogram of the log-claim amounts, shown in
Figure 1(a), clearly exhibit an important right-skewness. Beirlantet al. ([3], p.123) have
argued that the underlying distribution satis es the model assumption (2) with a estimate
around 035. A popular measure to assess the magnitude of future unexpected higher claim
amounts is the expected shortfall QES de ned in (13). Insurance companies typically
are interested in an extremely low exceedance probability, say 1p,  1{100,000, which
corresponds to a rare event that occurs on average only once every 100,000 cases.

In this setting of non-negative data with heavy right tail, our experience with simulated

data indicates that XES 0:5; 1gand QESpn p 1qg provide the best extrapo-

i pon P
lated pointwise estimates of the extreme value QESin terms of MSE and bias. As such,
these are the estimates we adopt here. For the sake of simplicity, they will be denoted by
XESp1,q 2nd ES, , respectively.

The evolution of the composite expectile-based estimatX{ES as a function of the

P PPN g

sample fractionk is represented in Figure 1(b) as rainbow curve, for the selected range of in-
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termediate values ok 10;11;:::;700. The e ect of theexpectHillestimate™; ,p  0:5q

on XES is highlighted by a colour-scheme, ranging from dark red (low; ,,,) to dark

A PPN g

violet (high =, ). This estimate seems to mainly vary within the intervalr0:35; 0:36s,

which corresponds to the stable (green) part of the plot. The curvie PNXES exceeds

pipen g

overall the sample maximumY,.,,  4:51 million (indicated by the horizontal pink dashed
line). To select a reasonable pointwise estimate, we applied a simple automatic data-driven

device that consists rst in computing the standard deviations ofXES over a mov-

At PP g

ing window large enough to cover 20% of the possible valueslofin the selected range
10 k & 700. Then thek where the standard deviation is minimal de nes the desired

sample fraction. The resulting estimateXES 5:99 million is obtained for the value

PPN g
k 208 in the windowrl119 25%.
The graph of the pure quantile-based estimato®ES, againstk is superimposed in the

same gure as dashed black curve. It is broadly similar to that oKES but the latter

B pon O
is smoother and more stable. The pointwise estima@ESpn 6:37 million is indicated by
the minimal standard deviation achieved akk 222 over the windowr119 25% It is more

pessimistic (in risk assessment terminology) thaKES 5:99 million, probably due to

PPN g

the instability of the quantile-based plot in dashed black.
Our experience with simulated data also indicates that reasonably good asymptotic 95%

con dence intervals for QES, , in terms of average lengths and achieved coverages, are pro-

vided by €l.95pkq constructed viaQESpn , and Clg.gspkgconstructed onX—ESmplon P 1;

0:5g The two con dence intervalsCly.gspkaand Elg.gspkgare superimposed in Figure 1(b) as

well, respectively, in dotted blue and solid grey lines. ThougBlq.espkq gives slightly more

pessimistic con dence bounds thafly.gs5pkg both con dence intervals point towards similar
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conclusions. In particular, the stable parts of their lower boundaries (arounkl P r10Q 500
remain quite conservative as they are very close to the maximum recorded claim amount.
We nally comment on the estimator plpp, g of the extreme expectile level g, qwhich

ensures thatXES is an asymptotically normal estimator for both XES;p,, q and QES, .

sifs o
The graph of ptp.q againstk is displayed in Figure 1(c) as rainbow curve, and the corre-
sponding optimal pointwise estimate is indicated by the horizontal dashed black line. As is
to be expected from (19), since our estimate of is less than {2, this selected optimal level
plpong  0:9999944 is higher than the pre-speci ed relative frequengy  0:99999 indicated

by the horizontal dashed pink line.

7.2 Financial returns data

In this section, we apply our method to estimate the ES for three large US nancial insti-
tutions. We consider the same investment banks as in the study of Cat al. [7], namely
Goldman Sachs, Morgan Stanley and T. Rowe Price. All of these banks had a market cap-
italization greater than 5 billion USD at the end of June 2007. The dataset consists of the
negative log-returnspY;q on their equity prices at a daily frequency during 10 years from
July 3rd, 2000, to June 30th, 2010. The choice of the frequency of data and time hori-
zon follows the same setup as in Cait al. [7] and Daouiaet al. [10]. This results in the
sample sizen 2513. We use our composite expectile-based method to estimate the stan-
dard quantile-based expected shortfall QES, or equivalently the expectile-based expected
shortfall XES 1,4 With an extreme relative frequencyp, 1 % that corresponds to a
once-per-decade rare event.

In this setting of real-valued pro t-loss distributions, our experience with simulated data
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Figure 1: (a) Scatterplot and histogram of the log-claim amounts. (b) The ES ploks PN
XESp 150, gP 0:5; 1g as rainbow curve, andk DNQESpnp 1gin dashed black, along
with the constant sample maximuny,., in horizontal dashed pink. The con dence intervals

Cly.ospkqin dotted blue lines and€lq.gspkqin solid grey lines. (c) The plot ofk bNptpp,qas
rainbow curve, along with the selected optimal pointwise estimate in horizontal dashed black
line, and the constant tail probabilityp, in horizontal dashed pink.

31



indicates that the composite estimatorXES,,, o ¢ provides the best QEG estimates in
terms of MSE and bias for the special weight 0, while it provides reasonably good
asymptotic 95% con dence intervals@lo:%pkqfor the di erent weight 1. In the estima-
tion, we employ the intermediate sequence, 1 k{n as before, for the selected range
of valuesk  1;:::;150. For our comparison purposes, we use as a benchmark the direct

quantile-based estimato®ES, p  1g XES 1; 1q of El Methni et al. [15],

o pon oP
as well as the corresponding asymptotic 95% con dence interv@l.gspkg We will denote

in the sequel the rival estimatesXES,, (p Og and QESpn p 1q simply as XESp:, 4
and QES, .

For each bank, we superimpose in Figure 2 the plots of the two estimat§&S and

pipen g
QESpn againstk, as rainbow and dashed black curves respectively, along with the competing
con dence intervals@lo;gg,pkqin dotted blue lines and&lq.gspkqin solid grey lines. The e ect

of the expectHill estimate =; ,p 0g ri kn on the estimate XES is highlighted

pipen g
by a colour-scheme, ranging from dark red (low; ) to dark violet (high ry k).
We have already provided some Monte Carlo evidence that the composite expectile-based

estimatesXES and con dence intervals@l0;95|d<q are e cient and accurate relative to

P PP d
the pure quantile-based estimate@QESpn and con dence intervals €lg.g5pkq respectively.
Their superiority in terms of plots' stability and con dence intervals' length can clearly be
visualized in Figure 2 for the three banks. The nal ES levels based on minimizing the
standard deviations of the estimates, computed over a moving window covering 20% of the
possible values ok, are reported in Table 1, along with the asymptotic 95% con dence

intervals of the ES. Based on the reliablXES estimates (in the second column), the ES

P Pon G

levels for Goldman Sachs and T. Rowe Price seem to be very close (arourd% to 34%),
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whereas the ES level for Morgan Stanley is almost twice higher (aroun®0%). The ES,
estimates (in the fourth column) point also towards similar pessimistic results. The lower
con dence bands (in third and fth columns) are themselves quite conservative since they
are almost equal to the maximum losses (in the last column) for the three banks.

The theory for our ES estimatorXES and for the estimator®ES, of EI Methni et

PR PN g
For this application to nancial returns, the potential serial dependence may then a ect
the estimation results. Similarly to our extreme value analysis under mixing conditions in
Daouia et al. [9], our convergence results may work under serial dependence with enlarged
asymptotic variances. A practical solution already employed by Caét al. [7] to reduce
substantially the potential serial dependence in this particular dataset is by using weekly
loss returns in the same sample period.¢. sums of the daily loss returns during each
week). This results in a sample of siza  522. The plots of the two estimates and the
asymptotic 95% con dence intervals, againsk P r1; 80s are superimposed in Figure 3 for the
three banks, along with the new sample maxima. The nal pointwise results are reported
in Table 2. By comparing the obtained estimates for the daily and weekly losses, it may be
seen that the results are qualitatively robust to the change from daily to weekly data. In

particular, the XES levels for Goldman Sachs and T. Rowe Price are still almost equal,

PR PPN g
while the estimated level for Morgan Stanley remains almost twice higher. Quantitatively,
these ES estimates are much more conservative: around0% to 43% for Goldman Sachs

and T. Rowe Price, and around 87% for Morgan Stanley.
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Figure 2: Results based on daily loss returns of the three investment banks: (a) Goldman
Sachs, (b) Morgan Stanley, and (c) T. Rowe Price, witlhn ~ 2513andp, 1 1{n. The

estimatesXESg,,, P Oqg as rainbow curve aanESpn p 1gas dashed black curve, along

with the asymptotic95% con dence intervals @Io;95|d<q in dotted blue lines andl g5k q in
solid grey lines. The sample maximun,., indicated in horizontal dashed pink line.
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Bank XES i o g €lo.05 QES,, Elo.os Yoin
Goldman Sachs 0.345 (0.210, 0.506) || 0.393 | (0.235, 0.544) || 0.210
Morgan Stanley 0.598 (0.376, 0.785) || 0.601 | (0.316, 0.984) || 0.299
T. Rowe Price 0.308 | (0.171, 0.411)|| 0.301 | (0.177, 0.437)|| 0.197

Table 1: ES levels of the three investment banks, with tl88% con dence intervals and the

sample maxima. Results based on daily loss returns, with 2513andp, 1 %

Bank XES st ppy €lo.05 OES,, Elo.os Yoin
Goldman Sachs || 0.436 | (0.194, 0.620)| 0.495 | (0.226, 0.680)|| 0.365
Morgan Stanley |  0.874 | (0.384, 1.305)| 0.883 | (0.366, 1.478)|| 0.904
T. Rowe Price 0401 | (0.213, 0.511)|| 0.407 | (0.216, 0.548)|| 0.305

S|

Table 2: Results based on weekly loss returns, with 522andp, 1

Supplementary Material

The supplement to this article contains simulation results along with the proofs of all our

theoretical results.
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