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Abstract

The aim of this paper is to show how some tools of control
theory can be helpfull to regulate the exploitation of a
population of fish.

1 Introduction

In this paper, we are interested in the stabilization of an
exploited population of fish arround a non trivial steady
state.

The dynamic of the population is supposed to be de-
scribed by a discrete-time system of the form

z(t+1) = Fla(t), ult)), (1)

where z(t) is the state variable at time k = 0.1,2, ... and
u(t) is the control (here it is the fishing effort).

The problem addressed here is how to compute the fish-
ing effort (as a feedback control) u(#) in such a way, that
for a given state z° # 0, one has

(i) F (2% u(z")) = 2° (2° is an equilibrium point).

(ii) «° is a globally asymptotically stable equilibrium
point for the closed-loop system

2(t+1) = F(a(t). u(z(1))).
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More precisely, we consider a density-dependent model
of a population of exploited fish which is structured in n
age classes [liu, mag, ric] :

w1t +1) = F(Xim biws(t))
w2t + 1) = w1 (@ewp(—M1 — qru(?))
r3(t + 1) = z2()exp(—Ms — goul?)) (2)

:;cn(t + 1) = zp_1(t)exp{—Mu—1 — gn-1u(t))

Where:

e b; > 01is the number of individuals produced by indi-
viduals of the % age class.

e M; > 0 is the natural mortality of individuals of age
i

e ¢; > 018 the catchability of individuals of age i.

e u(t) is the fishing effort at time ¢ and is regarded as
an input.

¢ fis the stock-recruitment function. It is a continuous
function satisfying f({0) = 0.

Several authors have proposed different kind of functions
[ (see [bev, mag, ric]. We shall use in this paper the
expression of f used in Beverton and Holt model [bev]

oz
T4+ B

f(z) . B>0

To construct the stabilizing feedback law, we shall use and
adapt a machinery developped in [ben, igg].
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2 Main result

For the sake of simplicity we shall give the result for n =3
(the calculus are exactly the same for an arbitrary n but
the expression of the feedback is longer). We also suppose
that only individuals of age n and over are reproductive
(b1 = b2 = 0). So that, we consider the following system

{ 21(t+1) = f(bsas(t))

2a(t 4+ 1) = z1(t)exp(—M; — qru(t))
3t + 1) = z2(t)exp(—Ms — gou(t))

(3)

For a constant fishing effort «®, system (3) has a non
trivial equilibrium state

0
bsas 0 0

0_b3ala2_1_ Lo = A1 X afo_aaxo
- : — 1Ly, — u1uz
Bbsaias 1+ Jé)bg.l‘g 2 1r 73 1

ry =

Where a; = exp(—M; — ¢;u°).
This steady state belongs to 2 = ]Ri’_ provided that
1

b3> .
aida

Theorem 2.1 for any positive constant n < u®, sys-

tem (3} is globally asymptotically stabilizable by means of
the continuous feedback law

ulz)y = u® v(@) 4)

which satisfies

le(z)]| <n, VzeQ.

Proof. Let V be the following candidate Lyapunov func-
tion

i) — [ 0y2 (&2 — xg):) (x5 — 55'0)2
Viz) = (1 —29)" + " ()’
and define N
Flz) = F(z,4". (3)
V:0xR—Rand
f/(lu) = V(F(x,u)), (6)

We evaluate the variation of V' along the closed-loop sys-
tem (3-4):

AV (2)

V(F (@, u(@)) = V()
= V(z.u(z)) - V()

= V(e u®+ v(z)) — V(z)
ov
Ju

—1—/01 (1—1¢) ?;11‘;/ (z.u® +tu(z)) v¥(x) dt.

= V(z,u®) = V(e)+

(,4) v(x)

Notice that

V(e ) = V{(F(z.u). (7)

and

So,

(8)
Now we shall construct a feedback control v(z) in order
to get AV(2) <0 for all # € Q. To this end, we introduce
some notations. Let ¢ : @ x IR x IR = IR be the function
defined by

1 217
wle.v.w) = /0 (1 —t)vT(x)gu‘; (2. u® +tv(z)) w?(z) dt.
9

For a fixed number n satisfying 0 < n < u®, let K (z) and
Ks(x) be any nonnegative continuous real valued func-

tions satisfying K7 (z) + Ka(2) £0, Ve €  and
Ki(#) > sup  |e(z.v,w)|, YeeqQ. (10)
[v]<n lwl=1
Ks(z) > %(F(m,uo))%(@‘,uo) . Yz ef(1l)
and set
K(z) i S0veeQ. (12

= BK1(2) + Ka(2)

We construct the feedback control according to the follow-
ing formula :

. LoV LOF
o) =Ko (G(Fe) o) )
which satisfies
lu(e)] <n. YaeQ. (14)

Tacking into account (8-13-9), the variation of V' along
the solutions of the closed-loop svstem can be written :

AV(z) = V(F(#,u%) — V() s
) + e ).
On the one hand, we have
_ 082
V(I(2.0) = V(z) = (F(baws) — 29)° - %

2 o\ 2
(ﬂ _ xo) _ (M)
1+ Bbszs =t ayas
bgéﬁg

b 2 oy 2
343 _ _ (%323
(1 + ﬁb3933 1+ Jﬁb3l’g) < aids )
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Hence

V(F(2,u%) = V(z) =

( bg(23 — x3) ) 3 (xg—a,3>

(L4 Bbsws)(1+ Bbsel) aias

_ (b3a1a2)2 - (1 + 6!531‘3)2(1 + ﬁb:«;l’g)Q
(ayaz)?(1 + Bbszs)?(1 + Bbsxl)?

We have 14 fbgxd =1 +ﬁb3%%£fa_—;a1a2 = bsayas. This
vields,

(3 — 25)*

V(F(a:,uo)) —Vi(z)=
1— (1 + Bbaxsz)? 9

(16)
(1 + Pbaza)? (1 + Bbazl) 323 =

23)* <0

On the other hand.¢(z, v, w) being homogeneous of degree
2 with respect to w, we have for all z € Q such that

v(x) £ 0

ez, vlz). v(@) = v (@)¢ (e, v(z).

Irom this and (15-16), we get
AV(z) = V(F(z,u") = V() <0 if v(z) = 0.
And for v(z) £ 0,
AV(e) = V(F(z,u®)—V(z)
o) (kg — (e vle). ).

Thanks to the construction of v(z) and K(z), we have
le) > (. v(x), v(e) ) This allows to conclude that

[v(z)]/

AV(z) <0 Vz e

The closed-loop system is then Lyapunov stable. On the
other hand.

AV(z) =0 & 3 =23 and v(z) = 0.

It is easy to show that the largest invariant set contained
in

{w € Q|AV(z) = V(F (2, u(z))) — V(z) = 0}
is reduced to {z°} so, by Lasalle Invariance Principle [las],
the equilibrium z° is a globally asymptotically stable equi-
librium point for the closed-loop system.
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