Joint Future Semantic and Instance Segmentation Prediction

Abstract : The ability to predict what will happen next from observing the past is a key component of intelligence. Methods that forecast future frames were recently introduced towards better machine intelligence. However, predicting directly in the image color space seems an overly complex task, and predicting higher level representations using semantic or instance segmentation approaches were shown to be more accurate. In this work, we introduce a novel prediction approach that encodes instance and semantic segmentation information in a single representation based on distance maps. Our graph-based modeling of the instance segmentation prediction problem allows us to obtain temporal tracks of the objects as an optimal solution to a watershed algorithm. Our experimental results on the Cityscapes dataset present state-of-the-art semantic segmentation predictions, and instance segmentation results outperforming a strong baseline based on optical flow.
Type de document :
Communication dans un congrès
ECCV Workshop on Anticipating Human Behavior, 2018, Munich, Germany
Liste complète des métadonnées

Littérature citée [2 références]  Voir  Masquer  Télécharger
Contributeur : Thoth Team <>
Soumis le : mardi 4 septembre 2018 - 15:36:24
Dernière modification le : samedi 20 octobre 2018 - 01:08:47
Document(s) archivé(s) le : mercredi 5 décembre 2018 - 18:22:29


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01867746, version 1



Camille Couprie, Pauline Luc, Jakob Verbeek. Joint Future Semantic and Instance Segmentation Prediction. ECCV Workshop on Anticipating Human Behavior, 2018, Munich, Germany. 〈hal-01867746〉



Consultations de la notice


Téléchargements de fichiers