C. Acerbi, Spectral measures of risk: A coherent representation of subjective risk aversion, Journal of Banking & Finance, vol.26, issue.7, pp.1505-1518, 2002.
DOI : 10.1016/S0378-4266(02)00281-9

P. Artzner, F. Delbaen, J. Eber, and D. Heath, Coherent Measures of Risk, Mathematical Finance, vol.9, issue.3, pp.203-228, 1999.
DOI : 10.1111/1467-9965.00068

J. Beirlant, Y. Goegebeur, J. Segers, and J. Teugels, Statistics of Extremes: Theory and Applications, 2004.
DOI : 10.1002/0470012382

F. Bellini, B. Klar, A. Müller, and E. R. Gianina, Generalized quantiles as risk measures, Insurance: Mathematics and Economics, vol.54, pp.41-48, 2014.
DOI : 10.1016/j.insmatheco.2013.10.015

F. Bellini, D. Bernardino, and E. , Risk management with expectiles, The European Journal of Finance, vol.6, issue.3, pp.487-506, 2017.
DOI : 10.1016/j.jspi.2013.12.004

J. Breckling and R. Chambers, -quantiles, Biometrika, vol.75, issue.4, pp.761-772, 1988.
DOI : 10.1093/biomet/75.4.761

J. J. Cai, J. H. Einmahl, L. De-haan, and C. Zhou, Estimation of the marginal expected shortfall: the mean when a related variable is extreme, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.73, issue.2, pp.417-442, 2015.
DOI : 10.1016/j.insmatheco.2005.11.001

J. Daníelsson, P. Embrechts, C. Goodhart, C. Keating, F. Muennich et al., An Academic Response to Basel II. Special paper no. 130, Financial Markets Group, 2001.

A. Daouia, S. Girard, and G. Stupfler, Extreme M-quantiles as risk measures: From L 1 to L p optimization, Bernoulli (to appear) Available at https, 2017.

A. Daouia, S. Girard, and G. Stupfler, Estimation of tail risk based on extreme expectiles, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.26, issue.2, pp.263-292, 2018.
DOI : 10.1111/mafi.12080

URL : https://hal.archives-ouvertes.fr/hal-01311778

A. Daouia, S. Girard, and G. Stupfler, Tail expectile process and risk assessment , preprint. Available at https, 2018.

L. De-haan and A. Ferreira, Extreme Value Theory: An Introduction, 2006.
DOI : 10.1007/0-387-34471-3

H. Drees, L. De-haan, and S. Resnick, How to make a Hill plot, The Annals of Statistics, vol.28, issue.1, pp.254-274, 2000.
DOI : 10.1214/aos/1016120372

URL : https://doi.org/10.1214/aos/1016120372

W. Ehm, T. Gneiting, A. Jordan, and F. Krüger, Of quantiles and expectiles: consistent scoring functions, Choquet representations and forecast rankings, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.5, issue.3, pp.505-562, 2016.
DOI : 10.1175/2010MWR3229.1

URL : http://onlinelibrary.wiley.com/doi/10.1111/rssb.12154/pdf

E. Methni, J. Gardes, L. Girard, and S. , Nonparametric estimation of extreme risks from conditional heavy-tailed distributions, Scand, J. Stat, vol.41, pp.988-1012, 2014.

E. Methni, J. Stupfler, and G. , Extreme versions of Wang risk measures and their estimation for heavy-tailed distributions, pp.907-930, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01313675

E. Methni, J. Stupfler, and G. , Improved estimators of extreme Wang distortion risk measures for very heavy-tailed distributions, Econometrics and Statistics, vol.6, pp.129-148, 2018.
DOI : 10.1016/j.ecosta.2017.03.002

URL : https://hal.archives-ouvertes.fr/hal-01406342

P. Embrechts, C. Klüppelberg, and T. Mikosch, Modelling of extremal events in insurance and finance, ZOR Zeitschrift f???r Operations Research Mathematical Methods of Operations Research, vol.73, issue.1, 1997.
DOI : 10.1007/978-3-662-02847-6

P. Hall and A. W. Welsh, Adaptive Estimates of Parameters of Regular Variation, The Annals of Statistics, vol.13, issue.1, pp.331-341, 1985.
DOI : 10.1214/aos/1176346596

URL : http://doi.org/10.1214/aos/1176346596

B. M. Hill, A Simple General Approach to Inference About the Tail of a Distribution, The Annals of Statistics, vol.3, issue.5, pp.1163-1174, 1975.
DOI : 10.1214/aos/1176343247

H. Holzmann and B. Klar, Expectile asymptotics, Electronic Journal of Statistics, vol.10, issue.2, pp.2355-2371, 2016.
DOI : 10.1214/16-EJS1173

URL : http://doi.org/10.1214/16-ejs1173

R. Koenker and G. S. Bassett, Regression Quantiles, Econometrica, vol.46, issue.1, pp.33-50, 1978.
DOI : 10.2307/1913643

V. Krätschmer and H. Zähle, Statistical inference for expectile-based risk measures , Scand, J. Stat, vol.44, pp.425-454, 2017.

C. Kuan, J. Yeh, and Y. Hsu, Assessing value at risk with CARE, the Conditional Autoregressive Expectile models, Journal of Econometrics, vol.150, issue.2, pp.261-270, 2009.
DOI : 10.1016/j.jeconom.2008.12.002

W. K. Newey and J. L. Powell, Asymmetric Least Squares Estimation and Testing, Econometrica, vol.55, issue.4, pp.819-847, 1987.
DOI : 10.2307/1911031

S. Resnick, Heavy-Tail Phenomena: Probabilistic and Statistical Modeling, 2007.

S. Resnick and C. St?-aric?-a, Smoothing the Hill Estimator, Advances in Applied Probability, vol.12, issue.01, pp.271-293, 1997.
DOI : 10.1214/aos/1176349551

URL : http://ecommons.cornell.edu/bitstream/1813/8996/1/TR001114.pdf

R. T. Rockafellar and S. Uryasev, Optimization of conditional value-at-risk, The Journal of Risk, vol.2, issue.3, pp.21-42, 2000.
DOI : 10.21314/JOR.2000.038

URL : http://www.smartquant.com/references/var/var20.pdf

R. T. Rockafellar and S. Uryasev, Conditional value-at-risk for general loss distributions, Journal of Banking & Finance, vol.26, issue.7, pp.1443-1471, 2002.
DOI : 10.1016/S0378-4266(02)00271-6

URL : http://www.math.washington.edu/~rtr/papers/rtr-CVaR2.pdf

F. Sobotka and T. Kneib, Geoadditive expectile regression, Computational Statistics & Data Analysis, vol.56, issue.4, pp.755-767, 2012.
DOI : 10.1016/j.csda.2010.11.015

J. Taylor, Estimating Value at Risk and Expected Shortfall Using Expectiles, Journal of Financial Econometrics, vol.6, issue.2, pp.231-252, 2008.
DOI : 10.1093/jjfinec/nbn001

I. Weissman, Estimation of parameters and large quantiles based on the k largest observations, J. Amer. Statist. Assoc, vol.73, pp.812-815, 1978.
DOI : 10.1080/01621459.1978.10480104

J. F. Ziegel, COHERENCE AND ELICITABILITY, Mathematical Finance, vol.16, issue.3, pp.901-918, 2016.
DOI : 10.1111/j.1467-9965.2006.00277.x

URL : http://arxiv.org/pdf/1303.1690.pdf