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Local stabilization of analytic systems with n − 1 inputs

A. Iggidr J.C. Vivalda
INRIA Lorraine ( CONGE Project ) & URA- CNRS 399 - M.M.A.S.

CESCOM – Technopôle METZ 2000 4, rue Marconi 57 070 METZ

Abstract In this communication, we investigate the local stabilization of analytic systems ẋ = f(x) + Bu
with n−1 inputs. We state a sufficient condition on the first approximation of f for which the local asymptotic
stabilizability can be achieved; furthermore, we give explicitly the stabilizing feedback.
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1 Introduction

We consider a nonlinear control system with n − 1
inputs: {

ẋ = f(x) +Bu
x ∈ IRn, u ∈ IRn−1 (1)

where f : IRn → IRn is an analytic mapping, B is
a n× (n− 1) matrix of rank n− 1.

We shall say that system (1) is locally asymptot-
ically stabilizable (L.A.S.) if there exists (locally) a
feedback u : IRn → IRn−1 such that u(0) = 0 and
the origin is a locally asymptotically state equilibrium
point for the closed-loop system ẋ = f(x) +Bu(x) .

Local stabilizability has been investagated by many
authors: one can cite Kawski([7]), Dayawansa-
Martin-Knowles ([3],[4]), Boothby-Marino ([1]) who
studied planar systems as well as Hermes ([5]) .

In a precedent work ([6]), we gave necessary and
sufficient conditions for a homogeneous polynomial
system to be globally stabilizable. In this paper, we
give a sufficient condition for (1) to be L.A.S. and we
construct explicitly the stabilizing feedback. As an
example, consider the system: ẋ1 = ex1+x3 − ex2+x3 − x1 − x2

ẋ2 = u2
ẋ3 = u3

We shall see that it can be stabilized by means of the
following feedback law:



u2 = −(1 + 2x1)(ex1 − ex2 − x1 + x2)

− x1
(

1− ex2
exp (x1 + x21 + x2)− 1

x1 + x21 + x2

)
− x1 − x21 − x2

u3 = −ex3 − 1

x3
(ex1 − ex2)·(

x1 + (x1 + x21 + x2)(2x1 + 1)
)

The linearized system of (1) is:

ẋ = Ax+Bu (2)

where A =
∂f

∂x
(0). It is well known that a sufficient

condition for (1) to be L.A.S. is that (2) is also L.A.S.
([2]) but what happens when one has A ≡ 0 ? We
can generally write f(x) = Pr(x) + o(| x |r) where
Pr, the first approximation of f , is a homogeneous
polynomial of degree r. In the sequel, we shall give
conditions on polynomial Pr for which system (1) is
L.A.S.; in fact we shall see that if the system:

ẋ = Pr(x) +Bu (3)

is stabilizable then so is system (1). The particular
case when f is exactly a homogeneous polynomial was
studied in [6].

2 Notations and preliminaries

We denote by 〈x, y〉 the usual inner product and by
det the determinant. For n− 1 vectors x1, . . . , xn−1,



we denote by x1 ∧ . . .∧ xn−1 the unique vector satis-
fying:

∀x ∈ IRn det(x1, . . . , xn−1, x) = 〈x1 ∧ . . .∧ xn−1, x〉

We denote by b2, . . . , bn the columms of matrix B
and by b1, the vector b1 = b2 ∧ . . . ∧ bn; clearly
(b1, b2, . . . , bn) is a basis of IRn in which system (1)
can be written:

ẋ1 = f1(x)
ẋ2 = f2(x) + u2
...
ẋn = fn(x) + un

(4)

after the following change in inputs space:

ui = −fi(x) + vi i = 2, . . . , n

system (4) becomes:
ẋ1 = f1(x)
ẋ2 = v2
...
ẋn = vn

(5)

f1 is an analytic function, so it can be written:

f1(x) =

∞∑
i=r

Pi(x)

when the Pi are homogeneous polynomials of degree
i.

3 Case where r is even

Theorem 1 If the polynomial Pr takes both positive
and negative values, then system (5) is stabilizable.

Proof
Since Pr(x) changes its sign, there exists b̃1 and
e2 such that Pr(b̃1) · Pr(e2) is negative. Let H =
span(b2, . . . , bn), H has an empty interior so we can
suppose that b̃1 does not belong to H. The plane
spaned by vectors b̃1, and e2 intersects H at b̃2
and without loss of generality we can assume that
(b̃2, b3, . . . , bn) is a basis of H. The transforma-
tion matrix between the basis (b1, b2, . . . , bn) and
(b̃1, b̃2, b3, . . . , bn) is:

T =


α1 0 0 . . . 0
α2 β2 0 . . . 0
α3 β3 1 . . . 0
...

...
...

. . .

αn βn 0 . . . 1


α1, . . . , αn, β2, . . . , βn being such that b̃1 =

∑n
i=1 αibi

and b̃2 =
∑n

i=2 βibi

We have:

T−1 =


1/α1 0 0 . . . 0

−α2/β2α1 1/β2 0 . . . 0
? 1 . . . 0
...

...
...

. . .

? ? 0 . . . 1


In the new basis (b̃1, b̃2, b3, . . . , bn) system (5) is given
by the set of equations:

˙̃x1 = f̃1(x̃)
˙̃x2 = f̃2(x̃) + v2/β2
˙̃x3 = f̃3(x̃) + γ3v2 + v3
...
˙̃xn = f̃n(x̃) + γnv2 + vn

(6)

where f̃1(x̃) =
1

α1
f1(T x̃), f̃1 can be written:

f̃1(x̃) = g(x̃1, x̃2) +

n∑
i=3

x̃igi(x̃)

where gi(x̃) =

∫ 1

0

∂f̃

∂x̃i
(x̃1, x̃2, tx̃3, . . . , tx̃n) dt

and g(x̃1, x̃2) = f̃1(x̃1, x̃2, 0, . . . 0) =

∞∑
i=r

P̃i(x̃1, x̃2)

the P̃i being homogeneous polynomials of degree i,
and P̃r taking both positive and negative values.

We focus our attention on the system:{
˙̃x1 = P̃r(x̃1, x̃2) + P̃r+1(x̃1, x̃2) + · · ·
˙̃x2 = w2

(7)

P̃r(x̃1, x̃2) can be written:

P̃r(x̃1, x̃2) = Lr1
1 L

r2
2 · · ·Lrq

q Q
m1
1 · · ·Qms

s

where L1, L2, . . . , Lq are linear forms two by two lin-
early independant and Q1, . . . , Qs are irreductible
homogeneous polynomials of degree 2. Since P̃r

changes its sign, at least two exponents ri and rj
are odd; we can assume that i = 1, j = 2 and
since L1 and L2 are linearly independant, we can
suppose that L1 = λx̃1 + µx̃2 with µ 6= 0. Let

h(x̃1, x̃2, z) =

∫ 1

0

∂g

∂x̃2
(x̃1, x̃2 − tz) dt and consider

the feedback law:

w2(x̃1, x̃2) =
−λ+ γ(1 + 1/r1)x̃

1/r1
1

µ
g(x̃1, x̃2)

− x̃1h(x̃1, x̃2, z)− z

together with the positive definite function:

V (x̃1, x̃2) =
1

2
(x̃21 + z2)

where we put

z = x̃2 − k(x̃1)

k(x̃1) =
−λx̃1 + γx̃

1+1/r1
1

µ



Taking into account that g(x̃1, x̃2) = g(x̃1, k(x̃1) +
zh(x̃1, x̃2, z), an easy computation shows that V̇ , the
derivative of V along the trajectories of closed-loop
system (7), is equal to:

V̇ = x̃1g(x̃1, k(x̃1))− z2

In order to show that 0 is an asymptotically equi-
librium point for closed-loop system (7),it suffices to
prove that one can choose γ such that:

x̃1g(x̃1, k(x̃1)) < 0 (8)

Since for i 6= 1, Li is linearly independant of L1 and
the Qi s are irreductible, one has P̃r(x̃1, k(x̃1)) =
γr1Ax̃r+1

1 + o(| x̃r+1
1 |) with A a nonzero constant.

For s ≥ r + 2, P̃s is a homogeneous polynomial of
degree s so P̃s(x̃1, k(x̃1)) = o(| x̃s−11 |) = o(| x̃r+1

1 |),
P̃r+1 can be written:

P̃r+1(x̃1, x̃2) =

r+1∑
i=0

αix̃
i
1x̃

r+1−i
2

so

P̃r+1(x̃1, k(x̃1)) =

r+1∑
i=0

αix̃
r+1
1

(
−λ+ γx̃

1/r1
1

µ

)r+1−i

therefore, one can write:

g(x̃1, x̃2) = (γr1A+B)x̃r+1
1 + o(x̃r+1

1 )

hence if γ is chosen such that γr1A+B < 0, inequality
(8) holds in a neighborhood of the origin because r+1
is odd.

Let us return now to system (6) and consider the
following feedback law:

v2(x̃) = −β2f̃2(x̃) + w2(x̃1, x̃2)

v3(x̃) = f̃3(x̃)− γ3v2(x̃)− ∂V

∂x̃1
g3(x̃)− x̃3

...

vn(x̃) = f̃n(x̃)− γnv2(x̃)− ∂V

∂x̃1
gn(x̃)− x̃n

together with the positive definite function:

W (x̃) = V (x̃1, x̃2) +
1

2
(x̃23 + · · ·+ x̃2n)

Clearly the derivative of W along the trajectories of
closed-loop system (6) is:

Ẇ = x̃1g(x̃1, k(x̃1))− z2 − x̃23 − · · · − x̃2n

which is obviously negative definite in a neighborhood
of the origin. This proves that the above feedback
stabilizes system (6).

4 Case where r is odd

Theorem 2 If there exists (λ2, . . . , λn) ∈ IRn−1 such
that Pr(1, λ2, . . . , λn) < 0 then system (5) is stabiliz-
able.

Proof Consider the following system derived from
system (5): 

ẋ1 = Pr(x)
ẋ2 = u2
...
ẋn = un

(9)

We claim that the following feedback law stabilizes
system (8):

ui(x) = λiPr(x)− x1gi(x)− (xi − λix1)r

where gi(x) =∫ 1

0

∂Pr

∂xi
(x1, t(x2, . . . , xn) + x1(1− t)(λ2, . . . , λn)) dt

Indeed if we introduce the positive definite function:

V (x) =
1

2

(
x21 +

n∑
i=2

(xi − λix1)2

)
taking into account that Pr(x) =
Pr(x1, λ2x1, . . . , λnx1)+

∑n
i=2(xi−λix1)gi(x), we ob-

tain that the derivative of V along the trajectories of
closed-loop system (8) is:

V̇ = xr+1
1 Pr(1, λ2, . . . , λn)−

n∑
i=2

(xi − λix1)r+1

which is negative definite. Now, one can remark that
the ui are homogeneous polynomials of the same de-
gree as Pr, so a Massera’s theorem ([8]) permits to
conclude about L.A.S. of closed-loop system (5) with
the feedback given above.
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