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Abstract. Radiological imaging offers effective measurement of anatomy,
which is useful in disease diagnosis and assessment. Previous study [1]
has shown that the left atrial wall remodeling can provide information
to predict treatment outcome in atrial fibrillation. Nevertheless, the seg-
mentation of the left atrial structures from medical images is still very
time-consuming. Current advances in neural network may help creat-
ing automatic segmentation models that reduce the workload for clini-
cians. In this preliminary study, we propose automated, two-stage, three-
dimensional U-Nets with convolutional neural network, for the challeng-
ing task of left atrial segmentation. Unlike previous two-dimensional im-
age segmentation methods, we use 3D U-Nets to obtain the heart cavity
directly in 3D. The dual 3D U-Net structure consists of, a first U-Net
to coarsely segment and locate the left atrium, and a second U-Net to
accurately segment the left atrium under higher resolution. In addition,
we introduce a loss function based on additional distance information to
adjust the final segmentation. We randomly split the data into training
datasets (80 subjects) and validation datasets (20 subjects). Experiments
show that the average Dice coefficient for validation datasets is 0.924, the
sensitivity is 0.92 and the specificity 0.99. We also compare the prediction
results using the two loss functions, Dice coefficient loss and proposed
weighted Dice/Contour distance loss, in a 3D view.

Keywords: 3D U-Net, segmentation, left atrium, loss function, contour
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1 Introduction

Atrial fibrillation is the most frequently encountered arrhythmia in clinical prac-
tice, especially in aged population [2, 3]. It is characterized by uncoordinated
electrical activation and disorganized contraction of the atria. This condition is
associated with life-threatening consequences, such as stroke and heart failure.
AF also leads to increased public resource utilization and expense on health care.

With evolving imaging technologies, the analysis of cardiovascular diseases
and computer-aided interventions have been developing rapidly. Imaging of the



heart is routinely performed in some hospital centers when managing AF and
prior to atrial ablation therapy, an invasive treatment to establish transmural
lesions and block the propagation of arrhythmia. Automated segmentation from
cardiac images will benefit the studies of left atrial anatomy, tissues and struc-
tures, and provide tools for AF patient management and ablation guidance.

In recent years, with the continuous development of deep learning, neural
network models have shown significant advantages in different visual and image
processing problems [4]. In medical image analysis, automatic segmentation of
3D volumes from medical images by deep neural network also attracts increasing
attention in the research community [5, 6].

In this study, we utilize 3D U-Nets with convolutional neural network. CNN
shows clear advantages compared with traditional feature extraction algorithms
[7, 8]. Based on that, Ronneberger et al. proposed the original U-Net structure
[9] with CNN. Traditional 2D U-Net has achieved good results in the field of
medical image segmentation [9, 10]. However, it performs convolution on the 2D
slices of the images and cannot capture the spatial relationship between slices. Its
3D extension [11], expands the filter operator into 3D space. This extracts image
features in 3D, and hence takes into account the spatial continuity between slices
in medical imaging. This may better reflect shape features of the corresponding
anatomy.

Previously, Tran et al. used 3D CNNs to extract temporal and spatial features
[12]. They experimented with different sets of data. Hou et al. used 3D CNN to
detect and segment pedestrians in a video sequence [13]. The previous studies
show that 3D CNN outperformed 2D CNN when dealing with sequences issues.

3D U-Net was used in [11] to realize semi-automatic segmentation of volu-
metric images. Oktay et al. used 3D U-Net ventricle segmentation from magnetic
resonance images. They introduced an anatomical regularization factor into the
model [14], while we choose to use loss function at pixel level.

In the following sections, we will present the two-stage network to segment
the left atrium from MR images. The network consists of two successive 3D U-
Nets. The first U-Net is used to locate the segmentation target. The second U-Net
performs detailed segmentation from cropped region of interest. We introduced a
new loss function, Contour distance for the second U-Net. Results will be shown
in Section 3.

2 Method

2.1 Dual 3D U-Nets - cropping and segmenting

U-Net is a typical encoder-decoder neural network structure. The images are
encoded by the CNN layers in the encoder. The output characteristics and the
feature maps at different feature levels of the encoder serve as input of the de-
coder. The decoder is an inverse layer-by-layer decoding process. Such a codec
structure can effectively extract image features of different levels so as to analyze
the images in each dimension. The 3D U-Net used in this paper is a specializa-
tion of 3D U-Net proposed by Çiçek et al [11]. The implementation of U-Net



follows the work of Isensee et al [15]. We propose a successive dual 3D U-Net
architecture, illustrated in Fig. 1.

The first 3D U-Net locates and coarsely extracts the region of interest. Its
input is MR images normalized and re-sized to (128, 128, 128). Its output is
preliminary predicted masks of the left atrium. We keep the largest connected
component in the masks, and compute the spatial location and size of the left
atrium. Then, we crop the MR images and ground truth masks with a cuboid,
whose dimension in each direction equals to 1.5 times the size of the predicted
left atrium in this direction.

The second network performs a secondary processing of the cropped images
using the full resolution. Because the higher is the resolution, the larger is the
needed memory, we keep only the region around the left atrium, so as to preserve
information that is essential for left atrial segmentation. But also, this allows to
put a higher resolution on the region of interest with the same amount of memory
resource. The input for the second U-Net is MR images cropped and and re-sized
to (128, 128, 128). Its output is our prediction for the left atrial segmentation.
We train the second U-Net with two ground truth channels, binary segmentation
masks M and euclidean distance maps D(M), as shown in Fig 2 (top). Here,
we introduce a weighted loss function based on Dice coefficient and Contour
distance.

Fig. 1. Proposed Dual 3D U-Net Structure. Green blocks represent 3D features; Dark
blue refers to interface operation to crop the region of interest based on first U-Net
prediction.

2.2 Loss Functions

Using Dice coefficient as loss function can reach high accuracy. However, exper-
iments show that, because the inside of the left atrial body accounts for most
pixels, the network would stop to optimize when it finds satisfying segmentation
of the left atrial body. Instead of the volume inside, the contour is what we
want to obtain accurately for the segmentation. It is challenging to segment ac-
curately especially the region around the pulmonary veins and the appendage.



To improve the performance, we introduce the contour distance into the loss
function.

The distance maps D(M) illustrate how far is each pixel from the contour
of the left atrium. The value is negative inside the left atrium and positive out-
side. We compute the signed distance based on the euclidean distance transform
algorithm implemented in scipy. The definition of a Hausdorff distance is sym-
metric between two point sets. But to make it easy to be implemented in neural
networks, we do not compute the distance map of the changing prediction P in
the training process, and use an unitary distance:

d =
∑
p∈P

min
m∈M

‖p−m‖2 = −
∑

(D(M) ◦ P ), (1)

where ◦ performs element-wise multiplication. M is the first ground truth chan-
nel, the binary segmentation, D(M) is the second ground truth channel, the
signed distance map, and P is the prediction of the U-Net, after sigmoid ac-
tivation of the output layer. Then, the loss function is given by a weighted
combination of Dice coefficient loss and Contour distance loss,

LossDice : −
∑

(M ◦ P )∑
M +

∑
P

; (2)

LossContour :

∑
(D(M) ◦ P )∑
‖D(M)‖

. (3)

We normalize the second loss by
∑
‖D(M)‖. To compute the distance loss func-

tion only from pixels on contour, we can either clip the value of P in the range
of [0.1, 0.9]; or apply 3D Sobel filters on P .

Contour distance provides a spatial information for the segmentation, while
Dice coefficient measures the volumes inside the contours. We assign a bigger
weight to Dice so that it controls the convergence in the beginning, and when it
stops to improve, Contour loss begins to alter the the segmentation results. The
loss function is still differentiable and converges in the training.

2.3 Experimental setting

In this study, we use 1 as batch size. The initial learning rate of our neural
network was 5e−4. For the first U-Net, it takes around 300−350 epochs to reach
early convergence. For the second U-Net, it takes around 250 − 300 epochs to
reach early convergence. The early convergence is defined as no improvement
after 50 epochs.

Using large initial learning rate reduces the time to find the minimum and
may also overstep the local minima to converge closer to the global minimum
of the loss function. However, the accuracy of segmentation also relies on when
we stop the training to avoid over-fitting. Besides, to obtain an optimal weight
between the two loss functions, experiments are needed. We present the results
of weighted Contour distance loss and Dice loss as 0.05:0.95. With Dice coeffi-
cient loss alone, the average Dice index for predicted segmentations in validation



datasets is around 0.91. We choose this ratio so that Contour distance loss plays
a fine-tuning role.

3 Evaluation on Clinical Data

3.1 Materials

A total of 100 3D GE-MRIs from patients with AF are provided by the STACOM
2018 Atrial Segmentation Challenge. The original resolution of the data is 0.625×
0.625 × 0.625 mm3. 3D MR images were acquired using a clinical whole-body
MRI scanner and the corresponding ground truths of the left atrial masks were
manually segmented by experts in the field.

We performed normalization on the raw MR images. The datasets were split
into 80 training sets and 20 validation sets.

3.2 Results

We visualize the predicted segmentation results of validation datasets in Fig. 2&3.
Case 1 and Case 2 are randomly selected to be presented in a 3D view (see Fig. 3).

The proposed method closely segmented the atrial body compared with man-
ual segmentation, with both loss functions. As the manual segmentations were
probably performed slice-by-slice, there is sometimes discontinuity between two
axial slices. While our segmentation is based on 3D operators, the segmented
surface is smooth in 3D. The use of 3D U-Net to segment the cardiac MR im-
age enables full use of the spatial information of the 3D image as compared to
segmentation on a 2D image.

Evaluation Metrics We assess the segmentation results of our method by
confusion matrix and Dice coefficient, as shown in Table 1. The Dice index for
predicted segmentation in validation datasets attained 0.92. The sensitivity of
prediction was 0.92 and the specificity 0.99, both with smaller standard deriva-
tion, compared with traditional Dice coefficient loss. Based on previous studies
on the left atrial segmentation and other cardiac cavities segmentation, our net-
work obtained good results.

Comparison of Loss Functions We compare the prediction segmentation
using Dice loss alone and weighted loss, as featured in Fig. 3.

For the two loss functions, differences lay in the boundary, the region close
to the pulmonary veins and septum. The prediction results from the weighted
loss is closer to the manual segmentation in terms of global shape. Moreover,
the prediction based on Dice coefficient loss alone contains disconnected spots
not belonging to the left atrium in Case 1 and a irregular bump on the septum
in Case 2, while, with the fine-tuning of Contour distance loss, these effects are
reduced.

With the weighted loss function, we can better maintain the smoothness of
the contour, and shape consistency.



Fig. 2. Input (top) and output (bottom) of the successive U-Nets. For prediction re-
sults, we show axial slices of MR images, overlapped with manual segmentation of the
left atrial wall in blue, our segmentation in red, intersection of the two in purple.

Fig. 3. Comparison of two loss functions. (a) manually segmented; (b) predicted with
Dice coefficient loss; (c) predicted with weighted Loss of Dice/Contour distance.



Table 1. Validation results using two loss functions: Dice coefficient loss (top) and
weighted loss of Dice/Contour distance (bottom).

Confusion Matrix (%)

True positive False positive
7.81 ± 1.70 0.77 ± 0.37

False negative True negative
0.79 ± 0.42 90.64 ± 1.85

Evaluation Metrics

Sensitivity 0.91 ± 0.04

Specificity 0.99 ± 0.00

Dice 0.907 ± 0.026

Confusion Matrix (%)

True positive False positive
7.78 ± 1.68 0.61 ± 0.23

False negative True negative
0.66 ± 0.35 90.96 ± 1.87

Evaluation Metrics

Sensitivity 0.92 ± 0.03

Specificity 0.99 ± 0.00

Dice 0.924 ± 0.020

4 Conclusion

In this paper, we proposed a deep neural network with dual 3D U-Net structure,
to segment the left atrium from MR images. To take into consideration the
shape characteristics of the left atrium, we propose to include Contour distance
and create a weighted loss function. The entire model can accurately locate the
segmentation target and clearly segment the target. Experiments show that the
proposed method well captured the anatomy of atrial volume in 3D space from
MR images. The new loss function achieved a fine-tuning of accuracy and shape
consistency.

The neural network model can predict segmentations within seconds. This
can largely reduce manual work load for clinicians and has promising applications
in clinical practice. Future work includes integrating the segmentation model into
a clinic-oriented AF management pipeline.
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