M2TB@M;, M 2{+B2Mi 2tT2 BK2Mi +QMi QH
h?B2 'vS K2Mi2H i- h?B2 v hm H2iiB-q HB/ . ##Qm
J ?27Qm/B-6" M+2b+Q ""QMxBMQ

hQ +Bi2 i?Bb p2 ' bBQM,

h?B2 v S "K2Mi2H i- h?B2 v hm H2iiB- q HB/ . ##Qmb- JQ? K2/ L Q
"QMXBMQX M2TB@M;, M 2{+B2Mi 2tT2 ' BK2Mi +QMi'QH iQQH BM _kH
AMi2 M iBQM H gqQ Fb?QT QM gqB 2H2bb L2irQ F h2bi#2/b- 1tT2 BK2Mi
LQp kyR3- L2r .2H?B- AM/B X TTXR@3X ? H@yR38dkee

> G A/, ? H@ayR38dkee
?2i1iTbh,ff? HXBM B X7 f? H@yR38dkee
am#KBii2/ QM R8 m; kyR3

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X

https://hal.inria.fr/hal-01857266
https://hal.archives-ouvertes.fr

nepi-ng: an e icient experiment control tool in R2lab

Thierry Parmentelat
Thierry Turletti
Walid Dabbous

Université Cote d'Azur, Inria
rstname.lastname@inria.fr

ABSTRACT

Experimentation is an essential step for realistic evaluation
of wireless network protocols. The evaluation methodology
entails controllable environment conditions and a rigorous
and e cient experiment control and orchestration for a va-
riety of scenarios. Existing experiment control tools such
as OMF often lack in e ciency in terms of resource man-
agement and rely on abstractions that hide the details about
the wireless set-up. In this paper, we proposepi-ng , an

e cient experiment control tool that leverages job oriented
programming model and e cient single-thread execution of
parallel programs usingsyncio .nepi-ng provides an

e cient and modular ne grain synchronization mechanism
for networking experiments with light software dependency
footprint. We present and discuss our design choices and
compare to the state of the art tools, mainly OMF.

KEYWORDS

Experimentation; Orchestration; Reproducibility; asynchro-
nous programming; Pythomasyncio

1 INTRODUCTION

Validation and performance evaluation of new network pro-
tocols are done using di erent complementary approaches
such as analytical modeling, simulation, experimentation
or any combination of them J]. In the wireless network-
ing domain, modeling and simulation results may not be
realistic enough, because the interaction between MAC and
physical layers is complex to model due to the random be-
havior of the wireless environment. It is therefore essential
for the adoption of the proposed wireless network protocol
by the community and the industry to run experiments with
real hardware and software components to get a meaningful
evaluation. By choosing the experimental approach, the vali-
dation process requires the reproducibility of experiments.
Thus, in order to ensure the reliability of the measurements
and the inferred results, the evaluation methodology entails a
rigorous experiment control and orchestration as well as the
availability of artifacts p]. While the realistic character of
experiments is important for the overall validation process,
wireless channel phenomena (e.g., interference, multipath),

Mohamed Naoufal
Mahfoudi

Université Cote d'Azur, Inria
mohamed-naoufal.mahfoudi@
inria.fr

Francesco Bronzino
Inria, France
francesco.bronzino@inria.fr

scalability issues and the variety of experiment scenarios,
pose serious challenges for the experiment control e ciency
[3].

Among the existing experiment control tools, OMHE][
happens to be the most deployed one in the major wireless
networking testbeds, as it o ers an e cient approach for
measurement data collection and a straightforward control
mechanism for experiment control. However, OMF lacks in
e ciency in terms of resource management. Even though
OMF proposes a layer of abstraction that simpli es the ex-
periment setup, we argue that such approach can be detri-
mental to the overall control of the experiment, and adds
other sources of uncertainty as to the actual experimental
environment.

R2lab addresses precisely this controllability dimension.
Being a remotely accessible wireless testbed located in an
anechoic chamber, R2lab allows a ne-grained control over
the wireless environment thanks to the limited number of
xed multipath sources (e.g., due to hardware metallic en-
closure boxes) and the absence of outside interference. With
nepi-ng , atool for running and orchestrating network ex-
periments, R2lab provides an ecosystem to run controlled
experiments where the impact of unwanted variability is
reduced to the minimum.

nepi-ng has been designed with the ambition to address
the following high-level challenges:

E ciency: because an experiment is likely to be run over

and over again with a combination of slightly di erent

environments, it is important to remove all possible over-
head, even when an experiment is remotely controlled,

which is the desired usage model.
Light software dependency footpritite overall software

dependencies should be kept to a strict minimum, so that
the approach can be applicable in a wide variety of contexts

and testbeds.
Modularity: allowing pieces of code to be re-used or shared

is highly desirable, like for any software development ac-

tivity.

The plan of the rest of the paper is as follows. Section 2
presents the R2lab hardware together with its architecture
and testbed management tools. In section 3, we lay down
the paradigm proposed bgepi-ng as an orchestration

tool. Then in section 4, we present the state of the art, and in
section 5 we discuss pros and cons of our approach. Section 6
concludes the paper.

2 OVERVIEW OF R2LAB

2.1 Hardware

The R2lab platform sits in an insulated anechoic chamber
located in the basement of a building at Inria, Sophia An-
tipolis, France. Figure 1 shows a snapshot from inside the
room. It gives access to regular computers with common
Wi-Fi interfaces, a choice of Software-De ned-Radio (SDR)
devices, and a couple of controllable commercial phones.

a.90m

Figure 2: R2lab topology

In addition to these two common cards, about half of the
Icarus nodes are attached to an SDR device. In order to expose
a physical substrate that is as diverse as possible in terms of
possible experiments, various makes and models are present
depending on the node, among several types of USRP's from
Ettus, together with LTE USB dongles, and LoRa USB boards.

Each node also has 3 Gigabit Ethernet interfaces: one con-
nects to a NITlab's Chassis Manager Card (CMC), that allows
to manage power and reset the motherboard or a USB device;
one is used by the testbed management framework for pro-
viding access; the last one is entirely left to the experiment -
i.e. itis not managed at all by the testbed management soft-
ware - and can come in handy for creating a wired data plane

Figure 1: R2lab room needed by the experiment, like e.g. a 5G infrastructure link.
Note that on a few nodes, this interface is used to connect

The room size is about g(ﬁnrougmy 11m x 8m, a|th0ugh a USRP2 or N210 SDR device, as these models can onIy be
its shape is not a plain rectangle, as shown on Figure 2. This connected through an RJ45 Gigabit interface.
picture shows the ground plan layout of the nodes thatare ~ Finally, two commercial phones (Nexus 5 and Moto E
arranged in a grid with a spacing of about 1.0m and 1.15m 4G) are also available right inside the chamber. Each one is
in both horizontal directions, except for the two pillars in ~ connected through USB to a computer including convenience
the room. This layout allows running various scenarios with helpers to manage the phone remotely.
wireless nodes that can be either line of sight, near-line-of-)
sight or non-line-of-sight. 2.2 Architecture

Itis insulated from the outside electromagnetic conditions The testbed architecture relies on a front-end gateway that
by a Faraday cage and uses RF absorbers to drastically attenallows to control and reach nodes through ssh; Note that
uate re ections on the copper foils. you don't need to rst connect to the gateway in order to

The 37 wireless nodes are Icarus o -the-shelf computers run the experiments, but you can run theepi-ng script
with CPU Intef® Core—i7-2600, 8M Cache at 3.40 GHz, 8GB from your own machine. This can be very convenient for
RAM, 240GB SSD. experimenters and is not available in other testbeds such as

Each node features two Wi-Fi MIMO NICs dedicated to ORBIT [5].
experimentation: one Atheros AR9380 and one Intel 5300; Two additional services are hosted in separate virtual ma-
each of these two models has pros and cons in terms of low- chines, for (a) running a database and API, and (b) o ering
level hardware and software capabilities, so o ering them an all-purpose website The software used for controlling
both increase the spectrum of possible experiments.

- » gateway orfaraday.inria.fr ; website orr2lab.inria.fr ; API
“Icarus node: https://nitlab.inf.uth.gr/NITlab/. on r2labapi.inria.fr

https://nitlab.inf.uth.gr/NITlab/

and managing nodes, including loading and saving images,
is namedrhubarbe [6] and is itself written in nepi-ng
which we describe in the next section.

Figure 3: R2lab architecture

3 NEPI-NG

Proposed as an optional software companion to the R2lab
testbednepi-ng is amodern experiment control tool, which
allows R2lab users to script their experiments. As it primarily
only relies on ssh connections, it can also t many other uses
if needed, as explained in section 5.1

3.1 Design choices

To answer the challenges mentioned in Section 1, the follow-
ing design choices were made further down the path towards
implementation.

As far as parallelism and synchronization are concerned,
we have adopted a job-oriented programming model, where
dependencies are explicit between jobs. In other words, each
of the programming blocks, or jobs, is de ned with an ex-
plicit list of jobs that it depends on. This allows for an explicit
and visual representation of dependencies, as it will be illus-
trated below. This is typically in contrast to message-based
synchronization, and this point is further discussed in sec-
tion 5.

On a similar note, we made a second design choice, which
is to keep the number of abstractions as low as possible,
and to avoid de ning new ones when it is not strictly neces-
sary. This is a subtler point, which may be better illustrated
through an analogy in the completely di erent domain of
data visualization. In that eld, a lot of tools o er abstrac-
tions like histograms or boxplots or else. As a result, creating
a real-life gure is made easier at rst, as compared with
having to deal with the gory details of, say, a histogram.
However it is unclear if this added-value still holds when
additional decorations are required, as it often involves calls

3

to an endless string of speci c and hard to remember fea-
tures, typically for tweaking sub gures, tickers and legends,
titles, etc. On the other hand3.js [7], arguably one of the
most successful visualization libraries today, has gone a com-
pletely di erent path, in that the underlying basic objects,
namely SVG elements, are fully exposed to the programmer
user; the added value af3.js is to foster a general work-
ow between data and graphical elements, and not to try
and hide them behind abstractionsOur design choice for
nepi-ng is comparable: it o ers a small number of low-
level abstractions like nodes and commands, that are very
closely related to ssh internals, but does not attempt to in-
trude in the domain of, for example, wireless setup. We argue
that the actual details of how a wireless device is setup are
too important to a wireless experiment, for them to remain
implicit, i.e., deferred to an experiment controller tool or
third party library. The added value ohepi-ng in this
area is instead focused on providing an e cient paradigm
for orchestrating this setup, and a clean way to write these
gory details using the most appropriate tool - often a plain
shell script.

3.2 Experiment programming model

3.2.1 Asimple examplas a rstillustration of how these
design decisions shapengpi-ng experiment, let us con-
sider Figure 4, which depicts the logical ordering of a basic
and typical experiment: using two nodes as one sender and
one receiver, we want to con gure wireless devices on both
ends, and then record data at the receiving end.

Figure 4: Simplest send-receive experiment

This gure was automatically derived from the Python
code that implements a real-life experiment, designed as part
of another work [8] that deals with Orientation Estimation. It
should give the reader an intuitive grasp on the programming
model. In the rest of this section, we describe in further
details the various concepts at work in this example and
beyond.

3.2.2 Jobs and schedulétsthe heart ofnepi-ng are the
notions of jobs and schedulers. Quite usually, a job describes
a sequential portion of a program, and a scheduler is a set
of jobs, that are linked together with eequiresrelationship;

~Although of course some second-tier tools do o er such abstractions on
top of d3.js .

when jobb requires joba, this naturally means thal cannot
start until a is done. This is illustrated graphically with an
arrowa ! b. Ajob can have any number of requirements,
but the model imposes for the graph to be acyclic. This means
that once a job is completed, it will never run again. At least
one scheduler is needed to run any job, so that the example
from Figure 4 involves 4 jobs - the rounded corner boxes
- in one scheduler, although this top-level scheduler is not
rendered graphically.

3.2.3 Single-threaded concurrency wsaygcio . nepi-ng
relies entirely on Python, and in particular on its asynchro-
nous programming model. Starting with version 3.5, Python
proposes a coroutine-based paradigm, leveraged in the stan-
dardasyncio [9] library, as well as a few other non stan-
dard ones likecurio [1(andtrio [11]. This innovative
programming style allows fosingle-threaded execution
of otherwise parallel programs, and provides a radically dif-
ferent solution for race conditions.

nepi-ng 's mechanism of schedulers and jobs merely
adds the notion of time dependencies between coroutines.
Please note thatepi-ng is not a Python library in itself, it
is actually the union of two libraries; this rst set of function-
alities is implemented in thasynciojobs [12] library.

3.2.4 ssh-oriented jobehe second half ohepi-ng is
calledapssh for asynchronous parallel ssip. The objec-
tive here is to expose a few primitives for creating job objects
that support remote execution through ssh. This is done pri-
marily by combining three categories of Python objects, as
illustrated on Figure 5.

Figure 5: nepi-ng objects and their relationships

(a) Node objects are all of tHeshNodelass; they describe
ssh connections and can be nested to materialize 2-hop con-
nections, like is frequently needed in networking testbeds
where actual resources are only reachable through a gateway
host. (b) Command objects come in a few avours, liRen
to invoke a remote command as with regular s&unScript
for running a local script remotely, as well &ushandPull
for le transfers. (c) Finally,SshJolinstances allow tying

these two dimensions, namely what needs to be done and
on what node, into a singl&shJolbject that is suitable to
depend on other jobs and to be scheduled.

One central property of this menagerie of objects is that
by design, at most one ssh connection is created for each
SshNodebject, and all the commands attached to that in-
stance share that connection. This is a crucial point as far as
performance is concerned, as it allows running drastically
faster than implementations that rely on a separate ssh client
process.

Aglimpse atan exampleepi-ng code is given on Figure
9 in appendix, that puts all these pieces together in a frag-
ment that implements the work ow of Figure 4, and where
nepi-ng entities have been outlined in purple. In this real-
life experience, the experimenter has chosen to write the
actual body of the 4 individual jobs in a separate shell script;
an extract is given on Figure 10. This is an approach that
can be recommended, as it allows to cleanly separate on
the one hand the overall logic that belongs in timepi-ng
script, and on the other hand the gory details, which are best
expressed in other languages or tools; here a shell script is
used to unload and reload the iwl-wi driver for controlling
the Intel 5300 agn cards. The script enables the raw packet
injection mode by setting up the wireless cards to work in
the monitor mode as well as by con guring them to operate
on the same frequency and bandwidth.

Itisimportantto note that using a companion script allows
keeping all these details explicit, and thus contributes to
making the experiment more reproducible by others and/or
in other experimental setups.

3.2.5 Semantics of schedul€sming back to the synchro-
nization mechanisms o ered by schedulers and jobs, let us
now be more explicit on the actual semantics of these ob-
jects. As mentioned already, the dependency graph within a
scheduler's jobs must be acyclic. When executing a sched-
uler, all its jobs with no requirement are started, and as they
complete, jobs downstream can be started in turn once all
they requirements are completed.

Naturally a scheduler completes when all its jobs have
completed. However this simple mechanism is not always
exible enough. Considering theend and receivexample
of Figure 4, although the sender process will easily know
exactly when to stop, it is not the case on the receiver end.
So a rst approach is to write a receiver that estimates the
experiment duration based on some context - e.g., number
and frequency of packets involved in the experiment - and
stops on its own after that time.

Although a workable approach, this is not entirely satis-
factory: it would be safer if we could instead use synchro-
nization here again. As much as statinig fequiresa” allows
us to synchronizehe beginningf b with the end ofa, this

mechanism seems unable to let us synchrortize endof a possible to write helper tools that can for example decorate

job - here the receiver - witlthe endof another one - the the scheduler of Figure 7 and embed it into a higher level one

sender. that takes care of those operations, resulting in the scheduler
In order to address this kind of needsepi-ng o ers depicted on Figure 8.

more advanced mechanisms. The rst one is the notion of

so-calledforeverjobs. Aforeverjob is one that isnot waited

for, but that instead gets canceled by the scheduler when all

its regular jobs have completed. Figure 6 shows our initial

logic, where the receiver end is de ned asfareverjob -

which is outlined with adotted border .

Figure 6: Send-receive with a forever job Figure 8: Nesting helps reusability

This re nement of the scenario would not work as ex-
pected though; its behavior would indeed be for the lower- 3.2.6 Data flowThe jobs model currently does not support
right job to be canceled once the sender is done, but that any kind of data ow; that is to say, one could imagine expos-
would also mean that no data collection could take place. ing, as an input to a given job, the results of its required jobs.
To solve this problem, we need another featurempi-ng , We have considered, but rejected this option, as it resulted
which is the ability to create so-callegestedschedulers. Asa in extra complexity for a very low added value, at least in
matter of fact, a scheduler object is a job in itself, and so can our application domain: our needs are typically to cleanly
it be inserted at a higher level in order to create hierarchical manage event-based and 10-bound orchestrations, we are
schedulers. This is illustrated on Figure 7. In this iteration of not addressing parallel computing, where such a mechanism
the same scenario, the sender and receiver jobs are the only would on the contrary be of paramount importance.
two members of a nested scheduler - represented with sharp ~ Supporting data ow propagation would require in par-
corners. With this scenario, the receiver job does not need to ticular some mechanism to allow a programmer to bind in-
estimate its duration: it can simply run forever since it will ~ coming values - the ones produced by its upstream jobs - to
be canceled when the sender job is over. If needed, inserting its programming namespace; this would imply some form
a safety delay - e.g. to account for all the packets to reach of naming within jobs, which is otherwise not needed. To
the receiver - can simply be done as an extra step at the end make things worse, a real-life scenario typically supports
of the sender job. a variable number of nodes: e.g., the same scenario can be
used with a ock of 3 or 15 nodes. This means that when
writing a given job, one does not know, nor most of the time
care about, how many upstream jobs we have.

3.2.7 Control flowOn the other hand, there is a limited
form of control ow, in the sense that any exception raised
inside a job triggers an abrupt termination of the whole
scheduler; in situations where this behavior is not desirable,
a job can be marked as non critical, in which case the job

Figure 7: Send-receive with a nested scheduler gets canceled, but the overall scheduler proceeds.

3.2.8 Resource contrBlnally, a scheduler can be subject
Nested schedulers also drastically improve code reusa-to limitations, in terms of either a prede ned timeout, or in
bility; typically, a real-life experiment needs to support daily terms of a maximal number of concurrent tasks, which can
operations like loading a speci c image on selected nodes, be helpful for example when dealing with a large number of
and turning o the rest of the testbed for for avoiding un- nodes, which is a frequent situation with larger experimental
intentional interference. Thanks to nested schedulers, itis testbeds like PlanetLab.
5

4 STATE OF THE ART

The following section summarizes the approaches to con-
trol management employed in two of the most widely used
research testbeds: ORBIT and Emulab.

ORBIT. The ORBIT testbedl} is a two-tier wireless net-
work emulator/ eld trial designed to achieve reproducible
experimentation. Its main facility is the radio grid testbed
that uses a 20x20 two-dimensional grid of programmable
radio nodes.

Experiment realization on ORBIT is managed through the
ORBIT Management Framework (OMHB).[First developed
for ORBIT (but now used in a diverse set of testbeds, e.g.
GENI [15, NITOS [L€, w-iLab.t [17), OMF's architecture is
divided into three planes: the control plane, the measurement
plane - handled through the ORBIT Measurement Library
(OML), and the management plane. The key role of the Con-
trol Plane is to provide researchers with tools and methods
to systematically develop and orchestrate their experiments.

A domain speci ¢ language - the OMF Experiment De-
scription Language, OEDL - allows an experimenter to write
an Experiment Description including resource requirements,
their initial con guration, and a state machine describing
the time/event-triggered actions required to realize the ex-
periment. An experiment description is composed mainly of
two parts: 1) the resource requirements and con gurations

experimentation with 802.11 Wireless and Software-De ned
Radios. Moreover, the control software is now deployed at
more than 36 other locations.

Next iterations. The recent emphasis given to the stan-
dardization of the fth generation of wireless standards has
pushed towards a renewed interest in developing city scale
testbeds that integrate radically new technologies in real
world urban environments. In the US, the NSF funded PAWR
program [19 will in the close future support the develop-
ment of two testbeds: COSMOZ(J and POWDER 21.
These new experimental architectures build on the control
software developed for the ORBIT (OMF) and Emulab (Emu-
lab software) testbeds to support the wider set of technolo-
gies and scenarios introduced.

5 DISCUSSION

5.1 Wider uses

Becauseitrelies only on sshepi-ng canbe used onalarge
variety of contexts and substrates, even outside of a purely
experimental context. In particular, it has been successfully
used to write experiments on di erent other testbeds, includ-
ing PlanetLab®2 and ORBIT pJ. For instance, a by-product
of nepi-ng is a command line tool used to run the same
command on a large number of nodes, which we routinely

(e.g. IP address to be used for an interface); 2) task descripemploy for the daily operations of PlanetLab Europe. As far
tions, which are essentially contained in a state-machine as ORBIT is concerned, preliminary attempts have proven
that enumerates the di erent events, states, and associated encouraging, although the SFTP subsystem did not appear
tasks to perform with the resources in order to realize the to be enabled between the testbed's gateway and the outside
experiment. Internet, which hampered le transfers, and thus prevented

) us from running real scale experiments on this testbed.
Emulab. The Emulab testbedlB was rst designed as an

experimental emulation platform for distributed systems and L.

networks. For this reason, the general design of the Emulab ©-2 On synchronization

control software (simply referred to as Emulab software) As was described in 3.2, the only synchronization mecha-
di ers from OMF based on its key requirements. nism o ered in nepi-ng relies on therequiresrelation-

To support dynamic experiment control, Emulab uses an ship between jobs, as well dsreverjobs combined with
event system to extend the notion of signals across sets of sub-schedulers. This is in contrast with other parallel pro-
nodes and links. This facility closely mirrors the style of gramming techniques, and especially with message-passing
event schedulers found in network simulators. Just as with techniques, which are for example the primary tool available
simulation, experimenters are allowed to manipulate link within OMF for achieving synchronization.
characteristics at prescribed times, so they can dynamically = Message-passing admittedly is more powerful than a sim-
change latencies, bandwidths, and loss rates on emulated ple dependency graph, as it allows for instance to create
links. Node con guration is driven by the nodes themselves, synchronization points anywhere inside a program, while
but entirely controlled by state stored centrally in a central- the dependency model can only deal with beginning and end
ized database. Emulab nodes load the state from this central of programs. However in our context, which is not so much
system to achieve distributed self-con guration, which in- compute-oriented as it is 10-oriented, this is not a very mean-
cludes obtaining host names, loading the disk image, and ingful limitation; in particular, remember that networking
executing startup scripts. protocols are in essence precisely about dealing with such

Since its inception, the Emulab testbed has integrated ne-grained synchronization by themselves, which means
into its architecture a diverse set of resources that allow for that the programs orchestrated by an experiment control

6

tool already have built-in mechanisms for ne-grained syn-
chronization.

On the other hand, if one wants to take full advantage
of message-passing's exibility, it is a requirement to have
messages delivered right on the nodes where a running pro-
gram can react on their occurrence, and it is not enough
to have messages propagate back only up to the controller
program. This implies that some sort of message transport
infrastructure be available on the testbed, and this is typically
the sort of constraint that we wanted to avoid as per our
initial requirement of a light software dependency footprint.

5.3 On abstractions

As stated earlier, we foster a low-level, abstraction-less model
for the design of experiments, in contrast for example with
OMF's declarative-based mechanisms.

We argue that abstractions convey quite some implicit
information. For example, in theepi-ng code illustrated
on Figures 9 and 10, the companion shell scripts provide a
low-level radio interface initialization sequence that directly
manages the Linux driver. Under a formalism like OEDL,
a similar e ect is obtained through an abstraction, where
attributes are set on a Ruby object that represents a node,
and that the OMF runtime takes care of implementing.

Because no abstraction layer sits between ttepi-ng
code and its companion scripts, all the details are immedi-
ately accessible to the reader, and we argue that this is an
asset in terms of reproducibility.

On Figure 10 for example, we can see that the experiment
needs to create a monitoring interface that allow raw packet
injection. This mode allows for a ne grained control over
the transmitted packets because it doesn't su er from in-
consistencies in the measurements due to the native rate
adaptation mechanism. By adopting this approach, we have
more consistent measurements of the CSI (channel state in-
formation).

Furthermore, proponents of abstractions argue that they
make an experiment more reproducible because its descrip-
tion is less dependent on the underlying testbed. This re-
mains in our experience to be established; imagine that we
want to compare the results obtained by executing the same
experiment on top of two di erent testbeds. Then, either the
physical substrates are similar, in which case the abstractions
do not help a lot, or they do exhibit substantial di erences,
in which case the details of these di erencesust beunder-
stood by the experimenter, for a correct interpretation of
results.

In conclusion, we are convinced that abstractions in this
area can be more harmful than helpful, as they require work
to de ne and implement, do not signi cantly accelerate the

7

experiment design and implementation cycle, but do sub-
stantially obfuscate the actual details of the setup at work
during the experiment.

5.4 Impact of asynchronous programming

Itis worth outlining that, although the internals ohepi-ng
heavily rely on the asynchronous programming paradigm
of asyncio , this can be considered as an implementation
detail from an experimenter's point of view; advanced users
can take advantage dadisyncio if need be, but as far as
newcomers are concerned, there is no need to be aware of
coroutines or event loops.

On the other handasyncio proves to be extremely e -
cient for our needs, with the additional bene t of removing
the necessity of dealing with concurrent access, i.e., locks and
other exclusion mechanisms, thanks to its single-threaded
execution model.

6 CONCLUSION

In this paper, we present a tool for controlling and orches-
trating network experiments based on a powerful and e -
cient model that permits a concurrent control of multiple
nodes usingasyncio . This tool allows for a clear separa-
tion between the scenario orchestration and the details of
the experiments on top of providing the necessary tools that
allow code re-usability.

ACKNOWLEDGMENTS

This work and the R2lab testbed are funded by the French
ANR through the Investments for the Future Program un-
der grants ANR-11-LABX-0031-01 (LABEX U@bphia)
and ANR-10-EQPX-0031-01 (EQUIPEX FIT).

REFERENCES

[1] Young-Hwan Kim, Alina Quereilhac, et al. Enabling iterative devel-
opment and reproducible evaluation of network protocolSomputer
Networks63:238 250, 2014.

Mohamed Naoufal Mahfoudi, Thierry Turletti, et al. Lessons Learned

while Trying to Reproduce the OpenRF ExperimentA@M SIGCOMM

Reproducibility Workshopolume 41, pages 21 23, LA, USA, August

2017.

3] Cristian Tala, Luciano Ahumada, et al. Guidelines for the accurate
design of empirical studies in wireless networks. IBEE TridentCom
pages 208 222, 2011.

[4] Thierry Rakotoarivelo, Maximilian Ott, et al. OMF: a control and
management framework for networking testbed&CM OSR43(4):54
59, January 2010.

[5] Open-Access Research Testbed for Next-Generation Wireless Net-
works (ORBIT). https://orbit-lab.org.

[6] R2lab Testbed Management Framework.
parmentelat/rhubarbe.

[7] D3: Data-driven documents. https://d3js.org/.

[8] Mohamed Naoufal Mahfoudi, Thierry Turletti, et al. ORION: Orienta-
tion Estimation Using Commaodity Wi-Fi. IlEEE Workshop on ANLN

[2

—

—

https://github.com/

(9]
[20]
[11]
[12]
(23]
[14]
[15]

[16]

[17]

[18]

[19]
[20]
[21]

[22]

pages 1033 1038, Paris, France, May 2017.

Why use asyncio ? http://asyncio.readthedocs.io/en/latest/why_ 1
asyncio.html. 5
Curio, a Python library for concurrent /0 and systems programming.
https://curio.readthedocs.io/. 5
Trio: async programming for humans and snake people. http://trio.
readthedocs.io/.

asynciojobs: add time dependencies between coroutines. https:/?
asynciojobs.readthedocs.io/. 11
apssh: asynchronous parallel ssh. https://apssh.readthedocs.io/.
Dipankar Raychaudhuri, Ivan Seskar, et al. Overview of the orbit
radio grid testbed for evaluation of next-generation wireless network 1>
protocols. INlEEE WCN@volume 3, pages 1664 1669, 2005. 17
Mark Berman, Je rey S Chase, et al. Geni: A federated testbed for
innovative network experimentsComputer Network$1:5 23, 2014. 18
Katerina Pechlivanidou, Kostas Katsalis, et al. Nitos testbed: A clous:
based wireless experimentation facility. IfC 2014pages 1 6. IEEE,
2014.

Stefan Bouckaert, Wim Vandenberghe, et al. The w-ilab. t testbed. I#°
International Conference on Testbeds and Research Infrastrpeigess -
145 154. Springer, 2010.

Brian White, Jay Lepreau, et al. An integrated experimental environ?’
ment for distributed systems and network&CM OSR36(SI):255 270, 31
2002. -
Platforms for Advanced Wireless Research (PAWR). https://www.
advancedwireless.org/. 35
Cloud Enhanced Open Software De ned Mobile Wireless Testbed for,
City-Scale Deployment (COSMOS). http://cosmos-lab.org/.

Powder (the Platform for Open Wireless Data-driven Experimental39
Research). https://powderwireless.net/. 41
PlanetLab, an open platform for developing, deploying and accessing3
planetary-scale services. https://planet-lab.eu.

23

45

a7

49

from asynciojobs imporScheduler
from apssh imporiSshNode SshJoh RunScript, Pull

GATEWAY = “faraday.inria.fr"
SLICE = "inria_r2lab.tutorial"

this local script contains the gory details
AUXILIARY_SCRIPT ="./orion.sh"

def send_receive(sendername, receivername, packets, size, period):
local_trace ="from {} to {}".format(sendername, receivername)

the proxy to enter faraday
r2lab_gateway SshNodghostname=GATEWAY, username=SLICE)

sender and receiver nodegeachable through 2hop ssh connection
sender =SshNodggateway=r2lab_gateway, hostname=sendername)
receiver =SshNodggateway=r2lab_gateway, hostname=receivername)

one initialization job per node
init_sender =SshJol{

node=sender,

command®RunScript (AUXILIARY_SCRIPT, “initsender”, 64, "HT20"))
init_receiver =SshJolf

node=receiver,

commandRunScript (AUXILIARY_SCRIPT, "inireceiver", 64, "HT20"))

ditto for actually running the experiment
run_sender =SshJol{
node=sender,

command=®RunScript (AUXILIARY_SCRIPT, "rursender”, packets, size, period),

required =(init_sender, init_receiver),

run_receiver =SshJol{
node=receiver,
commands=[
RunScript (AUXILIARY_SCRIPT, "rurreceiver”, packets, size, period),
Pull (remotepaths¥awdatd, localpath=local_trace),

required =(init_sender, init_receiver),

)

create an Scheduler object that will orchestrate this scenario
returnScheduler(init_sender, init_receiver,

run_sender, run_receiver,

timeout=120)

experiment = send_receive(" t01", " t02", 1000, 120, 100)
experiment.run()

Figure 9: nepi-ng code for Figure 4

10

12

14

16

18

20

function init sender() {
2 arguments are required
channel=$1; shift #e.g. 64
bandwidth=%$1; shift #e.g. HT20

unload any wireless driver

useful when the experiment is restarted
modprobe riwlwi mac80211 cfg80211
#load our driver

modprobe iwlwi debug=0x40000

wlan=$(wait for interface on driver iwlwi)

create the monitor interface

iw dev $wlan interface add mon0 type monitor
bring it up

ip link set dev monO up

init monitor interface

iw mon0 set channel $channel $bandwidth

Figure 10: Extract of the auxiliary shell script

	Abstract
	1 Introduction

