A. Abdulkadir, B. Mortamet, P. Vemuri, C. R. Jack, G. Krueger et al., Effects of hardware heterogeneity on the performance of SVM Alzheimer's disease classifier, Neuroimage, vol.58, pp.785-792, 2011.

C. Aguilar, E. Westman, J. Muehlboeck, P. Mecocci, B. Vellas et al., Different multivariate techniques for automated classification of MRI data in Alzheimer's disease and mild cognitive impairment, Psychiatry Res, vol.212, pp.89-98, 2013.

M. S. Albert, S. T. Dekosky, D. Dickson, B. Dubois, H. H. Feldman et al., The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease, Alzheimers Dement, vol.7, pp.270-279, 2011.

G. I. Allen, N. Amoroso, C. Anghel, V. Balagurusamy, C. J. Bare et al., Alzheimer's & Dementia: The Journal of the Alzheimer's Association, vol.12, pp.645-653, 2016.


M. R. Arbabshirani, S. Plis, J. Sui, and V. D. Calhoun, Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls, Neuroimage, vol.145, pp.137-165, 2017.


J. Ashburner, A fast diffeomorphic image registration algorithm, Neuroimage, vol.38, pp.95-113, 2007.

J. Ashburner and K. J. Friston, Unified segmentation, Neuroimage, vol.26, pp.839-851, 2005.
DOI : 10.1016/j.neuroimage.2005.02.018

K. Bäckström, M. Nazari, I. Y. Gu, and A. S. Jakola, An efficient 3D deep convolutional network for Alzheimer's disease diagnosis using MR images, Presented at the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp.149-153, 2018.

I. Beheshti and H. Demirel, Probability distribution function-based classification of structural MRI for the detection of Alzheimer's disease, Comput. Biol. Med, vol.64, pp.208-216, 2015.

Y. Bengio and Y. Grandvalet, No Unbiased Estimator of the Variance of K-Fold Cross-Validation, J. Mach. Learn. Res, vol.5, pp.1089-1105, 2004.

E. E. Bron, M. Smits, W. M. Van-der-flier, H. Vrenken, F. Barkhof et al., Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: The CADDementia challenge, NeuroImage, vol.111, pp.562-579, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01220123

C. Cabral, P. M. Morgado, D. Campos-costa, and M. Silveira, Predicting conversion from MCI to AD with FDG-PET brain images at different prodromal stages, Comput. Biol. Med, vol.58, pp.101-109, 2015.

C. Chu, A. Hsu, K. Chou, P. Bandettini, and C. Lin, Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images, Neuroimage, vol.60, pp.59-70, 2012.

P. Coupé, S. F. Eskildsen, J. V. Manjón, V. S. Fonov, J. C. Pruessner et al., Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease, NeuroImage: Clinical, vol.1, pp.141-152, 2012.

J. Dukart, K. Mueller, A. Horstmann, H. Barthel, H. E. Möller et al., Combined evaluation of FDG-PET and MRI improves detection and differentiation of dementia, PLoS ONE, vol.6, 2011.

K. A. Ellis, A. I. Bush, D. Darby, D. D. Fazio, J. Foster et al., The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer's disease, International Psychogeriatrics, vol.21, pp.672-687, 2009.

K. A. Ellis, C. C. Rowe, V. L. Villemagne, R. N. Martins, C. L. Masters et al., Addressing population aging and Alzheimer's disease through the Australian Imaging Biomarkers and Lifestyle study: Collaboration with the Alzheimer's Disease Neuroimaging Initiative, Alzheimer's & Dementia, vol.6, pp.291-296, 2010.

S. F. Eskildsen, P. Coupé, D. García-lorenzo, V. Fonov, J. C. Pruessner et al., Prediction of Alzheimer's disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning, Neuroimage, vol.65, pp.511-521, 2013.

M. Ewers, R. A. Sperling, W. E. Klunk, M. W. Weiner, and H. Hampel, Neuroimaging markers for the prediction and early diagnosis of Alzheimer's disease dementia, Trends in Neurosciences, vol.34, pp.430-442, 2011.

F. Falahati, E. Westman, and A. Simmons, Multivariate Data Analysis and Machine Learning in Alzheimer's Disease with a Focus on Structural Magnetic Resonance Imaging, Journal of Alzheimer's Disease, vol.41, pp.685-708, 2014.

Y. Fan, N. Batmanghelich, C. M. Clark, and C. Davatzikos, Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline, NeuroImage, vol.39, pp.1731-1743, 2008.

B. Fischl, FreeSurfer, Neuroimage, vol.62, pp.774-781, 2012.

K. Franke, G. Ziegler, S. Klöppel, and C. Gaser, Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters, Neuroimage, vol.50, pp.883-892, 2010.


K. J. Friston, J. Ashburner, C. D. Frith, J. Poline, J. D. Heather et al., Spatial registration and normalization of images, Human Brain Mapping, vol.3, pp.165-189, 1995.


M. Gómez-sancho, J. Tohka, and V. Gómez-verdejo, Comparison of feature representations in MRI-based MCI-to-AD conversion prediction, Magn Reson Imaging, vol.50, pp.84-95, 2018.

K. Gorgolewski, C. D. Burns, C. Madison, D. Clark, Y. O. Halchenko et al., Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python, Front Neuroinform, vol.5, 2011.

K. J. Gorgolewski, T. Auer, V. D. Calhoun, R. C. Craddock, S. Das et al., The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01345616

I. S. Gousias, D. Rueckert, R. A. Heckemann, L. E. Dyet, J. P. Boardman et al., Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest, Neuroimage, vol.40, pp.672-684, 2008.

K. R. Gray, P. Aljabar, R. A. Heckemann, A. Hammers, and D. Rueckert, Random forest-based similarity measures for multi-modal classification of Alzheimer's disease, NeuroImage, vol.65, pp.167-175, 2013.
DOI : 10.1016/j.neuroimage.2012.09.065

URL : http://europepmc.org/articles/pmc3516432?pdf=render


R. Guerrero, R. Wolz, A. W. Rao, and D. Rueckert, Manifold population modeling as a neuro-imaging biomarker: Application to ADNI and ADNI-GO, NeuroImage, vol.94, pp.275-286, 2014.


S. Haller, K. O. Lovblad, and P. Giannakopoulos, Principles of Classification Analyses in Mild Cognitive Impairment (MCI) and Alzheimer Disease, Journal of Alzheimer's Disease, vol.26, pp.389-394, 2011.

A. Hammers, R. Allom, M. J. Koepp, S. L. Free, R. Myers et al., Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe, Hum Brain Mapp, vol.19, pp.224-247, 2003.

C. Hinrichs, V. Singh, L. Mukherjee, G. Xu, M. K. Chung et al., Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset, Neuroimage, vol.48, pp.138-149, 2009.

C. J. Holmes, R. Hoge, L. Collins, R. Woods, A. W. Toga et al., Enhancement of MR images using registration for signal averaging, J Comput Assist Tomogr, vol.22, pp.324-333, 1998.

C. R. Jack, M. S. Albert, D. S. Knopman, G. M. Mckhann, R. A. Sperling et al., Introduction to the recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease, Alzheimers Dement, vol.7, pp.257-262, 2011.

C. R. Jack, M. A. Bernstein, B. J. Borowski, J. L. Gunter, N. C. Fox et al., Update on the Magnetic Resonance Imaging core of the Alzheimer's Disease Neuroimaging Initiative, Alzheimer's & Dementia, vol.6, pp.212-220, 2010.

C. R. Jack, M. A. Bernstein, N. C. Fox, P. Thompson, G. Alexander et al., The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods, J. Magn. Reson. Imaging, vol.27, pp.685-691, 2008.


C. R. Jack, D. S. Knopman, W. J. Jagust, L. M. Shaw, P. S. Aisen et al., Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade, Lancet Neurol, vol.9, pp.70299-70305, 2010.

W. J. Jagust, D. Bandy, K. Chen, N. L. Foster, S. M. Landau et al., The Alzheimer's Disease Neuroimaging Initiative positron emission tomography core, Alzheimer's & Dementia, vol.6, pp.221-229, 2010.

W. J. Jagust, S. M. Landau, R. A. Koeppe, E. M. Reiman, K. Chen et al., The Alzheimer's Disease Neuroimaging Initiative 2 PET Core, Alzheimer's & Dementia, vol.11, pp.757-771, 2015.

B. Jie, D. Zhang, B. Cheng, and D. Shen, Manifold regularized multitask feature learning for multimodality disease classification, Hum. Brain Mapp, vol.36, pp.489-507, 2015.

M. Joliot, G. Jobard, M. Naveau, N. Delcroix, L. Petit et al., AICHA: An atlas of intrinsic connectivity of homotopic areas, J. Neurosci. Methods, vol.254, pp.46-59, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01197121

N. R. Ke, A. Goyal, A. Lamb, J. Pineau, and S. Bengio, Workshop of the International Conference on Machine Learning

S. Klöppel, C. M. Stonnington, C. Chu, B. Draganski, R. I. Scahill et al., Automatic classification of MR scans in Alzheimer's disease, Brain, vol.131, pp.681-689, 2008.

D. S. Knopman, S. T. Dekosky, J. L. Cummings, H. Chui, J. Corey-bloom et al., Practice parameter: diagnosis of dementia (an evidence-based review), Report of the Quality Standards Subcommittee of the American Academy of Neurology, vol.56, pp.1143-1153, 2001.

S. M. Landau, C. Breault, A. D. Joshi, M. Pontecorvo, C. A. Mathis et al., Amyloid-? Imaging with Pittsburgh Compound B and Florbetapir: Comparing Radiotracers and Quantification Methods, J Nucl Med, vol.54, pp.70-77, 2013.

X. Li, P. S. Morgan, J. Ashburner, J. Smith, and C. Rorden, The first step for neuroimaging data analysis: DICOM to NIfTI conversion, J. Neurosci. Methods, vol.264, pp.47-56, 2016.


M. Liu, D. Zhang, and D. Shen, Ensemble sparse classification of Alzheimer's disease, NeuroImage, vol.60, pp.1106-1116, 2012.

M. Liu, D. Zhang, and D. Shen, View-centralized multiatlas classification for Alzheimer's disease diagnosis, Hum Brain Mapp, vol.36, pp.1847-1865, 2015.

M. Liu, J. Zhang, E. Adeli, and D. Shen, Landmark-based deep multi-instance learning for brain disease diagnosis, Med Image Anal, vol.43, pp.157-168, 2018.

D. Lu, K. Popuri, G. W. Ding, R. Balachandar, and M. F. Beg, Multimodal and Multiscale Deep Neural Networks for the Early Diagnosis of Alzheimer's Disease using structural MR and FDG-PET images, Sci Rep, vol.8, 2018.

T. Maggipinto, R. Bellotti, N. Amoroso, D. Diacono, G. Donvito et al., DTI measurements for Alzheimer's classification, Phys. Med. Biol, vol.62, p.2361, 2017.

D. S. Marcus, T. H. Wang, J. Parker, J. G. Csernansky, J. C. Morris et al., Open Access Series of Imaging Studies (OASIS): Cross-sectional MRI Data in Young, Middle Aged, Nondemented, and Demented Older Adults, Journal of Cognitive Neuroscience, vol.19, pp.1498-1507, 2007.


G. Mckhann, D. Drachman, M. Folstein, R. Katzman, D. Price et al., Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease, Neurology, vol.34, pp.939-944, 1984.

G. M. Mckhann, D. S. Knopman, H. Chertkow, B. T. Hyman, C. R. Jack et al., The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease, Alzheimers Dement, vol.7, pp.263-269, 2011.


E. Moradi, A. Pepe, C. Gaser, H. Huttunen, and J. Tohka, Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects, Neuroimage, vol.104, pp.398-412, 2015.

C. Nadeau and Y. Bengio, Inference for the Generalization Error, Machine Learning, vol.52, pp.239-281, 2003.

K. Ota, N. Oishi, K. Ito, H. Fukuyama, . Sead-j-study et al., A comparison of three brain atlases for MCI prediction, J. Neurosci. Methods, vol.221, pp.139-150, 2014.

K. Ota, N. Oishi, K. Ito, H. Fukuyama, . Sead-j-study et al., Effects of imaging modalities, brain atlases and feature selection on prediction of Alzheimer's disease, J. Neurosci. Methods, vol.256, pp.168-183, 2015.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research, vol.12, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

R. C. Petersen, P. S. Aisen, L. A. Beckett, M. C. Donohue, A. C. Gamst et al., Alzheimer's Disease Neuroimaging Initiative (ADNI): clinical characterization, Neurology, vol.74, pp.201-209, 2010.


R. A. Poldrack, C. I. Baker, J. Durnez, K. J. Gorgolewski, P. M. Matthews et al., Scanning the horizon: towards transparent and reproducible neuroimaging research, Nat. Rev. Neurosci, vol.18, pp.115-126, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01896468

O. Querbes, F. Aubry, J. Pariente, J. Lotterie, J. Démonet et al., Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve, Brain, vol.132, pp.2036-2047, 2009.


P. R. Raamana, Neuropredict: Easy Machine Learning And Standardized Predictive Analysis Of Biomarkers, 2017.

P. R. Raamana and S. C. Strother, Impact of spatial scale and edge weight on predictive power of cortical thickness networks, 2017.

S. Rathore, M. Habes, M. A. Iftikhar, A. Shacklett, and C. Davatzikos, A review on neuroimagingbased classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages, NeuroImage, vol.155, pp.530-548, 2017.

A. Routier, J. Guillon, N. Burgos, J. Samper-gonzalez, J. Wen et al., Clinica: an open source software platform for reproducible clinical neuroscience studies, Presented at the Annual meeting of the Organization for Human Brain Mapping-OHBM, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01760658

M. R. Sabuncu, E. Konukoglu, . Initiative, and A. D. For-the, Clinical Prediction from Structural Brain MRI Scans: A Large-Scale Empirical Study, Neuroinform, vol.13, pp.31-46, 2015.

C. Salvatore, A. Cerasa, P. Battista, M. C. Gilardi, A. Quattrone et al., Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer's disease: a machine learning approach, Front. Neurosci, vol.9, 2015.

C. G. Schwarz, J. L. Gunter, H. J. Wiste, S. A. Przybelski, S. D. Weigand et al., Alzheimer's Disease Neuroimaging Initiative, 2016. A large-scale comparison of cortical thickness and volume methods for measuring Alzheimer's disease severity, Neuroimage Clin, vol.11, pp.802-812

D. W. Shattuck, M. Mirza, V. Adisetiyo, C. Hojatkashani, G. Salamon et al., Construction of a 3D probabilistic atlas of human cortical structures, Neuroimage, vol.39, pp.1064-1080, 2008.

L. Sørensen and M. Nielsen, Ensemble support vector machine classification of dementia using structural MRI and mini-mental state examination, J. Neurosci. Methods, vol.302, pp.66-74, 2018.

R. A. Sperling, P. S. Aisen, L. A. Beckett, D. A. Bennett, S. Craft et al., Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on AgingAlzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease, Alzheimers Dement, vol.7, pp.280-292, 2011.

H. Suk, S. Lee, and D. Shen, Deep ensemble learning of sparse regression models for brain disease diagnosis, Med Image Anal, vol.37, pp.101-113, 2017.

S. J. Teipel, J. Kurth, B. Krause, and M. J. Grothe, The relative importance of imaging markers for the prediction of Alzheimer's disease dementia in mild cognitive impairment-Beyond classical regression, NeuroImage: Clinical, vol.8, pp.583-593, 2015.

B. A. Thomas, V. Cuplov, A. Bousse, A. Mendes, K. Thielemans et al., PETPVC: a toolbox for performing partial volume correction techniques in positron emission tomography, Phys Med Biol, vol.61, pp.7975-7993, 2016.

B. A. Thomas, K. Erlandsson, M. Modat, L. Thurfjell, R. Vandenberghe et al., The importance of appropriate partial volume correction for PET quantification in Alzheimer's disease, Eur. J. Nucl. Med. Mol. Imaging, vol.38, pp.1104-1119, 2011.

J. Tohka, E. Moradi, and H. Huttunen, Comparison of Feature Selection Techniques in Machine Learning for Anatomical Brain MRI in Dementia, Neuroinformatics, vol.14, pp.279-296, 2016.

T. Tong, R. Wolz, Q. Gao, R. Guerrero, J. V. Hajnal et al., Multiple instance learning for classification of dementia in brain MRI, Medical Image Analysis, vol.18, pp.808-818, 2014.

N. Tzourio-mazoyer, B. Landeau, D. Papathanassiou, F. Crivello, O. Etard et al., Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain, Neuroimage, vol.15, pp.273-289, 2002.


G. Varoquaux, P. R. Raamana, D. A. Engemann, A. Hoyos-idrobo, Y. Schwartz et al., Assessing and tuning brain decoders: Cross-validation, caveats, and guidelines, Neuroimage, vol.145, pp.166-179, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01332785

P. Vemuri, J. L. Gunter, M. L. Senjem, J. L. Whitwell, K. Kantarci et al., Alzheimer's disease diagnosis in individual subjects using structural MR images: validation studies, Neuroimage, vol.39, pp.1186-1197, 2008.

O. Voevodskaya, A. Simmons, R. Nordenskjöld, J. Kullberg, H. Ahlström et al., Alzheimer's Disease Neuroimaging Initiative, 2014. The effects of intracranial volume adjustment approaches on multiple regional MRI volumes in healthy aging and Alzheimer's disease, Front Aging Neurosci, vol.6

E. Westman, C. Aguilar, J. Muehlboeck, and A. Simmons, Regional magnetic resonance imaging measures for multivariate analysis in Alzheimer's disease and mild cognitive impairment, Brain Topogr, vol.26, pp.9-23, 2013.

B. Winblad, K. Palmer, M. Kivipelto, V. Jelic, L. Fratiglioni et al., Mild cognitive impairment-beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment, J. Intern. Med, vol.256, pp.240-246, 2004.

R. Wolz, V. Julkunen, J. Koikkalainen, E. Niskanen, D. P. Zhang et al., Multi-method analysis of MRI images in early diagnostics of Alzheimer's disease, PLoS ONE, vol.6, 2011.

J. Young, M. Modat, M. J. Cardoso, A. Mendelson, D. Cash et al., Accurate multimodal probabilistic prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment, NeuroImage: Clinical, vol.2, pp.735-745, 2013.

H. J. Yun, K. Kwak, J. Lee, and A. D. Initiative, Multimodal Discrimination of Alzheimer's Disease Based on Regional Cortical Atrophy and Hypometabolism, PLOS ONE, vol.10, 2015.

D. Zhang, Y. Wang, L. Zhou, H. Yuan, and D. Shen, Multimodal classification of Alzheimer's disease and mild cognitive impairment, NeuroImage, vol.55, pp.856-867, 2011.


X. Zhu, H. Suk, and D. Shen, A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis, Neuroimage, vol.100, pp.91-105, 2014.