
HAL Id: hal-01858150
https://inria.hal.science/hal-01858150

Submitted on 20 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Madeus: A formal deployment model
Maverick Chardet, Hélène Coullon, Dimitri Pertin, Christian Pérez

To cite this version:
Maverick Chardet, Hélène Coullon, Dimitri Pertin, Christian Pérez. Madeus: A formal deployment
model. 4PAD 2018 : 5th International Symposium on Formal Approaches to Parallel and Distributed
Systems (hosted at HPCS 2018), HPCS 2018 : International Conference on High Performance Com-
puting & Simulation, Jul 2018, Orléans, France. pp.1-8, �10.1109/HPCS.2018.00118�. �hal-01858150�

https://inria.hal.science/hal-01858150
https://hal.archives-ouvertes.fr


Madeus: A formal deployment model
Maverick Chardet, Hélène Coullon, Dimitri Pertin

IMT Atlantique, Inria, LS2N, UBL
F-44307 Nantes, France

maverick.chardet@inria.fr
helene.coullon@inria.fr
dimitri.pertin@inria.fr

Christian Perez
Univ. Lyon, Inria, CNRS, ENS de Lyon, UCBL, LIP

F-69342, Lyon Cedex 07, France
christian.perez@inria.fr

Abstract—Distributed software architecture is composed of
multiple interacting modules, or components. Deploying such
software consists in installing them on a given infrastructure
and leading them to a functional state. However, since each
module has its own life cycle and might have various dependencies
with other modules, deploying such software is a very tedious
task, particularly on massively distributed and heterogeneous
infrastructures. To address this problem, many solutions have
been designed to automate the deployment process. In this paper,
we introduce Madeus, a component-based deployment model for
complex distributed software. Madeus accurately describes the
life cycle of each component by a Petri net structure, and is able to
finely express the dependencies between components. The overall
dependency graph it produces is then used to reduce deployment
time by parallelizing deployment actions. While this increases
the precision and performance of the model, it also increases its
complexity. For this reason, the operational semantics needs to
be clearly defined to prove results such as the termination of a
deployment. In this paper, we formally describe the operational
semantics of Madeus, and show how it can be used in a use-
case: the deployment of a real and large distributed software
(i.e., OpenStack).

Keywords—Automatic deployment; distributed software; compo-
nent models; formal models

I. INTRODUCTION

Distributed software architecture is composed of multiple in-
teracting modules, or components. For this reason, component-
based software engineering (CBSE) [1] is a domain well-suited
for distributed software implementation [2], [3]. CBSE en-
hances code re-use, separation of concerns, and composability
(thus maintainability) of software codes. A component-based
application is made of a set of component instances connected
together. A component is a black box that implements a
functionality (or a service) of a piece of software that makes
sense on its own, and which interacts with other components
through well defined interfaces, called ports. For instance,
to provide its service or functionnality, Component A might
require a functionality provided by Component B. Such a
composition of components is called an assembly.

Many component models focus on two aspects: first, the
modeling of the component functionalities; second, the model-
ing of their connections. For instance, some component models
are designed for distributed software [2]–[4], while others
target High Performance Computing (HPC) and model their

associated specific communication protocols (e.g., MPI) [5]–
[7]. However, only a few of them focus on modeling the
deployment of components and assemblies (i.e., their life
cycle). Yet, when deploying component-based software to
distributed infrastructures, being able to finely model and
control the deployment life cycle of each component, as well
as their coordination, is of major importance for safety and
performance issues.

For this reason, this paper introduces Madeus, a formal
component-based deployment model for distributed software.
Madeus accurately describes the life cycle of each component
by a structure close to a Petri net, and finely expresses the
dependencies between components, which enables to orches-
trate deployment actions in parallel. While this increases the
precision and performance of the model, it also increases its
complexity. Hence, the operational semantics of the model
needs to be clearly defined to prove results such as the termi-
nation of a deployment. In this paper, we formally describe the
operational semantics of Madeus, and we validate it through a
real use-case: the deployment of OpenStack.

The rest of this paper is organized as follows. Section II
describes related work. Section III details the Madeus model
and its associated operational semantics. Section IV presents
the OpenStack use-case and finally Section V concludes this
work and opens to some perspectives.

II. RELATED WORK

Most component models handle a pre-defined API for
their component life cycle management. This is the case, for
instance, in CCM [2] or in L2C [6] where an API can be
used to configure, activate, deactivate and destroy components.
Deployware [8] has been designed specifically to deploy
distributed software. A component is also associated to a fixed
set of deployment actions: install, configure, start, manage,
stop, unconfigure and uninstall. Thus, while these component
models offer a detailed API of the component life cycle, they
do not enable to customize the deployment process of each
component and their coordination.

A few component models have enhanced the flexibility of
the deployment modeling. While in the Object Management
Group’s (OMG) specification [9] the deployment model is
rigid and fixed by the model, in Fractal [3] and its evolutions
GCM and GCM/ProActive [4], the control of a component



(e.g., its deployment) is separated from its functionalities and
grouped into a so-called membrane which is itself described as
a component assembly. However, as a component is a black-
box of code, the evolution of the deployment process cannot
be controlled. The deployment has to be manually hard-coded
which could be error-prone and difficult to verify.

The Topology and Orchestration Specification for Cloud
Applications (TOSCA) is also a component model that ad-
dresses the deployment of its components. TOSCA [10],
[11] is a standardization effort from the OASIS consortium
to describe Cloud applications, their components and their
deployment artifacts, using standard languages (i.e., XML,
YAML). A TOSCA description (or template) corresponds to a
graph where nodes represent TOSCA resources (e.g. software
components, virtual machines, physical servers), and where
edges represent the relations between these nodes. Artifacts
(of any type such as scripts, binaries, etc.) can be added to
TOSCA descriptions in a CSAR (Cloud Service ARchive) to
detail deployment steps. However, as for the components of the
Fractal membrane, an artifact is also a black box making the
coordination and control of the deployment process difficult.

Blender [12] is a complete deployment framework that has
been maintained by the Mandriva linux distribution. The model
behind Blender is Aeolus [13], a formal component model. In
Aeolus the deployment process of a component is captured by
an internal finite state machine. Each state can be connected to
use, provide, or conflict ports to declare dependencies between
multiple deployment processes of multiple components, thus
enhancing the global coordination of the assembly. The Aeolus
vision is static. Indeed, the list of states needed to reach a
deployment is automatically and statically computed. Those
states are then given to an external scheduler. As a result, the
execution is left to the scheduler and there is no operational
semantics directly associated to Aeolus. Moreover, only one
deployment action can be executed at a time in a component.

III. THE MADEUS MODEL

Madeus is a component-based deployment model inspired
from Aeolus [13]. Like Aeolus, Madeus enables to define
the deployment process of distributed software but it does
not catch any information relative to the functional aspects of
components. Intuitively, in Madeus, a component is modeled
as a structure close to a Petri net (which we call internal-net
in the rest of this paper) with states, transitions and tokens.
States represent “milestones” in the deployment process and
are passive entities, while transitions are attached to actions
effectively performing the deployment. Tokens held by states
or transitions mark the current status of the deployment. This
internal-net is, constrained by bindings between its elements
and the ports of the component. The reason for this new
formalism is a higher abstraction level compared to Petri
nets, more accessible to distributed software developers and
distributed systems administrators. While Aeolus uses finite
state machines and therefore is limited to one token per
component, our internal-nets can hold multiple tokens.

From the software viewpoint, the overall deployment pro-
cess is described by an assembly of components, each of
which is in charge of describing the life cycle of a software
module. Within an assembly, components are instantiated and
compatible ports of these component instances are connected
to form the complete software. As each component is defined
by an internal-net, a Madeus component assembly is responsi-
ble for the coordination of multiple independent internal-nets
according to the connections of component ports.

This section presents a detailed formalism of Madeus.
Table I sums up the notations defined in this section.

A. Component

Formally in Madeus, a component is defined as a tuple that
can be divided into four different parts: places, transitions,
ports and bindings. Figure 1 depicts two components repre-
sented by black rectangles. In the following, we use this figure
throughout the description of component’s parts:

a) Places: A component in Madeus is first defined by a
set of places denoted Π. A place is represented by a circle as
illustrated in Figure 1. A component is also defined by two
sets of docks. A dock is represented by a small square and
is attached to a place. It is used to handle synchronization
of parallel branches. The first set concerns input docks. It is
denoted ∆i and it is displayed under the place they are attached
to. The second set is denoted ∆o. It contains output docks and
is displayed above the place they are attached to. The function
place : ∆o ∪ ∆i → Π returns the place a dock is attached
to. Functions docki : Π → P(∆i) and docko : Π → P(∆o)
respectively returns the subset of ∆i and ∆o attached to a
place π ∈ Π. Places can be part of one or multiple groups
which are subsets of Π. The set of groups is denoted G. A
group of places, as illustrated in Figure 1, is represented by
a red dashed box circling multiple places. Last, I ⊆ Π is the
non-empty set of initial places of the component.

b) Transitions: A component is also defined by a set of
transitions denoted Θ. A transition θ ∈ Θ is a pair containing
one source dock and one destination dock: θ = (s, d) :
s ∈ ∆o, d ∈ ∆i. As illustrated in Figure 1, transitions are
represented by arrows linking two docks. Each transition is
associated to an action. The set of actions is denoted A and
the function action : Θ → A gives the action associated to
a given transition. Finally, the function end : A → B, where
B = {true, false} indicates whether the action of a transition
has finished.

c) Ports: Places and transitions are internal elements of a
Madeus component. The external interfaces of a component in
Madeus is composed of ports. A component contains a set of
use-ports denoted Pu, and a set of provide-ports, denoted Pp.
Each port is associated to a type in Tport, and the function
typep : Pu ∪ Pp → Tport maps the ports to their type. In
Figure 1, provide ports are represented by small circles filled
with black, while use ports are represented by semi-circles.

In addition to traditional use-provide ports of component
models, Madeus handles a specific use-provide abstraction



Places
Π set of places of a component
∆i set of input docks of a component
∆o set of output docks of a component
place function mapping a dock to its place
docki function mapping a place to its input docks
docko function mapping a place to its output docks
G set of groups of places
I subset of places holding a token at initialization

Transitions
Θ finite set of transitions
A finite set of actions

action function mapping a transition to its corresponding action
end function indicating if the action of the transition has finished

Ports
Pu set of use ports of a component
Pp set of provide ports

Tport set of types of ports
typep function mapping a port to its type
Du set of data use ports of a component
Dp set of data provide ports

Tdata set of types of data ports
typed function mapping a data port to its type
D set of possible data values

Bindings
BPu set of pairs mapping use ports to transitions
BPp set of pairs mapping provide ports to groups of places
BDu set of pairs mapping data use ports to transitions
BDp set of pairs mapping data provide ports to places

Assembly
C set of component instances of an assembly
LP set of use-provide connections of an assembly
LD set of data-use-provide connections of an assembly
ebl function indicating if a connection is enabled

Semantics
mk function indicating if an element holds a token

valA,Dp returns the value given by an action to a data-provide port
val function mapping a data provide port to its current value

TABLE I: Notations used throughout this paper

for the transfer of data values. These ports are called data-
use-ports and data-provide-ports. The set of data-use ports is
denoted Du, and the set of data-provide ports is denoted Dp.
The set of possible data values is denoted by D. Finally, the
function typed : Du ∪Dp → Tdata returns the data type of a
given data port. In Figure 1, data-provide ports are represented
by outgoing arrows of the component, while data-use ports are
represented by incoming arrows in the component.

d) Bindings: In a Madeus component, places, groups of
places and transitions can be bound to ports through bindings.
There are four sets of bindings. First, we denote BPu the set
of pairs that maps each use port to one or multiple internal
transitions in Θ, indicating that these transitions use the service
associated to this port: (p, θ) : p ∈ Pu, θ ∈ Θ. Second, we
denote BPp

the set of pairs that maps each provide port to
one or multiple groups of places, indicating that if at least one
token exists in each group, the port is active: (p, g) : p ∈
Pp, g ∈ G. Third, we denote BDu

the set of pairs that maps
each data use port to one or multiple internal transitions in
Θ, indicating that these transitions use the data associated to
this port: (d, θ) : d ∈ Du, θ ∈ Θ. Finally, we denote BDp

the set of pairs that maps each data provide port to one or
multiple places, indicating that the data associated to this port

Fig. 1: Representation of an assembly based on two component
instances and two connections, one in LP and one in LD.

is available if a token is or has been in one of these places:
(d, π) : d ∈ Dp, π ∈ Π. Figure 1 displays bindings by dashed
lines between ports, transitions, places and groups of places.

B. Assembly

An assembly of components represents the instantiation
of components as defined in the previous section, and their
connections through their ports. An assembly is similar to
the main function of usual imperative programming languages.
An example of component assembly is depicted in Figure 1.
In Madeus an assembly is defined as a triplet (C,LP , LD),
where C is a finite set of component instances, LP is the
set of connections (links) between use ports and provide
ports of compatible types, and LD is the set of connections
between data-use ports and data-provide ports of compatible
types. For all the components c1, . . . , cn ∈ C, we denote
with a star any union of the corresponding sets, for instance
Π∗ = Π1∪· · ·∪Πn. We give a similar definition for functions,
for instance type∗p : P ∗u ∪ P ∗p → Tport. Connections are
defined as follows:
• (u, p) ∈ LP , : u ∈ P ∗u , p ∈ P ∗p , type∗p (u) = type∗p (p),
• (u, p) ∈ LD, : u ∈ D∗u, p ∈ D∗p, type∗d (u) = type∗d (p).

C. Operational semantics

At each moment in the execution of a Madeus deployment
assembly (C,LP , LD), we define three functions giving the
current status of this assembly. First, we denote the function
ebl : LP ∪ LD → B, where B = {true, false}, that indicates
if a connection is enabled or not. On Figure 1, an enabled
(resp. disabled) connection is representend by a continuous
(resp. break) line. This enabling concept on connections will
be used to coordinate component deployments. Second, the
marking function is defined to evaluate if one element of any
component holds a token: mk : Π∗∪∆∗i ∪∆∗o∪Θ∗ → B where
B = {true, false}. By construction, an element can either hold
one or zero tokens, the formal proof of this being left as future
work.



Fig. 2: Illustration of the rule of Equation (1) to fire transitions.

Third, we define the function val : D∗P → D ∪ {null} that
returns the current value associated to a data provide port.

We call a valuation the tuple 〈mk, ebl, val〉, where mk
indicates where tokens are located, ebl indicates whether
connections are enabled or not, and val indicates the current
value of any data provide port. At initialization the valuation
is defined as follows:

• mk (x) =

{
true if x ∈ I∗

false if x ∈ (Π∗ \ I∗) ∪∆∗i ∪∆∗o ∪Θ∗

• ebl (l) = false ∀l ∈ LP ∪ LD

• val (d) = null ∀d ∈ D∗p
Notations.
• For a function f : A → B, we denote f ′ = f [a := b] :
A→ B such that:

f ′ (x) =

{
b if x = a

f (x) if x 6= a
.

• We define the function valA,Dp
: A × D∗P → D that

returns the data value to assign to a given data-provide
port after an action.

In this paper, we present seven rules to operate the Madeus
model. We leave for future work the extension of these rules
to support errors and reconfigurations. The rules are formally
defined in Figure 9.

a) Firing transition: The first rule of Madeus is formally
defined by Equation (1). The upper part of the rule indicates the
hypotheses needed to fire a transition, i.e., starting a transition,
and the lower part indicates the conclusion of the rule, i.e.,
the valuation changes. To fire a transition, the source dock of
the transition θ needs a token, and for any port bound to the
transition θ the connection of this port must be enabled. The
conclusion of this rule is to move the token from the output
dock to the transition. The upper part of Figure 2 illustrates
the hypotheses and the lower part the conclusion of the rule.

b) Ending transition: The second rule of Madeus is
formally defined by Equation (2). To end a transition θ, a token
has to be present on the transition and the action performed by
the transition must be terminated. When ending a transition, the
token is moved from this transition to its destination dock. Note
that the ports bound to the transition cannot be disconnected

Fig. 3: Illustration of the rule of Equation (2) to end transitions.

Fig. 4: Illustration of the
rule of Equation (3) to move
tokens from input docks to
a place.

Fig. 5: Illustration of the
rule of Equation (4) to move
tokens from place to output
docks.

before applying this rule. Moreover, if the place to which the
destination dock is attached is bound to data-provide ports,
their values are replaced by those computed by the action.
For this reason, the rule uses the function valA,Dp

. Figure 3
illustrates this rule.

c) Input docks to place: The third rule of Madeus is
formally defined by Equation (3). To move tokens from input
docks of a place to this place, all input docks must hold a
token. The conclusion is to remove all the tokens within the
docks and to add one token inside the place as illustrated in
Figure 4.

d) Place to output docks: The fourth rule of Madeus is
formally defined by Equation (4). To move a token from a
place to its output docks, a token needs to be present onto
the place. Also, if the place is part of a group which is itself
bound to a used provide port, applying the rule must not make
the last token of the group leave, otherwise this provide port
becomes inactive. A provide port is said to be used if it is
connected to a use port bound to a transition holding a token.
If these conditions are met, the token can be removed from the
place, and a token is added onto each output dock attached to
this place. This rule is illustrated in Figure 5 in a simplified
manner.

e) Enabling use-provide connections: The fifth rule of
Madeus is formally defined by Equation (5). To enable a
connection between use and provide ports, at least one token



Fig. 6: Illustration of the rule of Equation (5) to enable a
connection between use and provide ports of an assembly.

Fig. 7: Illustration of the rule of Equation (6) to disable a
connection between use and provide ports of an assembly.

has to be present in each group of places bound to the provide
port. A token is considered present in a group if it is placed
on one of the places, or on a transition between docks, one
of these docks being attached to one place of the group. The
conclusion of the rule is the enabling of the connection as
depicted in Figure 6.

f) Disabling use-provide connections: The sixth rule of
Madeus is formally defined by Equation (6). Note that this rule
has maximum priority and must be executed first if applicable.
To disable a connection between use and provide ports, there
must not be any token in any group of places bound to the
provide port. The conclusion of the rule is to disable the
connection as depicted in Figure 7.

g) Enabling data-use-provide connections: Finally, the
seventh rule of Madeus is formally defined by Equation (7).
To enable a connection between data-use and data-provide

Fig. 8: Illustration of the rule of Equation (7) to enable a
connection between data-use and data-provide ports of an
assembly.

ports, a value has to be associated to the data-provide port.
The conclusion of the rule is the activation of the connection
as depicted in Figure 8. One can note that the position of
tokens is not a hypothesis in this rule. Actually, we consider
in the formal model that once a value has been attached to a
data-provide port, by applying the rule that ends a transition
(Equation (2)), the connection of this port can be enabled and
will never be disabled. In pratice though, a disabling rule for
data ports could be usefull to not consume extra resources.

Consistency.
In Madeus, the maximum number of tokens that can be

used is the number of possible parallel branches. A token
can only be created during a branching (rule place to output
docks), where one token is created for each output dock of
the place. For this reason, cycles are forbidden in Madeus,
otherwise an infinity of tokens could be created which does
not make sense within a deployment. We plan in future work
on reconfiguration to allow cycles in very specific settings to
keep control on the tokens and their creation.

IV. THE OPENSTACK CASE STUDY

In this section, we show how Madeus can model the
deployment process of a real and large distributed software.
To that end, we chose OpenStack1, the de-facto open-source
solution to address the IaaS level of the Cloud paradigm. Its
community gathers more than 500 organisations (e.g., Google,
IBM, Intel) that have produced more than 20 million lines
of code in six years. OpenStack is a large modular distributed
system composed of more than 30 projects that manage the dif-
ferent aspects of an IaaS (e.g., compute instances, storage and
network resources). These projects are themselves composed
of services, gathering more than 150 services in OpenStack
that can be enabled or disabled depending on one’s needs.
Since the life cycle of each of these services can be modeled
by a component, we aim at modeling the deployment of an
OpenStack configuration by a Madeus assembly.

We have designed our use-case to fit a real production Open-
Stack configuration (i.e., an assembly of OpenStack services).
To that end, we rely on the basic deployment provided by
Kolla2, a popular tool to deploy OpenStack in production. To

1https://www.openstack.org/
2https://github.com/openstack/kolla



θ = (s, d) ∈ Θ∗, s ∈ ∆∗o, d ∈ ∆∗i mk (s) ∀p ∈ Pu ∪Du, (p, θ) ∈ B∗Pu
∪B∗DU

: is ready(p)

〈mk, ebl, val〉 → 〈mk [s := false] [θ := true] , ebl, val〉
(1)

where: is ready(p) = ∃ (a, b) ∈ LS ∪ LD, a = p ∧ ebl (a, b) .

θ = (s, d) ∈ Θ∗ mk (θ) end (action (θ))

〈mk, ebl, val〉 →
〈
mk [θ := false] [d := true] , ebl, val

[
∀p ∈ D∗P , dest(p) : p := valA,Dp

(action(θ), p)
]〉 (2)

where: dest(p) = (p, g) ∈ B∗Dp
, place(d) ∈ g

π ∈ Π∗ Di = docki(π) ∀δ ∈ Dimk (δ)

〈mk, ebl, val〉 → 〈mk [∀δ ∈ Di : δ := false] [π := true] , ebl, val〉
(3)

π ∈ Π∗ Do = docko(π) mk (π) ∀g ∈ G, π ∈ g : can leave (π,Do, g)

〈mk, ebl, val〉 → 〈mk [∀δ ∈ Do : δ := true] [π := false] , ebl, val〉
(4)

where: can leave (π,Do, g) =
(
∃p, (p, g) ∈ BPp

: is used(p)
)

=⇒ ¬last token leaves (π,Do, g)

is used (p) =∃u ∈ P ∗u , θ ∈ Θ∗ : (p, u) ∈ LP ∧ (u, θ) ∈ B∗Pu
∧mk (θ)

last token leaves (π,Do, g) = (is group enabled (g,mk) ∧ ¬is group enabled (g,mk [π := false] [∀d ∈ Do : d := true]))

is group enabled (g,mk) = (∃π ∈ g : mk (π))

∨ (∃ δ ∈ ∆∗o ∪∆∗i : mk (δ) ∧ (∃(s, d) ∈ Θ∗ : (δ = s ∨ δ = d) ∧ is in group ((s, d), g)))

∨ (∃ θ ∈ Θ∗ : mk (θ) ∧ is in group (θ, g))

is in group ((s, d), g) =place (s) ∈ g ∧ place (d) ∈ g

l = (u, p) ∈ LS ¬ebl (l) ∀g ∈ G, (p, g) ∈ BPp : is group enabled (g,mk)

〈mk, ebl, val〉 → 〈mk, ebl [l := true] , val〉
(5)

l = (u, p) ∈ LS ebl (l) ∃g ∈ G, (p, g) ∈ BPp : ¬is group enabled (g,mk)

〈mk, ebl, val〉 → 〈mk, ebl [l := false] , val〉
(6)

l = (u, p) ∈ LD ¬ebl (l) val (p) 6= null
〈mk, ebl, val〉 → 〈mk, ebl [l := true] , val〉

(7)

Fig. 9: The seven operational semantics rules of Madeus.

fit the roles defined in Kolla’s blueprints, we have defined
11 Madeus components, associated to 11 OpenStack projects.
The overall assembly deploys 36 OpenStack services providing
the essential mechanisms to operate an infrastructure with
OpenStack. For instance, while the Nova component deploys
the Nova services, which are in charge of provisioning compute
instances (e.g., virtual machines), the MariaDB component
deploys a SQL server used by most projects to store persistent
data. Figure 10 depicts the Madeus assembly of our use-
case, composed of 11 components with their connections
through use-provide and data-use-provide ports. For the sake
of simplicity and readability, we neither represent the internal
details of components, nor the data-use-provide connections,
nor all the use-provide connections in the figure. Still, one can
note the complexity of a basic OpenStack deployment, due to
the many dependencies between the different components.

Compared to Madeus, some production deployment tools
are based on a retry mode, such as Kubernetes3, which deploys
simultaneously all the components without taking into account

3http://kubernetes.io/

any dependency. Hence, errors occur when a dependency is
not fulfilled, and the tool destroys and re-instantiates the
related component. Well known low-level deployment tools,
such as Ansible (used by Kolla), Puppet, or Chef4, can apply
a same instruction on multiple machines (Single Program,
Multiple Data, or SPMD) but can not handle two different
instructions in parallel. Some other production deployment
tools (e.g., Juju5), as well as academic models [8], [10], [11]
can only express dependencies at the component level and
thus, components with dependencies are deployed one by one.
While in such models components without dependencies can
be deployed simultaneously, they are not numerous in the
OpenStack deployment, as shown in Figure 10.

Aeolus and Madeus both provide fine-grained definitions
of the life cycle and dependencies of each component while
automating the coordination process. The three red components
shown in Figure 10 are detailed according to the Madeus
model in Figure 11. One can note that when entering the

4https://www.ansible.com/, https://puppet.com/, https://www.chef.io/
5https://jujucharms.com/



Fig. 10: Simplified representation of the Madeus assembly based on the 11 components involved in our use-case to deploy
OpenStack. Those components fit a real production deployment as defined in Kolla. Red components are detailed in Figure 11.

detailed life cycle of each component the deployment process
becomes even more complex. However, this level of details
also offers more control and guarantees on the termination of
a deployment without errors. As described in Section III, in
Madeus, parallel branches are possible. This is illustrated for
instance in the component MariaDB, where transitions pull and
boot can be performed simultaneously. This is not possible
in Aeolus. Moreover, we claim that the semantics is easier
to understand for developers, for the following reason: since
transitions are active and use external services or data, while
places are passive and provide services or data, the temporal
evolution of transitions and places is natural for the developer.

In Figure 11, the black tokens are set during initialization.
One can note that semantic rule (4) can first be applied
simultaneously to the three components to move the tokens to
the output docks. Then semantic rule (1) that fires transitions
can be applied to start the three transitions provision. The green
tokens represent an example of evolution of the deployment
process where MariaDB and Glance components have respec-
tively reached the places that provide their IP addresses. As a
result semantic rule (7) will enable the associated connections
@IP gla and @IP mdb. In this scenario, the Nova component
has reached a more complex state, where the transition pull
is under execution and will soon end by applying semantic
rule (2), the transition register is ended (i.e., the keystone
component, that is not represented in this figure, provides its
services), and transitions create-db and config cannot be fired
because their associated use and data-use connections are not
enabled. In this situation, since the Glance component will
enable its data-provide port, the transition config will be fired.
However, the transition create-db will not be fired until the
component MariaDB has reached its red token. When this red
token is reached, semantic rule (5) will be applied and will
enable the provide mdb connection. Finally, when both Nova
and Glance components reach the blue tokens, semantic rule
(3) will be applied in each of them to merge the tokens of

the incoming docks to a single token in the associated place.
Semantic rule (6) has not been used in this example.

To validate our use-case, we have developed an implemen-
tation of Madeus in Python and we successfully deployed
OpenStack with it. We took the Ansible playbooks used by
Kolla to deploy (sequentially) OpenStack services, and we
split them into parts that could be executed in parallel. The
transitions of our Madeus components call one of these smaller
Ansible playbooks. Since Madeus can handle more parallelism
than existing related work, we observed that Madeus can
deploy our OpenStack configuration up to 58% faster than
Kolla and 32% faster than a simulated Aeolus.

V. CONCLUSION

In this paper, we have introduced the Madeus model and
its operational semantics. This model, inspired from Aeolus,
offers a way to declare and automatically execute the deploy-
ment of an assembly of components. In Madeus, the life cycle
of a component is declared as a structure close to a Petri
net in which states and transitions are bound to the ports
of the component. These ports are used to connect multiple
components within an assembly to guarantee the coordination
of the different life cycles at run-time. Moreover, we have
applied the model to a real use-case study based on the
deployment of OpenStack.

Because Madeus is a low-level model, it may be too
technical for adoption by the industry. However we see it
as a backend that can be used by higher level DSLs. In
future works, we plan to prove some properties on Madeus
assemblies, such as assembly consistency or the reachability
of one or multiple valuations (i.e., the deployment state of the
software). To this end, we plan to transform an assembly into
a global Petri net preserving its behavior, and we plan to use
model checkers to produce proofs. Moreover we are currently
working on an evolution of Madeus, which aims at handling
reconfiguration of assemblies at run-time [14]–[16].



Fig. 11: A detailed sub-part of the full component assembly to deploy OpenStack. The three red components of Figure 10 are
detailed by using Madeus. Black, green, blue and red tokens represent different scenarios during the deployment process.

ACKNOWLEDGMENT

This work was partially funded by the Discovery Inria
Project Lab (see http://beyondtheclouds.github.io). The exper-
iments presented in this paper used the Grid’5000 testbed,
supported by a scientific interest group hosted by Inria, which
includes CNRS, RENATER and several Universities as well as
other organizations (see https://www.grid5000.fr).

REFERENCES

[1] C. Szyperski, Component Software: Beyond Object-Oriented Program-
ming, 2nd ed. Boston, MA, USA: Addison-Wesley Longman Pub. Co.,
Inc., 2002.

[2] Object Management Group, “CORBA Component Model,” Apr. 2006.
[Online]. Available: https://www.omg.org/spec/CCM/4.0/PDF

[3] G. Blair, T. Coupaye, and J.-B. Stefani, “Component-based architecture:
the Fractal initiative,” Annals of telecommunications, vol. 64, Feb 2009.

[4] F. Baude, L. Henrio, and C. Ruz, “Programming distributed and
adaptable autonomous components – the GCM/ProActive framework,”
Software: Practice and Experience, May 2014.

[5] B. Allan, R. Armstrong, D. Bernholdt et al., “A component architecture
for high-performance scientific computing,” Intl J. of High Performance
Computing Applications, vol. 20, no. 2, pp. 163–202, 2006.

[6] J. Bigot and C. Pérez, “Increasing reuse in component models through
genericity,” Inria, Research Report RR-6941, 2009. [Online]. Available:
https://hal.inria.fr/inria-00388508

[7] H. Coullon, J. Bigot, and C. Perez, “Extensibility and composability of
a multi-stencil domain specific framework,” Intl J. of Parallel Program-
ming, Nov 2017.

[8] A. Flissi, J. Dubus, N. Dolet, and P. Merle, “Deploying on the Grid with
Deployware,” in The Eighth IEEE International Symposium on Cluster
Computing and the Grid (CCGRID), May 2008, pp. 177–184.

[9] Object Management Group, “Deployment and configuration of
component-based distributed applications,” Apr. 2006. [Online].
Available: https://www.omg.org/spec/DEPL/4.0/PDF

[10] “Topology and Orchestration Specification for Cloud Applications V1.0,”
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html,
2013.

[11] A. Brogi, D. Neri, L. Rinaldi, and J. Soldani, “From (incomplete)
TOSCA specifications to running applications, with Docker,” in Software
Engineering and Formal Methods, A. Cerone and M. Roveri, Eds.
Springer Intl Pub., 2018, pp. 491–506.

[12] R. Di Cosmo, A. Eiche, J. Mauro et al., “Automatic deployment of
services in the Cloud with Aeolus Blender,” in 13th Intl Conf. on Service-
Oriented Computing, A. Barros, D. Grigori, N. C. Narendra, and H. K.
Dam, Eds., vol. 9435. Goa, India: Springer, Nov. 2015, pp. 397–411.

[13] R. Di Cosmo, J. Mauro, S. Zacchiroli, and G. Zavattaro, “Aeolus: a
component model for the Cloud,” Information and Computation, pp.
100–121, Jan. 2014.

[14] J. Buisson, F. Dagnat, E. Leroux, and S. Martinez, “Safe reconfiguration
of Coqcots and Pycots components,” Journal of Systems and
Software, vol. 122, pp. 430–444, dec 2016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121215002630

[15] V. Lanore and C. Pérez, “A reconfigurable component model for HPC,”
in CBSE 2015. Montréal, Canada: ACM, May 2015, p. 10. [Online].
Available: https://hal.inria.fr/hal-01142606

[16] N. Gaspar, L. Henrio, and E. Madelaine, “Formally reasoning on
a reconfigurable component-based system — a case study for the
industrial world,” in The 10th International Symposium on Formal
Aspects of Component Software, Nanchang, China, Oct. 2013. [Online].
Available: https://hal.inria.fr/hal-00916115


