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Abstract

The MLGL R-package, standing for Multi-Layer Group-Lasso, implements a new pro-
cedure of variable selection in the context of redundancy between explanatory variables,
which holds true with high dimensional data.

A sparsity assumption is made that is, only a few variables are assumed to be relevant
for predicting the response variable. In this context, the performance of classical Lasso-
based approaches strongly deteriorates as the redundancy strengthens.

The proposed approach combines variables aggregation and selection in order to im-
prove interpretability and performance. First, a hierarchical clustering procedure provides
at each level a partition of the variables into groups. Then, the set of groups of variables
from the different levels of the hierarchy is given as input to group-Lasso, with weights
adapted to the structure of the hierarchy. At this step, group-Lasso outputs sets of can-
didate groups of variables for each value of regularization parameter.

The versatility offered by MLGL to choose groups at different levels of the hierarchy a
priori induces a high computational complexity. MLGL however exploits the structure of
the hierarchy and the weights used in group-Lasso to greatly reduce the final time cost.
The final choice of the regularization parameter – and therefore the final choice of groups
– is made by a multiple hierarchical testing procedure.

Keywords: penalized regression, correlated variables, hierarchical clustering, group selection,
R.

1. Introduction
In the high-dimensional setting where the number of variables p is larger than the sample
size n, variable selection becomes a challenging problem which is often addressed by regu-
larization procedures such as Lasso (Tibshirani 1994; Tibshirani, Saunders, Rosset, Zhu, and
Knight 2005; Yuan and Lin 2006). These procedures have become very popular since they are
specifically designed to select a subset of the explanatory variables for predicting the response.
Nevertheless, high dimension raises several problems such as the high correlation level between
variables. For instance correlation can be responsible for the apparent instability of the se-
lected variables which can change from one draw to another (Meinshausen and Bühlmann
2010). The present work tackles the problem of variable selection in the high-dimensional
setting with a strong correlation between explanatory variables.
Let X denote a n × p matrix where each column vector Xj ∈ Rn (1 ≤ j ≤ p) corresponds to
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the values of the jth variable measured on n individuals. The quantitative response vector
y ∈ Rn is then related to X through the linear regression model

y = Xβ∗ + ϵ, (1)

where ϵ ∼ Nn(0, σ2In) is a Gaussian vector (noise), and β∗ ∈ Rp is the parameter vector
encoding the influence of each of the p candidate variables on the response y. The intercept
of the regression model is removed by assuming Xj is centered for all j = 1, . . . , p.
Moreover, the parameter vector β∗ is assumed to be sparse that is, the cardinality of its
support S∗ = S(β∗) = {1 ≤ j ≤ p | β∗

j ̸= 0} is such that

Card(S∗) = k ≪ p.

This is consistent with the goal of identifying a small subset of interpretable (groups of)
variables which turn to be relevant in explaining the response.

The first naive approach for estimating β∗ from (1) is to compute the minimizer of the least
squares error

β̂LS ∈ argmin
β∈Rp

{1
2∥y − Xβ∥2

2

}
.

However in the present high-dimensional context where p ≫ n, there are infinitely many
solutions to this problem and most of them are certainly not sparse.
The Lasso procedure (Tibshirani 1994) is generally used to perform variable selection in this
high-dimensional setting. Unlike the above least squares minimization problem, a regulariza-
tion term consisting of the ℓ1-norm of the estimated vector (the penalty) is added to get a
unique and sparse solution to the following optimization problem:

β̂Lasso
λ = argmin

β∈Rp

{1
2∥y − Xβ∥2

2 + λ∥β∥1

}
,

where λ > 0 is called the regularization parameter and controls the amount of shrinkage.
For instance, a large value of λ yields an estimator with only a few non-zero coefficients. In
practice, the calibration of λ can be done by means of V -fold cross-validation (Arlot and
Celisse 2010) or various information criteria such as AIC, BIC, . . .
Although (asymptotic) consistency results on the selected variables have been proven (Zhao
and Yu 2006), establishing such consistency results with highly correlated variables remains
highly challenging or even impossible if the correlation is too strong (Wainwright 2009).
Intuitively, Lasso selects one (or a few) variable(s) among each group of correlated variables
as long as the correlation is strong enough, even if all these variables belong to the true
support S∗. In such a case grouping correlated variables turns out to be necessary to select
meaningful groups of influential variables. The group-Lasso (Yuan and Lin 2006) was precisely
developed for taking into account the a priori knowledge of groups of (correlated) variables.
More precisely given a partition of the p candidate variables into g groups G = {G1, . . . , Gg},
the group-Lasso estimator is defined by

β̂G
λ = argmin

β∈Rp

{
1
2∥y − Xβ∥2

2 + λ
g∑

i=1
wi∥βGi∥2

}
,
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where λ > 0 is the regularization parameter, and wi > 0 denotes the weight associated with
the group Gi (generally wi =

√
Card(Gi)). Obviously, the statistical performance of the

group-Lasso estimator strongly depends on the partition G that has to be known a priori.
When no such knowledge is available regarding groups of correlated variables, a preliminary
step aiming at providing a meaningful partition of the candidate variables is crucial.

Several strategies such as first grouping candidate variables and then selecting groups by Lasso
or group-Lasso have been studied in the literature. Most of them rely on hierarchical cluster-
ing at the first stage where only one level of the hierarchy is chosen (resulting in a partition of
the candidate variables). For example Park, Hastie, and Tibshirani (2007) perform hierarchi-
cal clustering first. Then Lasso is successively applied to each level of the hierarchy where each
candidate group is summarized by a representative variable. Both the hierarchy level and the
subset of groups from the corresponding partition are selected by cross-validation. By con-
trast, Cluster Representative Lasso and Cluster Group-Lasso (Bühlmann, Rütimann, van de
Geer, and Zhang 2013) apply hierarchical clustering and choose first one particular level of
the hierarchy. Then groups from this partition are selected either by using Lasso (applied to
representative variables of each group) or by using the corresponding partition as an input
of group-Lasso. Let us also mention alternative strategies such as Supervised Group-Lasso
(Ma, Song, and Huang 2007) and Cluster Elastic Net (Witten, Shojaie, and Zhang 2014)
to name but a few. One main contribution of the present work is to relax the dependence
of the final selected (groups of) variables on a particular level of the hierarchy. The main
asset is some robustness to possible mistakes resulting from the iterative clustering process.
Our procedure combines hierarchical clustering and group selection by allowing group-Lasso
for selecting groups from different hierarchy levels that is, from different partitions of the
candidate variables.

The following of the paper is organized as follows. Section 2 introduces the whole procedure
that is successively based on hierarchical clustering (AHC), group-Lasso (gLasso), and a
post-treatment selection involving hierarchical multiple testing (HMT). Then, the usage of
the R package MLGL is described in Section 3. The statistical performance of the procedure
is assessed in Section 4 by comparison to alternative ones. Finally, some conclusions and
perspectives are discussed in Section 5.

2. Overview of the MLGL package
Generally group-Lasso is applied with only one prescribed partition of the variables into
groups (corresponding in the present context to one particular level of the hierarchy). One
main originality of the present package is to select groups of variables by applying group-
Lasso to several partitions at the same time. A possible resulting issue is the presence of
overlapping groups in the partitions given as inputs to group-Lasso.
The whole procedure implemented in the MLGL package (standing for Multi-Layer Group-
Lasso) consists of four main steps:

1. Building a hierarchy (Bootstrap hierarchical clustering),

2. Computing the path of groups selected by group-Lasso with respect to λ > 0 (the
regularization parameter),
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Figure 1: Dendrogram obtained using a hierarchical algorithm.

3. Performing hierarchical multiple testing (HMT) to remove false positive groups for each
λ,

4. Tuning λ to select the final groups of influential variables.

These different steps are detailed in what follows.

2.1. Building a hierarchy
Two main families of methods co-exist for performing (unsupervised) clustering: hierarchical
clustering algorithms and the so-called partitional algorithms (see Jain, Murty, and Flynn
(1999) for a review). The main difference lies in that partitional algorithms return only
one partition of the candidate variables into a prescribed number of groups (k-means for
instance), whereas hierarchical clustering algorithms yield a nested hierarchy of partitions of
the candidate variables. This hierarchy can be represented by a dendrogram (Figure 1), so
that each hierarchy level defines a partition of the candidate variables into groups. Moreover
the hierarchy enjoys the property that each group at a given level can be split into sub-groups
located at different sub-levels of this hierarchy as illustrated by Figure 1.
The general process of hierarchical clustering is summarized in Pseudo-code 1. A similarity

Pseudo-code 1 Ascendent Hierarchical Clustering (AHC)
Input: Candidate variables, similarity measure

Compute the distance matrix between all variables.
Place each variable in its own group.
repeat

Aggregate the two nearest groups according to the similarity measure.
until all the variables belong to the same group.

Output: Dendrogram

measure has to be specified and determines the order in which (groups of) variables will be
aggregated. Classical similarity measures are the Ward’s criterion (which minimizes the total
within-group variance) and the average linkage (which aggregates the two groups minimizing
the average distance between each pair of points (one from each group)).
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In the following, individuals are split to perform the different tasks of the method. In order to
reduce the impact of this splitting, the distance matrix required by AHC is computed using
bootstrap resampling (cf. Pseudo-code 2).

Pseudo-code 2 Distance Matrix Computation by Bootstrap
Input: Candidate variables

for b =, 1 . . . , B do
Draw n/2 individuals with replacement
Compute the distance matrix D(b) between all variables

end for
Compute D the mean matrix of {D(b)}b=1,...,B

Output: D the mean distance matrix

Considering the level s ∈ {1, . . . , p} of the hierarchy where the variables are partitioned into
s groups, let hs denote the value of the similarity measure between the two groups merged
for obtaining the partition with s groups, and the jump size ls = hs−1 − hs (see Figure 1).
Choosing the number of groups can be performed following the highest jump rule, which
consists in choosing the partition Gŝ such that

ŝ = argmax
s

{ls}.

Intuitively, a large value of ls indicates that the groups merged from level s to s − 1 were far
apart according to the similarity measure. This explains why the partition with s groups is
usually preferred in this setting.
In the MLGL package, there is no need to choose the number of groups output from the
hierarchical clustering since all levels of the hierarchy are kept as an input of group-Lasso.
The latter selects simultaneously the number of groups as well as the groups. Nevertheless,
the jump sizes are exploited as weights within the group-Lasso procedure, which turns out to
reduce the whole computational cost (see Section 2.2).

2.2. Computing the path of candidate groups

One main originality of the MLGL package is to simultaneously provide the groups from all
levels of the hierarchy as an input to group-Lasso. The resulting procedure should be less
sensitive to possible mistakes induced by the iterative clustering process.
Since no selection of a particular hierarchy level is made, numerous overlapping groups arise
in the input of group-Lasso. With overlapping groups, Jacob, Obozinski, and Vert (2009)
designed a overlap group-Lasso penalty and expressed it in such a way they could apply
classical algorithms to minimize the group-Lasso problem to solve the overlap group-Lasso
problem. The trick is exposed in what follows.
From a collection G = {G1, . . . , Gg} of g ∈ N∗ groups of indices such that Gi ⊂ {1, . . . , p},
for all i = 1, . . . , g, let us introduce XGi as the n × card(Gi) matrix obtained by concate-
nating the columns of X corresponding to variables with indices in Gi. Let also XG =
[XG1 , XG2 , . . . , XGg ] denote the n × l extended design matrix defined as the concatenation of
the matrices XG1 , XG2 , . . . , XGg , where l = ∑g

i=1 card(Gi). Then the overlap group-Lasso es-
timator built from the design matrix X and the collection G can be expressed as a group-Lasso
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estimator with extended design matrix XG as

β̂G
λ = argmin

β∈Rpl

{
1
2∥y − XGβ∥2

2 + λ
g∑

i=1
wi∥βGi∥2

}
, (2)

where λ > 0 is the regularization parameter and wi denotes a weight associated with Gi. This
rephrasing allows for using all the partitions output by the hierarchical clustering as an input
of group-Lasso.
Considering the dendrogram output by hierarchical clustering, let Gs be the partition of the
p candidate variables into s groups, for 1 ≤ s ≤ p, and G∗ = ∪p

s=1Gs denote the union of all
the partitions at the different levels of the hierarchy. Then (2) applied with G = G∗ leads to

β̂G∗
λ = argmin

β∈Rp2

{
1
2∥y − XG∗β∥2

2 + λ
p∑

s=1
ρs

gs∑
i=1

ws
i ∥βGs

i
∥2

}
, (3)

where Gs
i is the ith group of the partition Gs and Gs = ∪gs

i=1Gs
i , XG∗ = [X, . . . , X︸ ︷︷ ︸

p times

] denotes

the corresponding extended design matrix, and ρs is a weight encoding how likely Gs is a
meaningful partition of the candidate variables.
It is worth noticing that (3) shows that the present approach is included in the general
framework described in Jenatton, Audibert, and Bach (2011), where penalties are designed
to define groups according to a prescribed structure in the support of β∗.

Choice of ρs For s = 1, . . . , p, ρs is a weight reflecting the quality of the partition Gs. This
weight must weakly penalize a “good” partition and heavily penalize a “bad” one. The MLGL
package uses a weight ρs inspired from the somewhat classical highest jump rule that is, a
small weight is given to partitions with a large jump size ls. More precisely,

ρs = 1√
ls

· (4)

It is important to keep in mind that this definition of ρs promotes the selection of groups
belonging to the partition with the largest jump size. But the described procedure remains
free to select groups from different partitions (from different hierarchy levels).

Storage improvement From the reformulation in (3), it clearly arises that several dupli-
cations of the n × p design matrix X are used. The extended design matrix XG∗ has size
n × p2 when all the levels from the hierarchy are kept as an input. In usual high-dimensional
settings, the p2 columns induce a prohibitive computational cost both in space and time.
Therefore, the MLGL package exploits the redundancy of the partitions along the hierarchy
to drastically reduce the computational costs.
On the one hand, let us notice that two successive partitions from a hierarchy — say Gs and
Gs−1 the ones with respectively s and s − 1 groups — share s − 2 common groups: At each
step of the hierarchical clustering process, only two groups are aggregated while the others
remain unchanged. On the other hand, these groups (which remain the same from a level
Gs−1 to the next one Gs) are penalized with a different weight depending on the partition
they belong to. More precisely, each such group is weighted once with ρs and once with ρs−1.
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The following Lemma 1 establishes that if ρs−1 ̸= ρs, then only the group with the smallest
weight has a chance to be selected. The proof is given in Appendix A.

Lemma 1. With the notations of (2), let G denote any collection of g subsets (groups) o
{1, . . . , p} that are not necessarily disjoint and assume that there exist G1, G2 ∈ G such that
G1 = G2, with w2 > w1 > 0.
Then the solution β̂G

λ ∈ Rl of (2) satisfies that the subset of its coordinates corresponding to
G2 is equal to zero that is, (β̂G

λ )G2 = 0.

From several copies of the same group with different weights, only the one with the smallest
weight is worth considering according to Lemma 1. This justifies simplifying the optimization
problem from (3) to drastically reduce the induced computational costs.

Let us define Gu
∗ as the collection of all the distinct groups output from hierarchical clustering

(without including copies) that is,

Gu
∗ =

2p−1⋃
i=1

Gu
i , such that ∀1 ≤ i ̸= j ≤ 2p − 1, Gu

i ̸= Gu
j .

This new collection Gu
∗ exactly contains 2p − 1 distinct groups: p groups made of one variable

from the pth level of the hierarchy (the leaves of the dendrogram), and one new group from
each other level (there are p − 1 of them). The resulting extended design matrix XGu

∗ is
clearly less space demanding than the former XG∗ . Consistently with the above remarks, the
optimization problem from (3) can be equivalently reformulated as

β̂
Gu

∗
λ = argmin

β

1
2∥y − XGu

∗ β∥2
2 + λ

2p−1∑
i=1

ρu
i wu

i ∥βGu
i
∥2

 , (5)

with λ > 0 the regularization parameter, wu
i the weight associated with Gu

i , and ρu
i the

smallest weight associated with one partition containing Gu
i , that is

ρu
i = min {ρs | s ∈ 1, . . . , p such that Gu

i ∈ Gs} .

Since this simplified problem is an instance of group-Lasso as earlier discussed at (2), the
MLGL package solves (5) by means of classical optimization algorithms solving the group-
Lasso problem (Yang and Zou 2015). In particular, such an algorithm gives access to the
whole path λ 7→ β̂

Gu
∗

λ of the candidate groups selected by group-Lasso for each λ.

2.3. Hierarchical multiple testing

For each λ ∈ Λ (Λ denotes the set of candidate regularization parameters), the previous
step returns a set of selected groups of variables from which, most of the time, an additional
filtering step is required for two main reasons. First, it is well known that in the high-
dimensional context where the number of (groups of) variables is larger than n and only a
few candidate variables are likely to be influential (sparsity assumption), then Lasso and its
extensions can only identify most of the true variables at the price of including false positives
among the selected ones (Wainwright 2009; Barber, Candès et al. 2015). Second, the solution
of (5) contains groups potentially located at different levels of the hierarchy. Furthermore



8 MLGL R package

some groups can even be sub-groups of some others as explained by Figure 2 (redundancy of
groups). Then choosing which one from the group or its sub-group should be selected has to
be done by an additional dedicated step.
For all these reasons, the MLGL package applies a hierarchical multiple testing procedure
(HMT) which selects the final groups for each value of λ. The choice of the regularization
parameter λ is discussed in Section 2.4. The next two paragraphs review the main goals the
HMT procedure achieves for a given value of λ: (i) reducing the number of selected groups,
and (ii) avoiding the redundancy of groups.

Reducing the number of groups
With Lasso, Wasserman and Roeder (2009) suggest to perform a least squares estimation
of the coefficients of the selected variables, so that they test the nullity of each coefficient
by means of multiple testing procedures. Adjusted p-values are computed for controlling the
Family-Wise Error Rate (FWER) (Dunn 1959) or the False Discovery Rate (FDR) (Benjamini
and Hochberg 1995).
With group-Lasso, it can happen that more variables than individuals are selected at a given
λ value (in particular when λ is very close to 0). A least squares estimation cannot be directly
performed in this situation. This issue can be overcome by first summarizing each selected
group by one representative variable and then performing least squares estimation using these
representative variables. Note that this is always possible since the number of selected groups
cannot be larger than the number of individuals (Liu and Zhang 2009).
In the MLGL package, the representative variable summarizing each group output by group-
Lasso is first computed by means of the first principal component. Then, the least squares
estimators of the coefficients of each representative variable are computed. Finally, all p-
values resulting from the test of the nullity of the estimated coefficients are corrected following
Bonferroni’s procedure (Dunn 1959), which allows for controlling the FWER. This three-step
procedure is described by Pseudo-code 3.

Pseudo-code 3 Reducing the number of groups
Input: Groups selected by group-Lasso for a given λ: Gλ

1 , . . . , Gλ
m

1) Compute the first principal component Ẋi of XGi , for all i = 1, . . . , m.
2) From Ẋ = [Ẋ1, . . . , Ẋm] and the model y = Ẋβ̇ + ϵ,

compute β̂ the least-squares estimator of β̇.
3) Test the nullity of the coefficients, apply the multiple testing correction to the corre-
sponding p-values (Dunn 1959), and reject all null hypotheses with an adjusted p-value
lower than the prescribed level.

Output: The set of rejected null hypotheses.

Avoiding the redundancy of groups
As exposed in Section 2.2, the MLGL package allows for selecting groups from different levels
of the hierarchy, which especially arises with small values of λ. It can therefore happen that
one selected group is included in another one. It is then desirable to select only this group or
its subgroup, but not both of them. This can be achieved by applying a hierarchical testing
procedure (HTP) (cf. Appendix C) for controlling the FWER (Meinshausen 2008).
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The intuitive idea is to select the smallest possible groups of variables with a significant effect
on the response variable. In particular this would avoid including a large group of variables
with only a few of them being truly influential ones.
From a hierarchical tree (see Figure 2a), the importance of groups is tested sequentially with
partial F-tests (cf. Appendix B), which have been extensively used in the context of nested
models in multiple linear regression problems (Jamshidian, Jennrich, and Liu 2007). The
importance of a group G of variables is tested with the following hypotheses:

H0,G : βG = 0, versus H1,G : ∃i ∈ G, βi ̸= 0,

where βi is the coefficient corresponding to the variable index i ∈ G, and βG = 0 encodes
that the group G has no influence on the response y.
HTP starts by testing the group containing all the variables at the top of the hierarchical
tree. Then, for any rejected null hypothesis H0,G, the null hypotheses associated with the
children of group G (subgroups of G) are subsequently tested. The process is repeated until
no more null hypothesis is rejected. Each computed p-value is adjusted following Bonferroni’s
procedure for controlling the FWER (Dunn 1959).

The MLGL processing of the candidate groups

Let us consider the collection of candidate groups selected at the end of Section 2.2 for a
given value of λ. At this stage, the MLGL package faces the two problems mentioned above
that is, multiplicity and redundancy. This is the goal of the HMT procedure implemented in
the MLGL package to overcome these problems.
More precisely the HMT procedure starts by splitting the selected groups into d disjoint
hierarchical trees (denoted by Ti, i = 1, . . . , d) and one set S of candidate groups with no
hierarchical structure (see Example 1).

Example 1 (Separate the selected groups in hierarchical trees). Let us consider a hierarchy
built from 6 variables with groups as follows: G1 = {1, 2, 3, 4, 5, 6}, G2 = {1, 2}, G3 =
{3, 4, 5, 6}, G4 = {1}, G5 = {2}, G6 = {3, 4, 5}, G7 = {6}, G8 = {3}, G9 = {4, 5}, G10 = {4},
G11 = {5}. The resulting hierarchy is displayed in Figure 2a.
For a specific value of λ, let us assume that the groups G4, G6, G7, and G10 are selected (see
Figure 2b).
Then the HMT procedure defines one set S = {G4, G7} and one hierarchical tree T1 =
{G6, G10}, where G10 ⊂ G6.

An important remark is that hierarchical trees must be complete that is, each group in the
tree Ti is either a leaf (a group without any subgroups) or the union of its subgroups. This is
a necessary requirement of our strategy since the importance of a candidate group G is tested
through its leaves (subgroups of G without any children). If a group (which is not a leaf) is
not the union of its children in the hierarchical tree, then the hierarchical testing procedure
of Meinshausen (2008) cannot be properly applied. Therefore, some groups are added to the
hierarchical tree for completing hierarchies which are not complete (see Example 2).

Example 2 (Complete a hierarchical tree). The groups G6 = {3, 4, 5} and G10 = {4} from
the hierarchical tree T1 in Example 1 do not form a complete hierarchy (G6 is not equal to
the union of its subgroups).
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(a) Hierarchical tree from Example 1 (b) Selected groups from Exam-
ple 1

Figure 2: Illustration from Example 1.

The group Ḡ10 = {3, 5} is then defined as the complement of G10 within G6, which leads to
the new (full) hierarchical tree T̄1 = {G6, G10, Ḡ10}.

The completed hierarchical trees are denoted by T̄1, . . . , T̄d.

Pseudo-code 4 Hierarchical testing procedure for one tree
Input: Any T ∈ {T1, . . . , Td}.

Complete hierarchical trees Add missing groups to the hierarchical tree T to get a
complete tree T̄ .
Summarize the influence of each group Compute the first principal component of
each group in the tree T̄ . The resulting hierarchical tree is denoted by Ṫ .
Hierarchical testing Apply the HTP of Meinshausen (2008) to the tree Ṫ for a prescribed
level of control using a partial F-test.

Output: Selected groups from Ṫ .

In addition, applying the HTP from Meinshausen (2008) also requires to summarize each
group within each hierarchical tree by a representative variable. This is done by the MLGL
package by computing the first principal component of each group. The new corresponding
trees are denoted by Ṫ1, . . . , Ṫd. Therefore the HTP of Meinshausen (2008) is applied to
Ṫ1, . . . , Ṫd (see Pseudo-code 4).

Controlling the FWER level With the same notation as Section Storage improvement,
let us define the cardinality of any hierarchical tree as the number of leaves it contains, and set
m = |S|+∑d

i=1 |Ṫi|, where |A| denotes the cardinality of the set A. Then, the HMT procedure
implemented in the MLGL package controls the FWER of the tree Ṫi (Pseudo-code 4) at level
α|Ṫi|

m , and that of the set S at level α|S|
m . It results that the global HMT procedure described
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Pseudo-code 5 Hierarchical multiple testing (HMT) for a given regularization level
Input: List of groups selected after the group-Lasso step for a given λ ∈ Λ
(Λ: set of candidate regularization parameters).

Define hierarchical trees Split the groups into hierarchical trees T1, . . . , Td and the set
S.
Set m = |T1| + · · · + |Tj | + |S|.
Testing procedure for hierarchical trees For each hierarchical tree Ti for i = 1, . . . , d,
apply Pseudo-code 4 to get the global control level α×|Ti|

m .
Testing procedure for groups not belonging to a tree For the set S, apply Pseudo-
code 3 to get the global control level α×|S|

m .

by Pseudo-code 5 truly controls the FWER at the overall prescribed level 0 < α < 1 for a
given λ.

Avoiding over-fitting In order to avoid overfitting, it is necessary to use different individ-
uals for using group Lasso and applying the hierarchical testing procedure. A similar splitting
strategy was performed in Wasserman and Roeder (2009).
The set I = {1, . . . , n} of indices associated with individuals is randomly split into two
parts of equal size n′ = n

2 , say I1 and I2. Then group-Lasso is applied from the individuals
in I2 and the previously computed hierarchy. Finally, the whole HMT procedure (namely
Pseudo-code 5) is applied for the individuals from I1. By comparison, let us notice that
the hierarchical clustering step of the whole procedure is performed using a distance matrix
computed by bootstrapping on I. In order to ease the understanding, the whole procedure
consisting of “AHC+gLasso+HMT” is summarized in Pseudo-code 6.

Pseudo-code 6 AHC+gLasso+HMT
1) Randomly split the sample indexed by I into two subsets of equal cardinality n′ = n

2 :
I1 and I2.
2) Perform AHC of candidate variables using the distance matrix computed by bootstrap.
3) Perform group-Lasso (5) from I2.
4) Apply the HMT procedure (namely Pseudo-code 5) from I1.

2.4. Selecting the final groups by choosing λ

The groups output at the previous steps of the MLGL package (AHC+gLasso+HMT) depend
on the value of the regularization parameter λ ∈ Λ, which is a crucial choice. Several papers
have raised the problem of choosing the value of λ in penalized regression frameworks (Fan
and Tang 2013; Sun, Wang, and Fang 2013). For instance, resampling-based approaches
have been suggested. Among them, choosing the value of λ which yields the most stable
selected variables have been explored by Meinshausen and Bühlmann (2010), which intensively
relies on bootstrap. An alternative consists in tuning λ by means of V -fold cross validation
(Arlot and Celisse 2010). However both these approaches are highly time-consuming due
to the multiple executions they require. Moreover V -fold cross-validation is more suited to
the estimation/prediction purpose than to the identification/selection of influential variables.



12 MLGL R package

This aspect arises more clearly in difficult settings where the signal-to-noise ratio becomes
small. Then, V -fold cross-validation tends to include superfluous variables (false positives).
Furthermore information criteria such as AIC (Akaike 1974) and BIC (Schwarz 1978) need
an estimator of both the degrees of freedom and the unknown variance σ2 (Giraud, Baraud,
and Huet 2007). However if the number of candidate variables is larger than the number
of observations, such a consistent estimator of σ2 is difficult to design (Fan, Guo, and Hao
2012).
One important feature of the procedures implemented in the MLGL package is that the FWER
is kept under control for a given value λ ∈ Λ. Furthermore since the proposed procedure turns
out to have a low number of rejections and false positives (from our empirical experiments),
the MLGL package chooses the value of λ maximizing the number of rejections. Theoretically,
the FWER is not controlled for this value of λ, but practically, the FWER stays at a low level
(cf. Table 1). The simulation results discussed in Section 4 seem to support this choice since
maximizing the number of rejections turns out to maximize in the same time the number of
true positives (while keeping the number of false positives under control).
Mandozzi and Bühlmann (2016) design a method based on the same main steps: AHC, group
selection and hierarchical testing. However there are two noticeable differences. Firstly, the
group selection and hierarchical testing are repeated B times (for B bootstrap samples).
Secondly, the testing procedure is performed using the groups containing variables selected
by lasso. The use of a lasso yields a fast selection procedure of groups along the given tree. A
Similar procedure was used by Renaux, Buzdugan, Kalisch, and Bühlmann (2018) in genome-
wide association studies. In biological studies, Meijer, Krebs, and Goeman (2015) suggest a
multiple testing procedure for hypotheses that are ordered in space or time. It requires to
compute p-values for hypotheses organized in a particular tree. In particular MLGL departs
from it by using any hierarchical tree and does not require the hypotheses to be ordered in
space or time.

3. Usage of the MLGL package
The main function of the MLGL package is fullProcess. It enables us to run the whole
procedure consisting in AHC+gLasso+HMT (Pseudo-code 6). The group-lasso solution path
is estimated using the gglasso package (Yang and Zou 2015). The implemented algorithm is
designed to efficiently computing the solution path of group-lasso problem. However it cannot
cope with overlapping groups. Overcoming the issue requires duplicating variables inside
the main function to perform the MLGL procedure. This increases the required memory
requirement and somewhat reduces the maximal number of variables that the MLGL can
handle.
For illustration purpose, we generate simulated data with the function simuBlockGaussian.
In what follows, n = 50 individuals and p = 60 candidate variables are simulated from a
multivariate Gaussian N (0,Σ) distribution. The p×p covariance matrix Σ has a block-diagonal
structure where each block of 5 variables has 1s on the diagonal and ρ = 0.7 elsewhere, that
is

R> X <- simuBlockGaussian(n = 50, nBlock = 12, sizeBlock = 5, rho = 0.7)

Two probabilistic models are considered in the MLGL package: the linear and the logistic
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ones.
With the linear model, let us simulate

R> y <- X[, c(2, 7, 12)] %*% c(2, 2, -2) + rnorm(50, 0, 0.5)

Then, applying the function fullProcess is done by means of:

R> res <- fullProcess(X, y)

or the formula interface

R> res <- fullProcess.formula(y ~ X)

The fullProcess function has parameters with default values: fractionSampleMLGL, hc,
control, alpha and test. The hc parameter allows the user to provide his own hierarchical
tree (output by the hclust function) or to specify the aggregation criterion to use in the
hclust function (e.g., "complete" or "average"). control, alpha and test are used to set the
HMT procedure. control is either "FWER" or "FDR", alpha the level of control and test a
function implementing the test to use (default is partialFtest). This function returns an
object of class fullProcess containing in particular:

• lambda the set of regularization parameters

• lambaOpt values of lambda leading to the greatest number of rejections

• var a list with the index of the selected variables for the values of lambaOpt

• group the group number of the selected variables

• res output of MLGL function (details in the following)

In addition to this main function, the MLGL package contains functions enabling to perform
different steps of the procedure. For instance, the MLGL function computes the path of candi-
date groups output after AHC+gLasso. The HMT function performs the hierarchical multiple
testing procedure (with FWER or FDR control) from the output of the MLGL function.
These two functions (as well as fullProcess) have three companion functions: plot, print
and summary.

R> res <- MLGL(X, y)
R> out <- HMT(res, X, y, control = "FWER", alpha = 0.05)

The MLGL function returns an object of class MLGL containing in particular:

• lambda the set of regularization parameters

• var a list with the index of the selected variables for each value of lambda

• group a list with the group number of the selected variables for each value of lambda

• beta a list with the estimated coefficients for each value of lambda
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• b0 the value of the intercept for each value of lambda

Alternative procedures to HMT are also implemented in the MLGL package to select final
groups. For instance, cv.MLGL and stability.MLGL can be applied to choose λ by respectively
V -fold cross-validation and bootstrap. More precisely, the first one performs a bootstrap AHC
and the group-lasso using all individuals and then apply a V -fold cross-validation to choose
the best value of the regularization parameter. Instead, the second one performs the stability
selection procedure (Meinshausen and Bühlmann 2010) where after performing a bootstrap
AHC, the stability selection procedure as described in Meinshausen and Bühlmann (2010)
is performed and the probability of selecting each group is estimated for every value of the
prescribed sequence of regularization parameter values. Let us also mention that the paths
returned by these two functions can be independently generated by the functions plot.MLGL,
plot.cv.MLGL, and plot.stability.MLGL (see Figure 3):

R> res <- MLGL(X, y)

R> plot(res)

R> res.cv <- cv.MLGL(X, y)

R> plot(res.cv)

R> res.stab <- stability.MLGL(X, y)

R> plot(res.stab)

To illustrate the use of MLGL, we will apply it to the dataset gasoline (Kalivas 1997) from
the pls package(Mevik and Wehrens 2007).
This dataset contains NIR spectra and octane numbers of 60 gasoline samples. The NIR
spectra were measured using diffuse reflectance as log(1/R) from 900 nm to 1700 nm in 2 nm
intervals, giving 401 wavelengths.
First, data are loaded and standardised.

R> library("pls")
R> data("gasoline")
R> gasNIR <- as.matrix(gasoline$NIR)
R> scaleGasNIR <- as.matrix(apply(gasNIR, 2, scale))
R> octane <- gasoline$octane

Then, the MLGL process (ACH + MLGL + HMT) is run using the fullProcess function
with method = "average" to perform a ACH with average linkage. Half of the samples is
used for ACH and HMT, the second half for MLGL. B, the number of bootstrap samples to
build the AHC, is set to 50 and the maximum size of returned groups is set to 100 (we add
this parameter to have a similar behaviour as in Kalivas (1997)).

R> set.seed(42)
R> hc <- bootstrapHclust(scaleGasNIR, frac = 1, method = "average", B = 50)
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Figure 3: Plots generated by plot.MLGL, plot.cv.MLGL and plot.stability.MLGL. The plot
generated by plot.MLGL represents the solution path of MLGL with each curve corresponding
to the estimated coefficients of a variable according to the regularization parameter. The
cross-validation error is the output of plot.cv.MLGL; the vertical lines correspond to the λ
which minimizes the cross-validation error and the largest value of λ such that error is within
one standard error of the minimum. plot.stability.MLGL shows the probability selection
for the different groups, the red curves being the selected groups.

R> groupWeight <- computeGroupSizeWeight(hc, sizeMax = 100)
R> res <- fullProcess(scaleGasNIR, octane, hc = hc,

+ fractionSampleMLGL = 0.5, weightSizeGroup = groupWeight)

An overview of the output object can be displayed with the summary function.
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R> summary(res)

#### MLGL
## Data
Number of individuals: 30
Number of variables: 401

## Hierarchical clustering
HC proveded by user: TRUE
Time: NA s

## Group-lasso
Loss: ls
Intercept: TRUE
Number of lambda: 100
Number of selected variables: 0 10 10 10 10 10 ...
Number of selected groups: 0 1 1 1 1 1 ...
Time: 0.201 s

Total elapsed time: 0.201 s
#### Multiple Hierarchical testing
## Data
alpha: 0.05
control: FWER
optimal lambda:
[1] 0.04986571 0.04837938 0.04693735 0.04553831
Selected groups: 693 774 788
Selected variables:
[1] 152 153 154 155 156 157 158 159 160 161 226 227 228 229 230 231 232

[18] 233 234 235 236 237 238 239 240 241 395 396 397 398 399 400 401
Time: 0.048 s

Total elapsed time: 0.249 s

Three groups containing 33 variables have been selected after the procedure. These groups are
selected for a set of λ values containing 4 elements. The number of groups in the solution path
can be displayed by running the plot function. The resulting plot is displayed in Figure 4.

R> plot(res)

Take a closer look at the selected groups. On Figure 5, the hierarchical clustering with the
position of the selected group is displayed. A colored horizontal band corresponds to all levels
to which a group belongs. The bottom of the band represents the criterion value for which
the desired group is formed by the aggregation of two other groups and the top of the band
represents the criterion value for which the desired group is aggregated with another group.
We can see that the three selected groups do not belong to the same level of the hierarchical
tree. Two groups can be found at a common level (the red and the green ones) but they do not
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Figure 4: Solutions path and number of groups in MLGL Path.
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Figure 5: Hierarchical clustering and the three selected groups (red, green and blue). The
colored bands correspond to the levels of the hierarchical tree where each selected group can
be found. For example, the leftmost group (in green) belongs to levels with an aggregation
criterion between 3.39 and 6.06 (green band), and shares somelevels with the red group.

share any common levels with the third group (blue). By looking at the correlation between
the variables of these three groups (Figure 6), we see three group structures corresponding to
the three groups. These 3 groups seem pretty well decorrelated.
MLGL was tested with different bootstrap resampling values (B = 20, 50, 100, 300 samples)
to build the AHC. We show only the results of B = 50 in this example. MLGL was run
100 times, from seed 1 to 100, for each B value and the selection rate of each variable was
calculated. Figure 7 shows the results of this procedure. It appears that from B = 50 to
B = 300 draws, MLGL selects the same variables with close selection rates.

4. Comparison of MLGL to other selection procedures
In the present section, the solution paths output by different procedures will be compared to
that one provided by the MLGL package by plotting the number of true positives versus the
number of false positives.
Let us generate n realizations of independent and identically distributed random variables
X1, . . . , Xn ∈ Rp from a multivariate Gaussian distribution N (0p, Σ), where Σ is a p × p
covariance matrix with a block-diagonal structure. The common size of the blocks is l, and
all the blocks have 1 on their diagonal and ρ everywhere else.
The response variable is generated from the model y = Xβ∗ + ϵ, where β∗ ∈ Rp is a sparse
vector with 1s for K elements corresponding to different blocks of Σ, and ϵ denotes a random
Gaussian variable. Note that the noise level is set such that the signal-to-noise ratio has a
value of 2.
In the present simulation design, a selected group is called true positive if it contains exactly
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Figure 6: Correlation matrix of the selected variables

Figure 7: Selection rate of each variable for several value of B. The selection rate ranges from
0 (variables never selected) to 1 (variable always selected). From B = 50, the selection rate
of each variable looks rather stable.
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one variable belonging to the support of the true solution β∗, as well as other variables that
are correlated with this one but do not belong to the support of β∗. If a true group and
one of its subgroup, that is also a true group, are selected, it only counts for one true group.
Conversely a group is termed as a false positive if it contains either no variable belonging to
the support of β∗, or several (uncorrelated) variables belonging to the true support.

4.1. Comparison of Multi-Layer Group-Lasso with group-Lasso

The output of the MLGL package is first compared to that of the classical group-Lasso which
essentially focuses on only one level of the hierarchy.
For this comparison, the AHC step is performed based on the Euclidean distance and Ward’s
criterion. For the classical group-Lasso, we use the partition of disjoint groups of all the
variables, i.e., one specific level of the hierarchy, selected by the highest jump rule. The
MLGL package uses the weights defined in (4), which (also) involves the highest jump rule
and allows for selecting groups from different levels of the hierarchy.
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Figure 8: Number of true positives versus the number of false positives in the solution path
output by the MLGL package before hierarchical multiple testing (black solid line) and clas-
sical group-Lasso (red dashed line). The curves represent the mean calculated over 100
replicates.

Figure 8 displays the number of true and false positives along the solution path output by
the MLGL package and the classical group-Lasso. For a given number of false positives, more
true positives are provided by the two first steps of the MLGL package (AHC+gLasso) than
by the classical group-Lasso.
The gap between the two solution paths can be explained by the way the partition used by
the group-Lasso is chosen. From Figure 9 (left panel), it arises that the highest jump rule fails
to recover the optimal partition which has 100 groups in the present simulation experiments.
In such cases, group-Lasso selects groups among poor candidates whereas the MLGL package
is less sensitive to such a bad preliminary choice.
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Figure 9: Size (in number of groups) of the partition selected by the highest jump rule.

4.2. Comparison to alternative approaches combining clustering and selec-
tion

The performance of the MLGL package is now compared to that of alternative procedures
combining clustering and selection: hierarchical clustering and averaging for regression (HCAR)
(Park et al. 2007), supervised group-lasso (SGL) (Ma et al. 2007), cluster representative lasso
(CRL) and cluster group-lasso (CGL) (Bühlmann et al. 2013). Note that all these proce-
dures combine a clustering step (hierarchical clustering or k-means) with a selection step
(Lasso, group-Lasso, or standardized group-Lasso (Bühlmann and van de Geer 2011; Simon
and Tibshirani 2011)).
For all these methods a clustering is performed based on the Euclidean distance and Ward’s
criterion. When the method requires only one partition, this one is chosen by the highest
jump rule. For HCAR, λ̂ is chosen by cross-validation and only the corresponding solution
path is output.
Figure 10 displays the number of true and false positives along the solution path of the
competing procedures for different values of the parameters.
The MLGL package turns out to provide results among the best ones since the maximal
number of true positives (K = 5 or 10) is reached with only a few false positives. It is
noticeable that Cluster Representative Lasso and Supervised Group-Lasso exhibit similar
performances (schemes b, c and d).
When the correlation ρ rises from 0.5 to 0.9 between Figures 10a and 10b, the performance of
HCAR and CGL heavily deteriorates whereas the other procedures remains almost unchanged.
Between Figures 10b and 10c, the number of variables in the support of the true response
increases from 5 to 10. The MLGL package still provides among the best results. But more
selected groups turn out to be false positives when reaching the maximal number of true
positives.
When the size of the diagonal-blocks is decreased from 10 to 5 between Figures 10b and 10d,
all procedures perform similarly (even if the correlation is set at 0.9). It seems that dealing
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Figure 10: Number of true positives versus the number of false positives along the solution
path of multi-layer group-lasso before hierarchical multiple testing (MLGL, black), hierarchi-
cal clustering and averaging for regression (HCAR, red), cluster representative lasso (CRL,
green), cluster group-lasso (CGL, blue) and supervised group-lasso (SGL, cyan). Each curve
represents the average of 100 trials. Between the Figure 10a and 10b, the correlation ρ rises
from 0.5 to 0.9. Between the Figures 10b and 10c, the number of true groups K rises from 5
to 10. Between the Figures 10b and 10d, the size l of blocks reduces from 10 to 5.

with large blocks with highly correlated variables is a difficult settings for HCAR and CGL.
The procedure implemented in the MLGL package seems to have better results when the size
of blocks is increased and the correlation strength is greater, which has the effect of reducing
the effective dimension of the problem.
Let us compare MLGL with HCAR, CGL and CRL, lasso and group-Lasso on the gasoline
dataset.
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Figure 11: Selected variables for several method. Each dot represents a selected variable
(wavelength of the spectra)

For HCAR, CGL, CRL and group-Lasso, a AHC is performed based on the Euclidean distance
and average linkage.
When the method requires only one partition, this one is chosen by the highest jump rule.
For HCAR, λ̂ is chosen by cross-validation and only the corresponding solution path is output.
The variables selected by method are shown on Figure 11. MLGL is the only method which
selects small groups of correlated variables (as shown on Figure 6). The other methods
select either big groups of variables (CGL, group-Lasso), a few uncorrelated variables (lasso,
HCAR), or no variable (CRL).

4.3. Hierarchical multiple testing procedure

Let us now assess the quality of the solution path before and after applying the HMT pro-
cedure. Figure 12 shows the number of true and false positives among the groups output by
AHC+gLasso before and after applying the HMT procedure.
One striking aspect of these experimental results is that the set of groups output by AHC+gLasso
contains more false than true positives for small values of λ. But the two curves quickly cross
each other as λ grows. This strengthens the need for a multiple testing procedure discarding
false groups. It is also noticeable that the number of false positives immediately drops after
using the HMT procedure, no matter the level α at which the multiple testing correction is
applied.
With only K = 5 true groups, most of the true positives are kept after applying HMT, unlike
what happens when the number of true groups is K = 10 (Figure 12c). However in presence
of highly correlated variables (within groups), the performance of the MLGL package strongly
improves (Figure 12d) since on average, more than 9 (out of 10) true positives can be recovered
at best. By contrast when the correlation decreases, the performance sharply drops (Figure
12c). In this situation, the maximum number of true positives is rather small (only 4 out of
10 when α = 0.20).
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Figure 12: Number of true and false positives along the solution path of multi-layer group-lasso
before (MLGL, black) and after applying the hierarchical multiple testing procedure (MLGL
+ HMT) with α ∈ {0.05, 0.1, 0.2}. In these figures, MLGL stands for ACH + gLasso. Each
curve represents the average of 100 trials. The upper figures show the case K = 5 whereas
the bottom figures show the case K = 10. From left to right, the correlation increases from
0.7 to 0.9.
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From the different pictures of Figure 12, the overall conclusion owing to the calibration of λ
is that choosing the value of λ maximizing the number fo rejections provides the best results
in terms of the ratio between true and false positives. This clearly arises from the remark
that the number of false positives is almost constant in our experimental results compared
to the strong variations in the true positives curve. However this should be clear that this is
likely to be a by-product of the low number of rejections of the HMT procedure implemented
in the MLGL package.

4.4. Tuning the parameter λ

Let us now illustrate the performance of the procedure implemented in the MLGL package
which yields the final selected groups.

Maximizing the number of rejections. Based on the previous remarks made in Sec-
tion 4.3, the default value of λ recommended in the MLGL package is the one maximizing
the number of rejections, which is denoted by λ̂RM in what follows.
However it should be clear that the number of rejections can include some false positives,
which would be suboptimal. Therefore, an oracle choice for the parameter λ is the one
maximizing the number of true rejections, called λ̂TPM. Since the number of false positives in
our simulation experiments only slowly increases, this choice should provide the best possible
performance in terms of the ratio between true and false positives. All of this is illustrated
by Table 1, which collects the results obtained with α = 0.05. From Table 1, the main idea
is that choosing λ = λ̂RM as the value maximizing the number of rejections is almost optimal
since, whatever the experimental conditions, both the numbers of true and false rejections
remain close to the ones of the oracle rule λ̂TPM.
Let us point out that FWER is not controlled at level α = 0.05 following our multiple testing
procedure. Actually, this multiple testing procedure yields the desired control for each fixed
value of λ but not for a random one. Nevertheless, the FWER values reported in Table 1 for
our procedure remain reasonable (controlled at level around 10%).
There is a drop of the number of true positives (both for λ̂RM and λ̂TPM) as the number K
of true groups increases from 5 to 10.
Another interesting idea is that increasing the size l of the blocks in presence of a strong
enough correlation level improves the results. Increasing l from 5 to 10 reduces the number
of groups. Enlarging the blocks reduces the effective dimension of the problem, which leads
to better results.

Performance of HMT+λ̂RM . An important question is to determine the influence of the
procedure HMT+λ̂RM on the quality of the final selected groups. To address this question,
a comparison is carried out between the selection procedure of λ implemented in the MLGL
package and alternative ones such as 5-fold cross-validation, kappa (Sun et al. 2013), and
stability selection (Meinshausen and Bühlmann 2010). These alternative procedures will be
compared to the one implemented in MLGL in a normal use case, i.e., by considering all
individuals. To be more precise, MLGL requires splitting individuals into two sets (one for
the group-lasso and one for the testing procedure), so the results displayed for MLGL are
those obtained by performing the group-lasso on half of the individuals. By contrast for
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K = 5
l = 5 l = 10

TP FP FWER TP FP FWER

ρ = 0.9 ACH + gLasso + HMT + λ̂RM 3.23 0.19 0.12 3.71 0.14 0.10
ACH + gLasso + HMT + λ̂TPM 3.34 0.03 0.02 3.77 0 0

ρ = 0.7 ACH + gLasso + HMT + λ̂RM 2.18 0.13 0.09 2.48 0.14 0.11
ACH + gLasso + HMT + λ̂TPM 2.24 0.05 0.04 2.49 0.02 0.02

ρ = 0.5 ACH + gLasso + HMT + λ̂RM 1.52 0.19 0.14 1.27 0.13 0.12
ACH + gLasso + HMT + λ̂TPM 1.56 0.06 0.05 1.29 0.01 0.01

K = 10
l = 5 l = 10

TP FP FWER TP FP FWER

ρ = 0.9 ACH + gLasso + HMT + λ̂RM 1.67 0.27 0.18 2.49 0.14 0.11
ACH + gLasso + HMT + λ̂TPM 1.77 0.07 0.05 2.52 0.1 0.08

ρ = 0.7 ACH + gLasso + HMT + λ̂RM 1.23 0.18 0.15 1.2 0.11 0.10
ACH + gLasso + HMT + λ̂TPM 1.26 0.06 0.05 1.21 0.03 0.03

ρ = 0.5 ACH + gLasso + HMT + λ̂RM 0.6 0.16 0.16 0.73 0.12 0.12
ACH + gLasso + HMT + λ̂TPM 0.65 0.04 0.03 0.77 0.01 0.01

Table 1: Number of true (TP) and false positives (FP) for different values of regularization
parameters for n = 100 and p = 500. λ̂RM (resp. λ̂TPM) denotes the value maximizing the
number of rejections (resp. true positives). K, l et ρ are the different parameters of the
simulated data. K is the size of the support of β∗, l the size of blocks and ρ the within-block
correlation. In the HMT procedure, α = 0.05.
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cross-validation and other methods, the user applies the procedure on all the data. Therefore
the displayed results have been obtained from all individuals. Let us emphasize that 5-fold
cross-validation aims at selecting a λ̂ which minimizes the prediction error, whereas Kappa
and stability selection mainly focus on selecting groups with the highest possible stability.
However all these procedures are time-consuming since they require multiple executions of
the whole procedure. Table 2 collects the experimental results.
Firstly, 5-fold cross-validation uniformly selects more true positives, but at the price of in-
cluding by far more false positives than any other competitor. This is in line with the trend
of cross-validation to favor estimation/prediction rather than identification/selection.
Secondly, the best overall performance is achieved by the stability selection which always
provides the largest number of true positives and only a small (averaged) number of false
positives. This remarkable conclusion has to be balanced with the higher computational cost
suffered by this time-consuming procedure.
However, the number of false positives is lower than the one of stability selection, which
results from the low number of rejections of our HMT procedure.
Finally the Kappa selection procedure performance stays close to 5-fold cross-validation, for
a higher computational price.
In conclusion, choosing the regularization parameter as the one maximizing the number of
rejections gives reliable results which remain close to optimal ones according to our simulation
experiments. The procedure implemented in the MLGL package seems to have a low number
of rejections. But it does not require any intensive re-sampling and selects only a few false
positives.

5. Conclusions
We designed a selection procedure implemented in the MLGL package, MLGL standing for
multi-layer group-lasso. This procedure aims at selecting groups of correlated variables ac-
cording to a response variable. It combines hierarchical clustering and group-Lasso. It differs
from classical group-Lasso-based strategies by allowing to use simultaneously different levels
of the hierarchy provided by the hierarchical clustering step. A weight for each level of the
hierarchy is introduced to favor a priori "good" levels (according to a quality measure). From
our empirical experiments, it results that the MLGL package performs almost the same as or
improves upon alternative procedures combining hierarchical clustering and group-Lasso.
Possible improvements of the procedure in the MLGL package could be made, for instance
by optimizing the weight function used at the group-Lasso step. Developing a more flexible
weight function or using the results of several hierarchical clustering distances are interesting
lines of research to explore.
In the MLGL package, the optimal value of the regularization parameter is chosen by max-
imizing the number of rejections. This results from the low number of rejections and false
positives of the involved HMT procedure. This HMT procedure has nevertheless the merit
of taking into account the possible hierarchical trees and provides a FWER control of the
selected groups.
A way to improve the results would be to modify the correction procedure. In particular, this
improved version should provide a controlled FWER at the prescribed level α while including
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K = 5
l = 5 l = 10

TP FP FWER TP FP FWER

ρ = 0.9 proposed method 3.23 0.19 0.12 3.71 0.14 0.10
Kappa 4.05 8.88 0.36 4.82 14.71 0.64
5-f cv 5 15.68 0.99 5 11.06 1
stability 4.92 1.65 0.84 4.99 4.32 1

ρ = 0.7 proposed method 2.18 0.13 0.09 2.48 0.14 0.11
Kappa 4.29 21.57 0.65 4.42 16.95 0.67
5-f cv 4.98 17.44 1 4.99 14.46 1
stability 4.64 1.32 0.73 4.9 3.25 0.95

ρ = 0.5 proposed method 1.52 0.19 0.14 1.27 0.13 0.12
Kappa 4.13 18.48 0.65 4.46 19.55 0.82
5-f cv 4.9 19.76 0.99 4.95 15.64 0.99
stability 4.27 0.92 0.59 4.63 2.23 0.85

K = 10
l = 5 l = 10

TP FP FWER TP FP FWER

ρ = 0.9 proposed method 1.67 0.27 0.18 2.49 0.14 0.11
Kappa 9.28 33.28 0.93 9.67 22.98 0.96
5-f cv 9.66 20.76 1 9.85 14.58 0.99
stability 6.99 1.26 0.73 9.28 3.85 0.97

ρ = 0.7 proposed method 1.23 0.18 0.15 1.2 0.11 0.10
Kappa 9.34 36.6 0.94 9.75 23.14 0.98
5-f cv 9.17 18.85 0.98 9.5 14.37 0.99
stability 5.56 1.1 0.65 7.9 2.82 0.93

ρ = 0.5 proposed method 0.6 0.16 0.16 0.73 0.12 0.12
Kappa 9.07 32.57 0.94 9.3 21.33 0.95
5-f cv 8.17 17.81 0.96 8.68 13.86 0.99
stability 4.22 1 0.63 5.84 1.85 0.87

Table 2: Comparison of different methods of choice of the regularization parameter. Stability
selection is used with a threshold of 0.75. TP and FP correspond to true positives and false
positives. K, l et ρ are the different parameters of the simulated data. K is the size of the
support of β∗, l the size of blocks and ρ the within-block correlation.
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the random choice of the regularization parameter λ. Nevertheless the main merit of the
HMT procedure over alternative approaches is to provide similar performances to the ones
obtained by the best considered method (in terms of true and false positives) while requiring
a smaller computation time.

Acknowledgments
We thank Direction Générale de l’Armement (DGA) and Inria for a financial support of
Quentin Grimonprez’s PhD, and the CPER Nord-Pas de Calais/FEDER DATA Advanced
data science and technologies 2015-2020.

References

Akaike H (1974). “A New Look at the Statistical Model Identification.” IEEE Transactions
on Automatic Control, 19(6), 716–723.

Arlot S, Celisse A (2010). “A Survey of Cross-Validation Procedures for Model Selection.”
Statistics Surveys, 4, 40–79.

Barber RF, Candès EJ, et al. (2015). “Controlling the False Discovery Rate via Knockoffs.”
The Annals of Statistics, 43(5), 2055–2085.

Benjamini Y, Hochberg Y (1995). “Controlling the False Discovery Rate: A Practical and
Powerful Approach to Multiple Testing.” Journal of the Royal Statistical Society B (Method-
ological), 57(1), 289–300.

Bühlmann P, Rütimann P, van de Geer S, Zhang CH (2013). “Correlated Variables in Re-
gression: Clustering and Sparse Estimation.” Journal of Statistical Planning and Inference,
(143), 1835–3871.

Bühlmann P, van de Geer S (2011). Statistics for High-Dimensional Data: Methods, Theory
and Applications. Springer-Verlag.

Dunn OJ (1959). “Estimation of the Medians for Dependent Variables.” Ann. Math. Statist.,
30(1), 192–197.

Fan J, Guo S, Hao N (2012). “Variance Estimation Using Refitted Cross-Validation in Ul-
trahigh Dimensional Regression.” Journal of the Royal Statistical Society B (Statistical
Methodology), 74(1), 37–65. ISSN 1467-9868.

Fan Y, Tang CY (2013). “Tuning Parameter Selection in High Dimensional Penalized Likeli-
hood.” Journal of the Royal Statistical Society B (Statistical Methodology), 75(3), 531–552.

Giraud C, Baraud Y, Huet S (2007). “Gaussian Model Selection with Unknown Variance.”
URL https://hal.archives-ouvertes.fr/hal-00123420.

Jacob L, Obozinski G, Vert JP (2009). “Group Lasso with Overlap and Graph Lasso.” In
Proceedings of the 26th Annual International Conference on Machine Learning, ICML ’09,
pp. 433–440. ACM, New York, NY, USA.

https://hal.archives-ouvertes.fr/hal-00123420


30 MLGL R package

Jain AK, Murty MN, Flynn PJ (1999). “Data Clustering: A Review.” ACM Comput. Surv.,
31(3), 264–323. ISSN 0360-0300.

Jamshidian M, Jennrich RI, Liu W (2007). “A Study of Partial F Tests for Multiple Linear
Regression Models.” Comput. Stat. Data Anal., 51(12), 6269–6284. ISSN 0167-9473.

Jenatton R, Audibert JY, Bach F (2011). “Structured Variable Selection with Sparsity-
Inducing Norms.” J. Mach. Learn. Res., 12, 2777–2824. ISSN 1532-4435.

Kalivas JH (1997). “Two Data sets of Near Infrared Spectra.” Chemometrics and
Intelligent Laboratory Systems, 37(2), 255 – 259. ISSN 0169-7439. doi:https:
//doi.org/10.1016/S0169-7439(97)00038-5. URL http://www.sciencedirect.com/
science/article/pii/S0169743997000385.

Liu H, Zhang J (2009). “Estimation Consistency of the Group Lasso and its Applications.”
In JMLR.

Ma S, Song X, Huang J (2007). “Supervised Group Lasso with Applications to Microarray
Data Analysis.” BMC Bioinformatics, 8(1), 60.

Mandozzi J, Bühlmann P (2016). “Hierarchical Testing in the High-Dimensional Setting With
Correlated Variables.” Journal of the American Statistical Association, 111(513), 331–343.

Meijer RJ, Krebs TJP, Goeman JJ (2015). “A Region-based Multiple Testing Method for
Hypotheses Ordered in Space or Time.” Statistical applications in genetics and molecular
biology, 14(1), 1–19. ISSN 2194-6302.

Meinshausen N (2008). “Hierarchical Testing of Variable Importance.” Biometrika, 95(2),
265–278.

Meinshausen N, Bühlmann P (2010). “Stability Selection.” Journal of the Royal Statistical
Society B (Statistical Methodology), 72(4), 417–473.

Mevik BH, Wehrens R (2007). “The pls Package: Principal Component and Partial Least
Squares Regression in R.” Journal of Statistical Software, 18(2), 1–23. ISSN 1548-7660.
doi:10.18637/jss.v018.i02. URL https://www.jstatsoft.org/v018/i02.

Park MY, Hastie T, Tibshirani R (2007). “Averaged Gene Expressions for Regression.” Bio-
statistics, 8(2), 212–227.

Renaux C, Buzdugan L, Kalisch M, Bühlmann P (2018). “Hierarchical Inference for Genome-
Wide Association Studies: a View on Methodology with Software.” URL arXiv:1805.
02988.

Schwarz G (1978). “Estimating the Dimension of a Model.” The Annals of Statistics, 6(2),
461–464.

Simon N, Tibshirani R (2011). “Standardization and the Group Lasso Penalty.” Technical
report.

Sun W, Wang J, Fang Y (2013). “Consistent Selection of Tuning Parameters via Variable
Selection Stability.” 14, 3419–3440.

https://doi.org/https://doi.org/10.1016/S0169-7439(97)00038-5
https://doi.org/https://doi.org/10.1016/S0169-7439(97)00038-5
http://www.sciencedirect.com/science/article/pii/S0169743997000385
http://www.sciencedirect.com/science/article/pii/S0169743997000385
https://doi.org/10.18637/jss.v018.i02
https://www.jstatsoft.org/v018/i02
arXiv:1805.02988
arXiv:1805.02988


Quentin Grimonprez, Samuel Blanck, Alain Celisse, Guillemette Marot 31

Tibshirani R (1994). “Regression Shrinkage and Selection Via the Lasso.” Journal of the
Royal Statistical Society B, 58, 267–288.

Tibshirani R, Saunders M, Rosset S, Zhu J, Knight K (2005). “Sparsity and Smoothness via
the Fused Lasso.” Journal of the Royal Statistical Society B, pp. 91–108.

Wainwright MJ (2009). “Sharp Thresholds for High-dimensional and Noisy Sparsity Recovery
Using L1-constrained Quadratic Programming (Lasso).” IEEE Trans. Inf. Theor., 55(5),
2183–2202. ISSN 0018-9448.

Wasserman L, Roeder K (2009). “High-Dimensional Variable Selection.” Ann. Statist.,
37(5A), 2178–2201.

Witten DM, Shojaie A, Zhang F (2014). “The Cluster Elastic Net for High-Dimensional
Regression With Unknown Variable Grouping.” Technometrics, 56(1), 112–122.

Yang Y, Zou H (2015). “A Fast Unified Algorithm for Solving Group-Lasso Penalized Learning
Problems.” Statistics and Computing, 25(6), 1129–1141. ISSN 1573-1375.

Yuan M, Lin Y (2006). “Model Selection and Estimation in Regression with Grouped Vari-
ables.” Journal of the Royal Statistical Society B, 68, 49–67.

Zhao P, Yu B (2006). “On Model Selection Consistency of Lasso.” J. Mach. Learn. Res., 7,
2541–2563. ISSN 1532-4435.



32 MLGL R package

A. Proof of Lemma 1
Let β denote a solution of the group-Lasso (2) for a value of λ, then β must check ∀i = 1, . . . , g:

XT
Gi

(y − Xβ) = λwisGi

with sGi belonging to subdifferential of the function ∥ . ∥2 at θGi ,

sGi ∈


{

βGi
∥βGi

∥2

}
if βGi ̸= 0|Gi|{

z ∈ R|Gi|
∣∣ ∥z∥2 ≤ 1

}
if βGi = 0|Gi|

The subdifferential of a function f : U → R with U a convex subset of Rp contains the
subgradients of f . A vector v ∈ U is a subgradient of f at x0 if ∀x ∈ U : f(x) − f(x0) ≥
⟨v, x − x0⟩.

From Karush-Kuhn-Tucker (KKT) conditions, we can deduce that if ∥XT
Gi

(y − Xθ)∥2 < λwi

then θGi = 0|Gi|.

Proof 1 (Lemma 1). Suppose that G1 = G2 and w2 > w1 > 0. Let θ denote a solution of
group-Lasso (2). We want to show that we have θG2 = 0|G2|.

• Let θG1 = 0|G1|. We show that θG2 = 0|G2|.
If θG1 = 0|G1|, from KKT conditions, we have:

∥XT
G1(y − Xθ)∥2 ≤ λw1

∥XT
G2(y − Xθ)∥2 ≤ λw1 because XG1 = XG2

∥XT
G2(y − Xθ)∥2 < λw2 because w1 < w2

So, θG2 = 0|G2|.

• If θG1 ̸= 0|G1|. We show that θG2 = 0|G2|.
If θG1 ̸= 0|G1|, from KKT conditions, we have:

XT
G1(y − Xθ) = λw1

θG1

∥θG1∥2

∥XT
G1(y − Xθ)∥2 =

∥∥∥∥λw1
θG1

∥θG1∥2

∥∥∥∥
2

∥XT
G1(y − Xθ)∥2 = λw1

∥XT
G2(y − Xθ)∥2 = λw1 because XG1 = XG2

∥XT
G2(y − Xθ)∥2 < λw2 because w1 < w2

So, θG2 = 0|G2|.
We have shown that θG2 = 0|G2|, the lemma is proved.

B. Partial F-test
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The partial F-test is used to test the importance of a group G of variables in a linear regression
problem (Jamshidian et al. 2007).
Consider the full linear model:

y = Xβ + ϵ (6)

and the reduced model without the variables of G:

y = XGβG + ϵ. (7)

The importance of a group G of variables is tested with the following hypotheses:

H0,G : βG = 0, versus H1,G : ∃i ∈ G, βi ̸= 0,

where βi is the coefficient corresponding to the variable index i ∈ G, and βG = 0 encodes
that the group G has no influence on the response y.
We denote by RSSFull (resp. RSSG), the residuals sum of squares of the full (resp. reduced)
model.
The test statistic is

(RSSFull − RSSG)/k

RSSFull/n

and follows a F-distribution with k and n−(p+1) degrees of freedom, where n is the number of
individuals, p is the number of variables within the full model, and k refers to the cardinality
of group G.

C. Hierarchical Testing Procedure
In this section, we briefly describe the Hierarchical Testing Procedure (HTP) from Mein-
shausen (2008).
The Hierarchical Testing Procedure iteratively tests the importance of groups of variables in
a linear model. It requires a hierarchical tree T of the variables. Starting from the root of
the tree, a statistical test is performed to test the importance of the current group G the
following hypothesis:

H0,G : βG = 0, versus H1,G : ∃i ∈ G, βi ̸= 0,

The procedure starts with testing the importance of the root of the tree (group containing
all the p variables). If the null hypothesis is rejected, then the children of the root are tested,
otherwise they are not tested. While a null hypothesis is rejected, the procedure continues
with the children of the current tested group.
Two corrections are performed to take into account the multiplicity of the tests and their
hierarchical organization.
Note pG the p-value associated with the test of importance of group G, the adjusted p-value

pG
adj = pG p

|G|
.
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Then a hierarchical adjustment is applied to ensure that the p-value associated with a group
G is equal or smaller than the p-values of all its parents D:

pG
hier,adj = max

D∈T ,D⊇G
pD

adj .
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