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Abstract

In this paper we state sufficient conditions for the ex-
istence of feedback laws which render the equilibrium
solution of a class of discrete-time nonlinear systems
globally asymptotically stable.
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1 Introduction:

Feedback stabilization of various classes of discrete-
time nonlinear systems have been studied in the past
few years; see ([1, 2, 4, 5]) and references therein.

We consider the single-input discrete-time nonlinear
systems of the form

xk+1 = f(xk) + ukg(xk), xk ∈ R
n, u ∈ R (1)

where f and g are smooth on R
n and f(0) = 0.

We say that (1) is globally asymptotically stable at the
origin, if there exists a map x 7−→ K(x) such that the
resulting system

xk+1 = f(xk) +K(xk)g(xk) (2)

is globally asymptotically stable at 0 ∈ R
n.

The main object of this paper is to provide explicit
feedback K : R

n −→ R, smooth on R
n \ {0} and

K(0) = 0 such that uk = K(xk) globally asymptoti-
cally stabilizes the origin of the system (1), under the
assumption that a ’quadratic Control Lyapunov Func-
tion’ is known. This problem has been addressed for
stochastic systems in [3].

This result represents a continuation of a line of work
started in [7], in which, under the same condition, the
author has studied the local stabilization for the multi-
inputs discrete-time systems affine in the control, and
the practical stabilization for the single-input systems.

2 Stabilization and clf’s

In this section, we will state and prove an analogous of
Sontag’s result [6] for discete-time systems.

Definition 1 A smooth, proper and definite positive
function V mapping R

n into R is said to be a control
Lyapunov function (henceforth just ‘clf ’) for the dis-
crete systems (1) if and only if,

inf
uk∈R

(

∆V (xk, uk) = V (xk+1)−V (xk)
)

< 0, ∀x ∈ R
n\{0}

In the following, we will assume that V is a quadratic
clf for system (1) (i.e. there exists a positive definite
matrix P such that V (x) = xTPx = ‖x‖2p = 〈x, x〉p

Remark: In [1], the authors have studied the same
problem and have given, under the same assumptions,
the following feedback

u(x) =

{

0 for x ∈ Ω0 = {∈ R
n : g(x) = 0}

−
〈f(x),g(x)〉p

‖g(x)‖2
p

for x ∈ Ω1 = {x ∈ R
n : g(x) 6= 0}

but it is easy to show that limx∈Ω1→x0
u(x) = ∞ for

all x0 ∈ ∂Ω0 \ {0} such that f(x0) 6= 0 and so u(x)
is not only discontinuous but is also unbounded in a
neighbourhood of such a point.

Here, we will construct a stabilizing feedback which is
smooth on R

n \ {0}.

Theorem 1 If there is a quadratic ’clf ’ for the
discrete-time system (1), then there is a stabilizing feed-
back K : Rn −→ R, smooth on R

n \ {0} and K(0) = 0.

Proof: For every (x, u) ∈ R
n × R, we let

hx(u) = u2‖g(x)‖2p + 2u〈f(x), g(x)〉p + ‖f(x)‖2p − ‖x‖2p

and we introduce the sets Ω0 = { x ∈ R
n \ {0} g(x) =

0 } and Ω1 = { x ∈ R
n \ {0} g(x) 6= 0 }.



An easy computation shows that, for a given command
law u, the difference ∆V = V (xk+1)−V (xk) is equal to
hxk

(uk). If x ∈ Ω0, this difference does not depend on
u (∆V = ‖f(xk)‖

2
p−‖xk‖

2
p in this case) and is therefore

negative since V is a clf for system (1).

If x ∈ Ω1, for the same reason, the exists u ∈ R such
that hx(u) < 0, this proves that hx(u) regarded as a
polynomial in u admits two separate roots λ1(x) and
λ2(x). In this case our task is to find a function K :
x 7−→ K(x) such that λ1(x) < K(x) < λ2(x) for all
x ∈ Ω1.

First we take two smooth functions ϕ and ψ defined
by:

ϕ(t) =

{

0 if t ≤ 2,

1 if t ≥ 3.
ψ(t) =

{

0 if t ≤ 0,

1 if t ≥ 1.

and satisfying 0 ≤ ϕ(t), ψ(t) ≤ 1 for all t ∈ R.

Next, for x ∈ Ω1, we introduce the following quantities,

A(x) = (λ1(x) + 1)ψ(λ1(x) + 1)

+ (λ2(x) − 1)(1− ψ(λ2(x)− 1)

B(x) = ϕ(λ2(x) − λ1(x))

C(x) =
λ1(x) + λ2(x)

2
.

Finally, we claim that the following mapping K defined
by:

K(x) =

{

0 if x ∈ Ω0

A(x)B(x) + (1−B(x))C(x) if x ∈ Ω1

is smooth on R
n \ {0} and globally asymptotically sta-

bilizes system (1).

We first show that K(x) ∈]λ1(x), λ2(x)[ if x ∈ Ω1:

• if λ2(x)−λ1(x) ≤ 2, then B(x) = 0 and so K(x) =
C(x) ∈]λ1(x), λ2(x)[;

• if λ2(x)−λ1(x) > 2, by considering all the possible
placements of λ1 and λ2 regarding 0 and 1, we can
see that A(x) ∈]λ1(x), λ2(x)[ which in turn implies
that K(x) ∈]λ1(x), λ2(x)[.

In order to show that K is smooth on R
n \ {0}, we re-

mark first that this is obviously the case in the interior
of Ω0 and in Ω1; we will next prove that if x0 ∈ ∂Ω0,
there exists a neighborhood U of x0 on which K van-
ishes.

Let ε0 = −(‖f(x0)‖
2
p−‖x0‖

2
p), V is a clf implies ε0 > 0.

Let ε > 0, since g(x0) = 0 (x0 ∈ Ω0), by continuity
there exists a neighborhood U of x0 such that ‖f(x)‖2p−

‖x‖2p < −ε0/2, ‖g(x)‖
2
p < ε and 2|〈f(x), g(x)〉p| < ε.

From these inequalities, we deduce that

hx(u) ≤ εu2 + ε | u | −ε0/2, ∀(x, u) ∈ U × R. (3)

Now, in order to have K(x) = 0 for all x ∈ U ∩ Ω1,
it is sufficient that A(x) = 0 and B(x) = 1 for all x ∈
U ∩Ω1. To this end it is sufficient to have λ1(x) ≤ −1
and λ2(x) ≥ 4 which is equivalent to hx(−1) ≤ 0 and
hx(4) ≤ 0; these last inequalities are satisfied in U if
ε is chosen such that ε ≤ ε0/40 and so the theorem is
proven.

References

[1] G. L. Amicucci, S. Monaco and D. Normand-
Cyrot, Control lyapunov stabilization of affine discrete-
time systems, Proc. 36th CDC, San Diego, CA, Decem-
ber 1997, 1 923–924.

[2] M. Bensoubaya, A. Ferfera and A. Iggidr. Sta-
bilisation des systèmes non linéaires discrets, Comtes
rendus de l’Academie des Sciences, Paris, Tome 321,
Série I, No. 3, Août 1995, p. 371-374.

[3] R. Chabour and M. Oumoun, On a universal for-
mula for the stabilization of control stochastic nonlin-
ear systems, J. Stochastic Analysis and Applications,
17, No 3, 1999.

[4] A. Iggidr and M. Bensoubaya, New results on
the stability of discrete-time systems and applications
to control problems, J. of Math. Analysis and Applica-
tions 219 (1998), 392–414.

[5] D. Kazakos and J. Tsinias, The input to state sta-
bility and global stabilization of discrete-time systems,
IEEE Tran. Aut. Cont. 39 (1994), 2111–2113.

[6] E. D. Sontag, A universal construction of Art-
stein’s theorem on nonlinear stabilization, Systems &
control letters 13(1989),117–123.

[7] J. Tsinias, Stabilizability of discrete-time nonlin-
ear systems, IMA J. Math. Cont. Inf 6 (1989), 135–150.


