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FEEDBACK STABILIZATION OF HOMOGENEOUS

POLYNOMIAL SYSTEMS
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4, rue Marconi, 57 070 METZ – FRANCE.
e-mail: {iggidr,outbib}@ilm.loria.fr

Abstract. The propose of this paper is to drive a simple necessary and sufficient stabilizability
condition for a class of multi-inputs polnomial systems. This result represents a generalization of
the main theorems of (Iggidr and Vivalda, 1992). The stabilizing feedbacks are explicitly given.
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1. INTRODUCTION

The stabilization problem of nonlinear control sys-
tems by means of smooth feedback is one of the
most important problem in control theory. It
has attracted the interest of an increasing num-
ber of authors in the last decay. The local sta-
bilizability of nonlinear systems has been exten-
sively studied and a necessary and sufficient sta-
bilizability condition for two-dimensional systems
has been given in (Dayawansa et al., 1990). How-
ever, the global problem, even for low dimen-
sional systems, is still an open problem. Many
interesting results have been published (Andreini
et al., 1988; Byrnes and Isidori, 1989; Jurdje-
vic and Quinn, 1978; Kokotovic and Sussmann,
1989; Saberi et al., 1990; Sontag, 1989; Sontag,
1990; Seibert and Suarez, 1991) but they are, gen-
erally, difficult to apply for a given system because
they are based on the construction of auxiliary
functions such Lyapunov functions or Lyapunov
control function. In this paper we solve, com-
pletely, the stabilization problem for the class of
systems considered.

More precisely we consider a nonlinear control sys-
tem

{

ẋ = X(x) +Bu

x ∈ IRn, u ∈ IRn−1 (1)

where X is a polynomial vector field, which is ho-
mogeneous of degree k ∈ IN with respect to a fam-
ily of dilations (see definition below) and B is an
n × (n − 1) matrix of rank n − 1. We shall say
that (1) is globally smoothly asymptotically sta-
bilizable (G.S.A.S) if there exists a smooth (C∞)
feedback such that u(0) = 0 and the origin is a
globally asymptotically stable equilibrium point

for the (closed-loop) system

ẋ = X(x) +Bu(x) (2)

In this communication, we give a necessary and
sufficient condition for (1) to be G.S.A.S and
we construct explicitly the stabilizing feedback
which turns to be also polynomial. This result
is a generalization of (Iggidr and Vivalda, 1992)
that concerns the case where X is homogeneous
with respect to the standard dilation. We can
remark that for this class of nonlinear control sys-
tems, the stabilizability by feedback is equivalent
to the null controllability. Homogeneous systems
are also considered in (Hermes, 1990; Hermes,
1991; Kawski, 1990; Kawski, 1989).

To illustrate the methodology developed in this
article, we consider the following examples :

Example 1







ẋ = x8 + x6y − x2y3 − y4

ẏ = u

(x, y) ∈ IR2 , u ∈ IR
(3)

is G.S.A.S thanks to the feedback law

u(x, y) = x2 + y +
(

x4 + x2 y + 2 y2
)

×
(

x2 − y
) (

x+ 2 x3 + 2 x y
)

One can remark that for this system the condition
of (Boothby and Marino, 1989; Boothby, 1990) is
not met so the result of Boothby-Marino (Boothby



and Marino, 1989; Boothby, 1990) can not be ap-
plied even to achieve the local stabilization.

Example 2







ẋ = x6 + x2y2 + y3

ẏ = u
(x, y) ∈ IR2 , u ∈ IR

(4)

This system satisfies the condition of theorem 1
so it can be stabilized by the feedback law given
in proposition 1.

Example 3







ẋ = x6 + x3y + y2

ẏ = u
(x, y) ∈ IR2 , u ∈ IR

(5)

is not stabilizable.

2. NOTATIONS AND PRELIMINARIES

In this paper, < x, y > is the usual scalar product
and for n− 1 vectors x1, . . . , xn−1 of IRn, we will
denote by x1 ∧ . . . ∧ xn−1 their vectorial product
i.e. the unique vector satisfying ∀x ∈ IRn

det(x1, . . . , xn−1, x) =< x1 ∧ . . . ∧ xn−1, x >

Let b2, . . . , bn be the column vectors of B and de-
fine b1 = b2 ∧ . . . ∧ bn . Since B is of rank n− 1,
(b1, b2, . . . , bn) is a basis of IRn .

Families of dilations.

For positive integers r1 ≤ r2 ≤ . . . ≤ rn and
for a given coordinates (x1, . . . , xn) on IRn, a
one-parameter family of dilations parametrized by
λ ∈ IR is

∆λ : IRn → IRn

(x1, . . . , xn) 7→ (λr1x1, . . . , λ
rnxn)

A function ψ : IRn → IR is ∆λ-homogeneous of
order k if ψ o∆λ = λkψ.

Throught this paper, we shall say that a vector
field

X(x) =
n
∑

i=1

Xi(x)
∂

∂xi

is ∆λ-homogeneous of order k, written X ∈ Hk, if
all its compements Xi are homogeneous functions
of degree k with respect to the same dilation.

In this paper, we consider only dilations for which
r1 = 1. A complete study for arbitrary integers
r1, . . . , rn as well as the application to the local
stabilization of analytic systems will be published
in a forthcoming paper.

3. STABILIZATION OF ODD
HOMOGENEOUS VECTOR FIELDS

Theorem 1 The control system (1), where X is an
odd homogeneous vector field, is G.S.A.S if and
only if, the following assumption holds :

(a) there exists α = (α2, . . . , αn)
T ∈ IRn−1 such

that < X(b1 +Bα), b1 > < 0

Proof:Let (x1, . . . , xn) be the coordinates of x in
the basis (b1, b2, . . . , bn). In this basis, the system
(1) is given by :



















ẋ1 =< X(x) , b1 >= P1(x)
ẋ2 = P2(x) + u2
...
ẋn = Pn(x) + un

(6)

where Pi are homogeneous polynomial functions
of degree k.

The condition (a) is sufficient, to prove this we
estabishe the following result

Proposition 1 If (a) holds then the system (6) is
G.S.A.S and the stabilizing feedback is given by :

ui(x) = αix
ri−1

1 P1(x) − x1gi(x)

−(xi − αix
ri
1 )− Pi(x) (7)

for i ∈ {2, . . . , n}, where:

gi(x) =

∫ 1

0

∂P1

∂xi
(x1, tx2 + (1− t)α2x

r2
1 , . . .

. . . , txn + (1− t)αnx
rn
1 )dt (8)

Proof:Let

ϕ(t) = P1

(

x1, tx2 + (1− t)α2x
r2
1 , . . .

. . . , txn + (1 − t)αnx
rn
1

)

= P1

(

x1, t(x2 − α2x
r2
1 ) + α2x

r2
1 , . . .

. . . , t(xn − αnx
rn
1 ) + αnx

rn
1

)

we have:

ϕ(1) = P1(x1, x2, . . . , xn) = P1(x)

ϕ(0) = P1(x1, α2x
r2
1 , . . . , αnx

rn
1 )

ϕ(1) = ϕ(0) +
∫ 1

0
ϕ′(t)dt

So, we can write :

P1(x1, x2, . . . , xn) = P1(x1, α2x
r2
1 , . . . , αnx

rn
1 )

+

n
∑

i=2

(xi − αix
ri
1 )gi(x)



Now, introduce the positive definite function :

V (x1, x2, . . . , xn) =
1

2

(

x21 +

n
∑

i=2

(xi − αix
ri
1 )2

)

the derivative of V along trajectories of (6-7) is

V̇ = x1P1(x) +
n
∑

i=2

(xi − αix
ri
1 )
(

Pi(x) +

+ ui(x)− αix
ri−1

1 P1(x)
)

= x1P1(x)− x1

n
∑

i=2

(xi − αix
ri
1 )gi(x)

−

n
∑

i=2

(xi − αix
ri
1 )2

= x1P1(x1, α2x
r2
1 , . . . , αnx

rn
1 )

−
n
∑

i=2

(xi − αix
ri
1 )2

= xk+1

1 P1(1, α2, . . . , αn)

−

n
∑

i=2

(xi − αix
ri
1 )2

(where k is the degree of P1, k is odd). So,
V̇ (x) < 0 for all nonzero x and global stability is
assured and this completes the proof of the propo-
sition.

Let us prove that (a) is a necessary condition for
the existence of a stabilizing feedback.

Suppose that P1(1, x2, . . . , xn) ≥ 0 for any
(x2, . . . , xn) ∈ IRn−1 then for any x1 positive and
any (x2, . . . , xn) ∈ IRn−1 :

P1(x1, x2, . . . , xn) = xk1P1

(

1,
x2
xr21

, . . . ,
xn
xrn1

)

≥ 0

This shows the origin cannot be reachable from
any point of the open half space {x1 > α > 0}.
The proof of theorem 1 is now completed.

4. STABILIZATION OF EVEN
HOMOGENEOUS VECTOR FIELDS

Theorem 2 The control system (1) is G.S.A.S if
and only if the even homogeneous polynomial
< X(x) , b1 > takes both positive and negative
values.

Proof:X is a homogeneous polynomial vector field
of degree k = 2p ∈ IN∗

Let (x1, . . . , xn) be the coordinates of x in the
basis (b1, b2, . . . , bn). In this basis, the system (1)

is given by :



















ẋ1 =< X(x) , b1 >= P1(x)
ẋ2 = P2(x) + u2
...
ẋn = Pn(x) + un

(9)

where Pi are homogeneous polynomial functions
of degree 2p.

If P1(x) does not change its sign, then the map
f : IRn × IRn−1 → IRn defined by :

f(x, u) =
(

< X(x) , b1 >,P2(x) + u2, . . .

. . . , Pn(x) + un

)T

cannot be onto an open neighborhood of the origin
in IRn, so (9) cannot be stabilizable by virtue of
BROCKETT’S theorem (Brockett, 1983), more-
over the origin cannot be reachable from any point
of the half-space x1 > α > 0 (or x1 < β < 0).

Now suppose that P1(x) changes its sign, without
loss of generality we can assume that P1 takes
both positive and negative values in the plane
(x1, x2) (if not one has to make first a linear
change of coordinates, see (Iggidr and Vivalda,
1992)).

we can write

P1(x) = Q(x1, x2) +R(x1, . . . , xn)

where

R(x) =

n
∑

i=3

xiRi(x1, . . . , xn)

and

Q(x1, x2) = P1(x1, x2, , 0, . . . , 0)

are homogeneous of degree 2p.

Q(x1, x2) changes its sign, so it can be written :

Q(x1, x2) = Ls1
1 L

s2
2 · · ·Lsq

q Φ(x1, x2)

where the polynomial functions Li are of the form
Li = aix

r2
1 +bix2 and are linearly independant and

Φ(x1, x2) is a definite polynomial function.

At last, two exponents si are odd ( because
Q(x1, x2) takes positive and negative values ); we
can assume that i = 1 and j = 2. Since L1 and
L2 are linearly independant, we can suppose that
L1 = a1x

r2
1 + b1x2 with b1 6= 0



Let us consider the following feedback :







































u2(x) = −P2(x) −
1

b1

(

a1r2x
r2−1

1 P1(x)

+x1L
s2
2 L

s3
3 · · ·L

sq
q Φ(x1, x2) + Ls1

1

)

u3(x) = −x3 − P3(x)− x1R3(x)
...
un(x) = −xn − Pn(x)− x1Rn(x)

(10)

and the function

V =
1

2
x21 +

1

s1 + 1
Ls1+1

1 +
1

2
x23 + · · ·+

1

2
x2n

V is smooth (polynomial), positive definite and
proper.

Along the trajectories of the closed-loop system,
one has

V̇ =
dV (x(t))

dt
=< ∇V (x) , X(x) >

where X(x) is the closed-loop system with the
feedback above(10)

∇V (x) =















x1 + r2a1x
r2−1

1 Ls1
1

b1L
s1
1

x3
...
xn















V̇ = (x1 + r2a1x
r2−1

1 Ls1
1 )P1(x)

+b1L
s1
1 (P2(x) + u2(x))

+
n
∑

i=3

xi(Pi(x) + ui(x))

= (x1 + a1r2x
r2−1

1 Ls1
1 )P1(x)

−Ls1
1

(

a1r2x
r2−1

1 P1(x)

+x1L
s2
2 L

s3
3 · · ·Lsq

q Φ(x1, x2) + Ls1
1

)

−

n
∑

i=3

x2i − x1

n
∑

i=3

xiRi

= x1P1(x)

−Ls1
1

(

x1L
s2
2 L

s3
3 · · ·Lsq

q Φ(x1, x2)
)

−L2s1
1 −

n
∑

i=3

x2i − x1

n
∑

i=3

xiRi

= x1P1(x)− x1Q(x)− x1R(x)

−L2s1
1 −

n
∑

i=3

x2i

So

V̇ = −L2s1
1 −

n
∑

i=3

x2i ≤ 0 (11)

If we let E = {x ∈ IRn / V̇ (x) = 0} then by
LASALLE’S invariance theorem ((Lasalle and
Lefschetz, 1961), pp.66) all integral curves of the
closed-loop system tend to the largest subset Ω
of E wich is invariant by the vector field corre-
sponding to the closed-loop system, the proof will
be finished if we show that Ω = {0}.

We have

E = {x ∈ IRn | a1x
r2
1 + b1x2 = 0 ,

x3 = 0 , . . . , xn = 0}

is a curve in IRn . For x ∈ E, the closed-loop
system is given by :







































ẋ1 = 0

ẋ2 = −
1

b1
x1L

s2
2 L

s3
3 · · ·Lsq

q Φ(x1, x2)

ẋ3 = −x1R3(x1, x2, 0, . . . , 0)
...
ẋn = −x1Rn(x1, x2, 0, . . . , 0)

(12)

and it is easy to show that Ω = {0}. Thus, the
theorem is established.
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