Joint Future Semantic and Instance Segmentation Prediction

Abstract : The ability to predict what will happen next from observing the past is a key component of intelligence. Methods that forecast future frames were recently introduced towards better machine intelligence. However, predicting directly in the image color space seems an overly complex task, and predicting higher level representations using semantic or instance segmentation approaches were shown to be more accurate. In this work, we introduce a novel prediction approach that encodes instance and semantic segmentation information in a single representation based on distance maps. Our graph-based modeling of the instance segmentation prediction problem allows us to obtain temporal tracks of the objects as an optimal solution to a watershed algorithm. Our experimental results on the Cityscapes dataset present state-of-the-art semantic segmentation predictions, and instance segmentation results outperforming a strong baseline based on optical flow.
Complete list of metadatas

Cited literature [33 references]  Display  Hide  Download
Contributor : Thoth Team <>
Submitted on : Tuesday, September 4, 2018 - 3:36:24 PM
Last modification on : Wednesday, March 20, 2019 - 1:29:03 AM
Long-term archiving on : Wednesday, December 5, 2018 - 6:22:29 PM


Files produced by the author(s)




Camille Couprie, Pauline Luc, Jakob Verbeek. Joint Future Semantic and Instance Segmentation Prediction. ECCV Workshop on Anticipating Human Behavior, Sep 2018, Munich, Germany. pp.154-168, ⟨10.1007/978-3-030-11015-4_14⟩. ⟨hal-01867746⟩



Record views


Files downloads