F. Bach, R. Jenatton, J. Mairal, and G. Obozinski, Structured Sparsity through Convex Optimization, Statistical Science, vol.27, issue.4, pp.450-468, 2012.
DOI : 10.1214/12-STS394

URL : https://hal.archives-ouvertes.fr/hal-00621245

A. Beck and M. Teboulle, A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems, SIAM Journal on Imaging Sciences, vol.2, issue.1, pp.183-202, 2009.
DOI : 10.1137/080716542

E. Caruyer, A. Daducci, M. Descoteaux, J. C. Houde, J. P. Thiran et al., Phantomas: a flexible software library to simulate diffusion mr phantoms, p.Ismrm, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00944644

E. Caruyer, C. Lenglet, G. Sapiro, and R. Deriche, Design of multishell sampling schemes with uniform coverage in diffusion MRI, Magnetic Resonance in Medicine, vol.103, issue.6, pp.1534-1540, 2013.
DOI : 10.1006/jmrb.1994.1037

URL : https://hal.archives-ouvertes.fr/hal-00821688

A. Daducci, M. Barakovic, G. Girard, M. Descoteaux, and J. P. Thiran, Reducing false positives in tractography with microstructural and anatomical priors, 2018.

A. Daducci, A. Dal-palú, M. Descoteaux, and J. P. Thiran, Microstructure Informed Tractography: Pitfalls and Open Challenges, Frontiers in Neuroscience, vol.61, issue.232, p.247, 2016.
DOI : 10.1016/j.neuroimage.2012.03.072

URL : https://www.frontiersin.org/articles/10.3389/fnins.2016.00247/pdf

A. Daducci, A. Dalpaì-u, A. Lemkaddem, and J. P. Thiran, COMMIT: Convex Optimization Modeling for Microstructure Informed Tractography, IEEE Transactions on Medical Imaging, vol.34, issue.1, pp.246-257, 2015.
DOI : 10.1109/TMI.2014.2352414

URL : https://infoscience.epfl.ch/record/200934/files/main.pdf

M. Frigo, M. Barakovic, J. P. Thiran, and A. Daducci, Hierarchical tractography optimisation, CoBCoM 2017-Computational Brain Connectivity Mapping Winter School Workshop, p.1, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01712474

M. Frigo, G. Gallardo, I. Costantini, A. Daducci, D. Wassermann et al., Reducing false positive connection in tractograms using joint structure-function filtering, OHBM 2018-Organization for Human Brain Mapping, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01737434

G. Girard, R. Fick, M. Descoteaux, R. Deriche, and D. Wassermann, AxTract: Microstructure-Driven Tractography Based on the Ensemble Average Propagator, International Conference on Information Processing in Medical Imaging, pp.675-686, 2015.
DOI : 10.1007/978-3-319-19992-4_53

URL : https://hal.archives-ouvertes.fr/hal-01152267

R. Jenatton, J. Mairal, G. Obozinski, and F. R. Bach, Proximal methods for sparse hierarchical dictionary learning, pp.487-494, 2010.

N. Leonardi and D. Van-de-ville, On spurious and real fluctuations of dynamic functional connectivity during rest, NeuroImage, vol.104, pp.430-436, 2015.
DOI : 10.1016/j.neuroimage.2014.09.007

K. H. Maier-hein, P. F. Neher, J. C. Houde, M. A. Côté, E. Garyfallidis et al., The challenge of mapping the human connectome based on diffusion tractography, Nature Communications, vol.21, issue.1, p.1349, 2017.
DOI : 10.1109/TMI.2002.806568

URL : https://hal.archives-ouvertes.fr/hal-01631578

E. Panagiotaki, T. Schneider, B. Siow, M. G. Hall, M. F. Lythgoe et al., Compartment models of the diffusion MR signal in brain white matter: A taxonomy and comparison, NeuroImage, vol.59, issue.3, pp.2241-2254, 2012.
DOI : 10.1016/j.neuroimage.2011.09.081

F. Pestilli, J. D. Yeatman, A. Rokem, K. N. Kay, and B. A. Wandell, Evaluation and statistical inference for human connectomes, Nature Methods, vol.12, issue.10, p.1058, 2014.
DOI : 10.1006/jmrb.1996.0086

S. Leon, P. Knock, S. A. Woodman, M. M. Domide, L. Mersmann et al., The virtual brain: a simulator of primate brain network dynamics, Frontiers in neuroinformatics, vol.7, p.10, 2013.

R. E. Smith, J. D. Tournier, F. Calamante, and A. Connelly, SIFT2: Enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography, NeuroImage, vol.119, pp.338-351, 2015.
DOI : 10.1016/j.neuroimage.2015.06.092

, The Virtual Brain: The resting state network scripting tutorial, 2018.

A. Zalesky, A. Fornito, L. Cocchi, L. L. Gollo, M. P. Van-den-heuvel et al., Connectome sensitivity or specificity: which is more important?, NeuroImage, vol.142, pp.407-420, 2016.
DOI : 10.1016/j.neuroimage.2016.06.035