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Abstract

The problem of detecting loops in a forwarding network is known to be NP-complete
when general rules such as wildcard expressions are used. Yet, network analyzer tools such as
Netplumber (Kazemian et al., NSDI’13) or Veriflow (Khurshid et al., NSDI’13) efficiently solve
this problem in networks with thousands of forwarding rules. In this paper, we complement
such experimental validation of practical heuristics with the first provably efficient algorithm
in the context of general rules. Our main tool is a canonical representation of the atoms
(i.e. the minimal non-empty sets) of the field of sets generated by a collection of sets. This
tool is particularly suited when the intersection of two sets can be efficiently computed and
represented. In the case of forwarding networks, each forwarding rule is associated with the
set of packet headers it matches. The atoms then correspond to classes of headers with same
behavior in the network. We propose an algorithm for atom computation and provide the
first polynomial time algorithm for loop detection in terms of number of classes (which can
be exponential in general). This contrasts with previous methods that can be exponential,
even in simple cases with linear number of classes. Second, we introduce a notion of network
dimension captured by the overlapping degree of forwarding rules. The values of this measure
appear to be very low in practice and constant overlapping degree ensures polynomial number
of header classes. Forwarding loop detection is thus polynomial in forwarding networks with
constant overlapping degree.
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1 Introduction

With the multiplication of network protocols, network analysis has become an important and
challenging task. We focus on a key diagnosis task: detecting possible forwarding loops. Given
a network and node forwarding tables, the problem consists in testing whether there exists a
packet header h and a directed cycle in the network topology such that a packet with header h
will indefinitely loop along the cycle. This problem is indeed NP-complete as noted in [19]. Its
hardness comes from the use of compact representations for predicate filters: the set of headers that
match a rule is classically represented by a prefix in IP forwarding, a general wildcard expression
in Software-Defined Networking (SDN), value ranges in firewall rules, or even a mix of such
representations if several header fields are considered.

We first give a toy example of forwarding loop problem where the predicate filter of each rule is
given by a wildcard expression, that is an ℓ-letter string in {1, 0, ∗}ℓ. Such an expression represents
the set all ℓ-bit headers obtained by replacing each ∗ of the expression by either 0 or 1. A packet
with header in that set is said to match the rule. Figure 1 illustrates a one node network with
wildcard expressions of ℓ = 4 letters. Rules are tested from top to bottom. All rules indicate to
drop packets except the last one that forwards packets to the node itself. This network contains
a forwarding loop if there exists a header x1x2x3x4 that matches no rule except the last one. Not
matching a rule as 110∗ corresponds to having x1 = 0, x2 = 0, or x3 = 1. This one node network
thus has a forwarding loop iff the formula (x1 ∨x2 ∨x3 ∨x4)∧ (x1 ∨x2 ∨x3 ∨x4)∧ (x1 ∨x2 ∨x3)∧
(x1 ∨x2)∧ (x1) is satisfiable, which is not the case. This simple example can easily be generalized
to reduce SAT to forwarding loop detection in networks with wildcard rules. It also points out a
key problem: testing the emptiness of expressions such as rp \ ∪i=1..p−1ri where r1, . . . , rp are the
sets associated to p rules.

drop

forward

1111

1110

110*

10**

0***

****

Figure 1: Does this one node network have a forwarding loop ?

As packet headers in practical networks such as Internet typically have hundreds of bits, search
of the header space is completely out of reach. The main challenge for solving such a problem
thus resides in limiting the number of tests to perform. For that purpose, previous works [17, 15]
propose to consider sets of headers that match some predicate filters and do not match some
others. Defining two headers as equivalent when they match exactly the same predicate filters, it
then suffices to perform one test per equivalence class. These classes are indeed the atoms (the
minimal non-empty sets) of the field of sets (the (finite) σ-algebra) generated by the sets associated
to the rules.

A first challenge lies in efficiently identifying and representing these atoms. This would be
fairly easy if both intersection and complement could be represented efficiently. In practice, most
classical compact data-structures for sets of bit strings are closed under intersection but not
under complement. For example, the intersection of two wildcard expressions, if not empty, can
obviously be represented by a wildcard expression, but the complement of a wildcard expression
is more problematic. Previous works overcome this difficulty by representing the complement of a
ℓ-letter wildcard expression as the union of several wildcard expressions (up to ℓ). However, this
can result in exponential blow-up and the tractability of these methods rely on various heuristics
that do not offer rigorously proven guarantees.

A second challenge lies in understanding the tractability of practical networks. One can easily
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design a collection of 2ℓ wildcard expressions that generates all the 2ℓ possible singletons as atoms
(all the ℓ-letters strings with only one non-∗ letter). What does prevent such phenomenon in
practice? Can we provide a property that intuitively fits with practical network and guarantees
that the number of atoms does not blow up? This paper aims at addressing both challenges with
provable guarantees.

Related work The interest for network problem diagnosis has recently grown after the advent
of Software-Defined Networking (SDN) [23, 18, 21, 12]. SDN offers the opportunity to manage the
forwarding tables of a network with a centralized controller where full knowledge is available for
analysis. Previous works has led to a series of methods for network analysis, resulting in several
tools [17, 13, 19, 27]. The main approaches rely on computing classes of headers by combining rule
predicate filters using intersection and set difference (that is intersection with complement). The
idea of considering all header classes generated by the global collection of the sets associated to all
forwarding rules in the network is due to Veriflow [17]. However, the use of set differences results
in computing a refined partition of the atoms of the field of sets generated by this collection that
can be much larger than an exact representation. NetPlumber [13], which relies on the header
space analysis introduced in [15], refines this approach by considering the set of headers that can
follow a given path of the network topology. This set is represented as a union of classes that
match some rules (those that indicate to forward along the path) and not some others (those that
have higher priority and deviate from the path): a similar problem of atom representation thus
arises. The idea of avoiding complement operations is somehow approached in the optimization
called “lazy subtraction” that consists in delaying as much as possible the computation of set
differences. However, when a loop is detected, formal expressions with set differences have to be
tested for emptiness. They are then actually developed, possibly resulting in the manipulation of
expressions with exponentially many terms.

Concerning the tractability of the problem, the authors of NetPlumber observe a phenomenon
called “linear fragmentation” [15, 14] that allows to argue for the efficiency of the method. They
introduce a parameter cmeasuring this linear fragmentation and claim a polynomial time bound for
loop detection for low c [15] (when emptiness tests are not included in the analysis). However, the
rigorous analysis provided in [14] includes a cDG factor where DG is the diameter of the network
graph. While this factor appears to be largely overestimated in practice, the sole hypothesis
of linear fragmentation does not suffice for explaining tractability and prove polynomial time
guarantees. The alternative approach of Veriflow is specifically optimized for rules resulting from
range matching within each field of the header. When the number of fields is constant, polynomial
time execution can be guaranteed but this result does not extend to general wildcard matching.

A similar problem consists in conflict detection between rules and their resolution [1, 9, 5].
It has mainly been studied in the context of multi-range rules [1, 9], which can benefit from
computational geometry algorithms. (A multi-range can be seen as a hyperrectangle in a d-
dimensional euclidean space where d is the number of fields composing headers.) Another similar
problem, determining efficiently the rule that applies to a given packet, has been studied for
multi-ranges [9, 10, 11]. In the case of wildcard matching, such problems are related to the old
problem of partial matching [24]. It is believed to suffer from the “curse of dimensionality” [3, 22]
and no method significantly faster than exhaustive search is expected to be found with near
linear memory (although some tradeoffs are known for small number of ∗ letters [7]). However,
efficient hardware-based implementations exist based on Ternary Content Addressable Memory
(TCAMs) [4] or Graphics Processing Unit (GPU) [26].

Regarding the manipulation of set collections, recent work [20] shows how to enumerate all
sets obtained by closure under given set operations with polynomial delay. In particular, this
allows to produce the field of sets generated by the collection. However, this setting requires a set
representation which explicitly lists all elements and does not apply here. Another issue comes
from the fact that the field set can be exponentially larger than its number of atoms.
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Rule repr. Trivial NetPlumber [13] Veriflow [17] This paper
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Table 1: Worst-case complexity of forwarding loop detection with n rules that generate m header
classes in an nG-node network, for various rule set representations: Tℓ-bounded for intersection
and cardinality computations in O(Tℓ) time; ℓ-wildcard for wildcard expressions with ℓ letters;
d-multi-rng. for multi-ranges in dimension d (with ℓ = O(d)). Additional hypothesis “ov. deg. k”
stands for overlapping degree of rule sets bounded by k.

Our contributions First, we make a key algorithmic step by providing an efficient algorithm
for computing an exact representation of the atoms of the field of sets generated by a collection of
sets. The representation obtained is linear in the number of atoms and allows to test efficiently if
an atom is included in a given set of the collection. The main idea is to represent an atom by the
intersection of the sets that contain it. We avoid complement computations by using cardinality
computations for testing emptiness. Our algorithm is generic and supports any data-structure
for representing sets of ℓ-bit strings that supports intersection and cardinality computation in
bounded time O(Tℓ) for some value Tℓ. It runs in polynomial time with respect to n,m, the
number of sets and atoms respectively. Beyond combinations of wildcard and range expressions,
we believe that it could be extended to support expressions on hashed values (for a fixed hash
function) or bloom filters by defining auxiliary cardinality measures.

Second, we provide a dimension parameter, the overlapping degree k, that captures the com-
plexity of a collection of rule sets considered in a forwarding network. It is defined as the maximum
number of distinct rules (i.e. with pairwise distinct associated sets) that match a given header.
This parameter constitutes a measure of complexity for the field of sets generated by a given
collection of sets. In the context of practical hierarchical networks, we have the following intuitive
reason to believe that this parameter is low: in such networks, more specific rules are used at lower
levels of the hierarchy. We can thus expect that the overlapping degree is bounded by the number
of layers of the hierarchy. Empirically, we observed a value within 5−15 for datasets with hundreds
to thousands of distinct multi-field rules, and k = 8 for the collection of IPv4 prefixes advertised
in BGP. A constant overlapping degree implies that the number of header classes is polynomially
bounded, giving a hint on why practical networks are tractable despite the NP-completeness of the
problem. In addition, the algorithm we propose is tailored to take advantage of low overlapping
degree k, even without knowledge of k. Table 1 provides a summary of the complexity results
obtained for loop detection depending on how the sets associated to rules are represented. Our
techniques can be extended to handle write actions (partial writes of fixed values such as field
replacement) while maintaining polynomial guarantees.

Our algorithm for atom computation solves two difficult technical issues. First, it manages
to remain polynomial in the number m of atoms even though the number of sets generated by
intersection solely can be exponential in m with general rules. Second, the use of cardinality
computations allows to avoid exponential blow-up (in contrast with previous work) but naturally
induces a quadratic O(m2) term in the complexity. However, we manage to reduce it to O(m)
in the case of collections with logarithmic overlapping degree (i.e. k = O(log n)). Indeed, our
algorithm then becomes linear in m and polynomial in n, providing an algorithmic breakthrough
towards efficient atom enumeration.

Roadmap: Section 2 introduces the model. Section 3 describes how to represent the atoms
of a field of sets. We state in Section 4 our main result concerning atom computation and its
implications for forwarding loop detection that give the upper bounds listed in Table 1. Section 5
gives more insight about the comparison of our results with previous works and justifies the lower
bounds presented in Table 1. Finally, Section 6 discusses some perspectives.
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2 Model

2.1 Problem

We consider a general model of network where a network instance N is characterized by:

• a graph G = (V,E) where each node u ∈ V is a router and has a forwarding table T (u).

• a natural number ℓ representing the (fixed) bit-length of packet headers.

Let H denote the set of all 2ℓ possible headers (all ℓ-bit strings). Each forwarding table T (u) is
an ordered list of forwarding rules (r1, a1), . . . , (rp, ap). Each forwarding rule (r, a), is made of a
predicate filter r and an action a to apply on any packet whose header matches the predicate. We
say that a header h matches rule (r, a) when it matches predicate r (we may equivalently say that
(r, a) matches h). We then write h ∈ r to emphasize the fact that r can be viewed as a compact
data-structure encoding the set of headers that match it. This set is called the rule set associated
to (r, a). For the ease of notation, we thus let r denote both the predicated filter of rule (r, a) and
the associated set.

We consider three possible actions for a packet: forward to a neighbor, drop, or deliver (when
the packet has reached destination). The priority of rules is given by their ordering: when a packet
with header h arrives at node u, the first rule matched by h is applied. Equivalently, the rule
(ri, ai) is applied when h ∈ ri ∩ r1 ∩ · · · ∩ ri−1, where r denotes the complement of r. When no
match is found (i.e. h ∈ r1 ∩ · · · ∩ rp), the packet is dropped.

Given a header h, the forwarding graph Gh = (V,Eh) of h represents the forwarding actions
taken on a packet with header h: uv ∈ Eh when the first rule that matches h in T (u) indicates to
forward to v. The forwarding loop detection problem consists in deciding whether there exists a
header h ∈ H such that Gh has a directed cycle.

Note that we make the simplifying assumption that the input port of an incoming packet is
not taken into account in the forwarding decision of a node. In a more general setting, a node
has a forwarding table for each incoming link. This is essentially the same model except that we
consider the line-graph of G instead of G.

2.2 Header Classes

A natural relation of equivalency exists between headers with respect to rules: two headers are
equivalent if they match exactly the same rules, that is if they belong to the same rule sets.
Trivially, two equivalent headers let the corresponding packets have exactly the same behavior in
the network. The resulting equivalence classes partitions the header set H into nonempty disjoint
subsets called header classes. To check any property of the network, it suffices to do it on a
class-by-class basis instead of a header-by-header basis. The number m of header classes is thus
a natural parameter when considering the difficulty of forwarding loop detection (or other similar
network analysis problems). A more accurate definition of classes could take into account the
order of rules and the topology (see Appendix E) but this does not allows us to obtain complexity
gain in general.

The header classes can be defined according to the collection R of rule sets of N (i.e. R =
{r | ∃u, a s.t. (r, a) ∈ T (u)}). If R(h) ⊆ R denotes the set of all rule sets associated to the rules
matched by a given header h, then its header class is clearly equal to

(

∩r∈R(h)r
)

∩
(

∩r∈R\R(h)r
)

(with the convention ∩r∈∅r = H). Such sets are the atoms of the field of sets generated by R.
Their computation is the main topic of this paper and is detailed in the next section.

2.3 Set representation

As we focus on the collection R of rule sets, we now detail our hypothesis on their representation.
We assume that a data-structure D allows to represent some of the subsets of a space H . For the
ease of notation, D ⊆ P(H) also denotes the collection of subsets that can be represented with
D. We assume that D is closed under intersection: if s and s′ are in D, so is s ∩ s′. We say that
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Figure 2: Toy example of an 8-elements space H with a collection R = {r1, r2, r3, r4}.

such a data-structure D for subsets of H is TH-bounded when intersection and cardinality can be
computed in time TH at most: given the representation of s, s′ ∈ D, the representation of s∩s′ ∈ D
and the size |s| of s (as a binary big integer) can be computed within time TH . As big integers
computed within time TH have O(TH) bits, this implies |H | = 2O(TH): the bound TH obviously
depends on H . Intersection, inclusion test (s ⊆ s′), cardinality computation (|s|) and cardinality
operations (addition, subtraction and comparison) are called elementary set operations. Under the
TH-bounded hypothesis, all these operations can be performed in O(TH) time (s ⊆ s′ is equivalent
to |s ∩ s′| = |s|).

Two typical examples of data-structures meeting the above requirements are wildcard expres-
sions and multi-ranges. In a forwarding network, we consider the header space H = {0, 1}ℓ

of all ℓ-bit strings, which may be decomposed in several fields. A rule set is typically rep-
resented by a wildcard expression or a range of integers. In both cases, they can be repre-
sented within 2ℓ bits and both representation are O(ℓ)-bounded. We call ℓ-wildcard a string

e1 · · · eℓ ∈ {0, 1, ∗}ℓ. It represents the set {x1 · · ·xℓ ∈ {0, 1}ℓ | ∀i, xi = ei or ei = ∗}. If rules
are decomposed into fields, any combinations of wildcard expressions and ranges can be used
(either one for each field) and represented within O(ℓ) bits. However cardinality computations
can take Θ(ℓ log ℓ) time as multiplications of big integers are required. Such representation is
thus O(ℓ log ℓ)-bounded. Given d field lengths ℓ1, . . . , ℓd with sum ℓ, we call (d, ℓ)-multi-range
a cartesian product [a1, b1] × · · · × [ad, bd] of d integer ranges with 0 ≤ ai ≤ bi < 2ℓi for i in
1..d. It represents the set {bin(x1, ℓ1) · · · bin(xd, ℓd) | (x1, . . . , xd) ∈ [a1, b1]× · · · × [ad, bd]} where
bin(xi, ℓi) is the binary representation of xi within ℓi bits.

When manipulating a collection of p sets in D, we assume that their representations are stored
in a balanced binary search tree, allowing to dynamically add, remove or test membership of a
set in O(TH log p) time. More efficient data-structures (tries and segment trees) can be used for
wildcard expressions and multi-ranges as detailed in Appendix A.1.

3 Atoms and combinations generated by a collection of sets

Given a space of elements H , a collection is a finite set of subsets of H . The field of sets σ(R)
generated by a collection R is the (finite) σ-algebra generated by R, that is the smallest collection
closed under intersection, union and complement that contains R∪ {∅, H}.

The atoms of σ(R) are classically defined as the non-empty elements that are minimal for
inclusion. For brevity, we call them the atoms generated by R. Let A(R) denote their collection.
Note that for a ∈ A(R) and r ∈ R, we have either a ⊆ r or a ⊆ r (otherwise a∩ r and a∩ r would
be non-empty elements of σ(R) strictly included in a). This gives a characterization of the atoms
that matches our definition of header classes when R is the collection of rule sets of a network
(see Section 2.2):

A(R) =
{

a 6= ∅ | ∃R ⊆ R, a = (∩r∈Rr) ∩
(

∩r∈R\Rr
)}

. (1)

For example, the collection R pictured in Figure 2 generates 7 atoms: {0} = r1 ∩ r̄2 ∩ r̄3 ∩ r̄4,
{1} = r1 ∩ r2 ∩ r̄3 ∩ r̄4, {2, 4} = r1 ∩ r2 ∩ r3 ∩ r̄4, {3} = r1 ∩ r2 ∩ r3 ∩ r4, {5} = r̄1 ∩ r2 ∩ r3 ∩ r̄4,
{6} = r̄1 ∩ r̄2 ∩ r3 ∩ r̄4, and {7} = r̄1 ∩ r̄2 ∩ r̄3 ∩ r̄4.

Due to the complement operations, the atoms can be harder to represent than the rules they are
generated from. In Figure 2, all rules are ranges, but the atom {2, 4} is not. When the intersection
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operation can be computed and represented efficiently (see Section 2.3), it is natural to consider
the collection C(R) ⊆ σ(R) of combinations defined as sets that can obtain by intersection from
sets in R:

C(R) := {c 6= ∅ | ∃R ⊆ R, c = ∩r∈Rr} . (2)

In Figure 2, there are 8 combinations: r1, r1 ∩ r2, r1 ∩ r3, r4, r2 ∩ r3, r3, H and r2.
Given a collection R and a subset s ∈ H , we let R(s) := {r ∈ R | s ⊆ r} denote the containers

of s, that is the sets in R that contain s. We associate each combination c ∈ C(R) with the set
a(c) := c∩

(

∩r∈R\R(c)r
)

. The function a(·) (with parenthesis) should not be confused with an atom
a (without parenthesis). A combination c is said to be covered if a(c) = ∅ (the union of its non-
containers covers it), otherwise it is uncovered. Similarly, we associate each atom a ∈ A(R) with
the combination c(a) := ∩r∈R(a)r (this corresponds to the “positive” part of the characterization
from Equation 1). The following proposition states that atoms can be represented by uncovered
combinations.

Proposition 1. The collection UC(R) := {c ∈ C(R) | a(c) 6= ∅} of uncovered combinations is in
one-to-one correspondence with the atom collection A(R): each c ∈ UC(R) corresponds to the
atom a(c). Reciprocally, each atom a is mapped to combination c(a).

Based on Proposition 1, we say that an uncovered combination c represents atom a(c). UC(R)
can be seen as a canonical representation of A(R) by a collection of combinations. In Figure
Figure 2, atom {2, 4} is represented by combination r1 ∩ r3 = r1 ∩ r2 ∩ r3. Similarly, atoms {0},
{1}, {3}, {5}, {6} and {7} are represented by (uncovered) combinations r1, r1 ∩ r2, r4, r2 ∩ r3, r3,
and H respectively. Combination r2 is covered: a(r2) = r̄1 ∩ r2 ∩ r̄3 ∩ r̄4 = ∅.

The proof of Proposition 1 is straightforward. First, we verify that if c is an uncovered
combination, a(c) is an atom: it suffices to observe that c = ∩r∈R(c)r and to match a(c) =

c∩
(

∩r∈R\R(c)r
)

with the atom characterization given by Equation 1 using R = R(c). Similarly, if

a = (∩r∈Rr)∩
(

∩r∈R\Rr
)

is an atom for some R ⊆ R, the combination c(a) satisfies R(c(a)) = R
which implies a(c(a)) = a. In particular, as a 6= ∅, c(a) is uncovered.

A nice property of the characterization of Proposition 1 is that it allows to efficiently test
whether a set r ∈ R contains an atom a ∈ A(R): given a combination c that represents a, a ⊆ r
is equivalent to c ⊆ r. This comes from the fact that every uncovered combination c has same
containers as a(c). (If it was not the case, a(c) = ∅ and c is covered.) This explains the importance
of determining UC(R), and in particular to separate covered combinations from uncovered ones.
This is the subject of the next section, but we first formally introduce the notion of overlapping
degree.

Overlapping degree of a collection Our representation is naturally associated to the following
measure of complexity of a collection R. We define the overlapping degree k of R as the maximum
number of containers of an element, that is k = maxh∈H |R({h})|. Note that all elements within
an atom have same containers in R and that a set cannot have more containers than any of its
elements. We thus have:

k = max
s⊆H

|R(s)| = max
a∈A(R)

|R(a)|

As any atom a can be expressed as a = (∩r∈Rr) ∩
(

∩r∈R\Rr
)

where R = R(a) is the set of

containers of a, the number of atoms is obviously bounded by
(

n
k

)

where n = |R| denotes the
number of sets in R. The overlapping degree of a collection thus measures its complexity in terms
of number of atoms it may generate.

We similarly define the average overlapping degree k as the average number of containers of an

atom: k =
∑

a∈A(R)|R(a)|

|A(R)| . We obviously have k ≤ k. Given a collection R, we will also consider

the average overlapping degree K of combinations, that is the average overlapping degree of C(R).
Note that C(R) has the same collection of atoms as R and that a combination c = ∩r∈R(c)r
containing an atom a must satisfy R(c) ⊆ R(a). The overlapping degree of C(R) is thus at most
2k and we always have K ≤ 2k.
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In the example from Figure 2, one can verify that we have k = 4, k = 13/7 and K = 4.
In real datasets we observe that both k and K are in the range [2, 15] while k is in the range

[1.5, 5] (these include Inria firewall rules, Stanford forwarding tables provided by Kazemian et
al. [16] and IPv4 prefixes announced at BGP level from Route Views [25]).

4 Incremental computation of atoms

We can now state our main result concerning the computation of the atoms generated by a
collection of sets.

Theorem 1. Given a space set H and a collection R of n subsets of H , the collection UC(R)
of combinations that canonically represent the atoms A(R) can be incrementally computed with
O(min(n+kK logm,nm)m) elementary set operations where: m is the number of atoms generated
byR; k is the overlapping degree ofR; K is the average overlapping degree of C(R); k is the average
overlapping degree of R. Within this computation, each combination c ∈ UC(R) can be associated
to the list R(c) of sets in R that contain c. If sets are represented by ℓ-wildcard expressions
(resp. (d, ℓ)-multi-ranges), the representation can be computed in O(ℓmin(n+ kK, nm)m) (resp.
O(ℓmin(k logdm+ kK, nm)m)) time.

Application to forwarding loop detection Theorem 1 has the following consequences for
forwarding loop detection.

Corollary 1. Given a network N with collection R of n rule sets with Tℓ-bounded representation,
forwarding loop detection can be performed in O(Tℓ min(n+kK logm,nm)m+knGm) time where
m is the number of atoms in A(R), k is the overlapping degree of R and k (resp. K) is the
average overlapping degree of R (resp. C(R)). If sets are represented by ℓ-wildcard expressions
(resp. (d, ℓ)-multi-ranges), the representation can be computed in O(ℓmin(n+kK, nm)m+knGm)
(resp. O(ℓmin(k logd m+ kK, nm)m+ knGm)) time.

This result can be extended to handle write actions as explained in Appendix F due to the lack
of space. The upper-bounds for forwarding loop detection listed in Table 1 follow from Corollary 1
which is proved in Appendix A.3. A key ingredient consists in maintaining for each rule set a list
that describes its presence, priority and action for each node. Detecting a loop for a header class
a then consists in merging the lists associated to the rule sets containing a (as provided by our
atom representation) for obtaining the forwarding graph Ga = Gh for all h ∈ a. Directed cycle
detection is finally performed on each such graph.

In the rest of this Section, we prove Theorem 1 by introducing two incremental algorithms for
atom computation and analyzing their performance. The incremental approach allows to avoid
exponential blow-up even in cases where the number of combinations can be exponential in the
number m of atoms (an example is given in Appendix B.2).

Algorithms for updating atoms We first propose a basic algorithm for updating the collection
UC of uncovered combinations of a collection R when a set r is added to R. The main idea is that
after adding r to R, the only new uncovered combinations that can be created are intersections
of pre-existing uncovered combinations with r (see Lemma 1 in Appendix A.2). We thus first
add to UC the combinations c ∩ r for c ∈ UC. As this may introduce covered combinations,
we then compute the atom size c.atsize = |a(c)| for each combination c. It is then sufficient
to remove any combination c with c.atsize = 0 to finally obtain UC(R ∪ {r}). This atom size
computation is possible because we have d = ∪c∈UC|c⊆da(c) for all d ∈ UC. (see Lemma 2 in
Appendix A.2). As this union is disjoint, we have |a(d)| = |d| −

∑

c∈UC|c(d |a(c)|. We thus
compute the inclusion relation between combinations and store in c.sup the combinations that
strictly contain c. Initializing c.atsize to |c| for all c, we then scan all combinations c by non-
decreasing cardinality (or any topological order for inclusion) and subtract c.atsize from d.atsize
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for each d ∈ c.sup. A simple proof by induction allows to prove that c.atsize = |a(c)| when c is
scanned. The whole process in summarized in Algorithm 1.

Procedure basicAdd(r,R,UC)
UC′ := UC ∪ {c ∩ r | c ∈ UC}
For each c ∈ UC′ do

c.atsize := |c|

c.sup :=
{

d ∈ UC′ | c ( d
}

For each c ∈ UC′ in non-decreasing cardinality order do

For each d ∈ c.sup do d.atsize := d.atsize− c.atsize

UC := UC′ \
{

c ∈ UC′ | c.atsize = 0
}

Algorithm 1: Add a set r to a collection R and update the collection UC = UC(R) of
its uncovered combinations accordingly.

The correctness of Algorithm 1 follows from the two above remarks (that is Lemma 1 and
Lemma 2 in Appendix A.2). Its main complexity cost comes from intersecting r with each com-
bination and computing the inclusion relation between combinations, that is O(nm) and O(m2)
elementary set operations respectively. Starting from UC = {H} and incrementally applying Al-
gorithm 1 to each set in R thus allows to obtain UC(R) with O(nm2) elementary set operations,
yielding the general bound of Theorem 1.

To derive better bounds for low overlapping degree k, we propose a more involved algorithm
that maintains c.sup and c.atsize from one iteration to another and makes only the necessary
updates. This requires to handle several subtleties to enable lower complexity.

We similarly start by computing the collection Inter = {c ∈ UC | c ∩ r 6= ∅} of combinations
intersecting r. A first subtlety comes from the fact that several combinations c may result in
the same c′ = c ∩ r. However, we are only interested in the combination c which is minimal for
inclusion that we call the parent of c′. The reason is that c′.sup can then be computed from c.sup.
The parent is unique unless c′ is covered in which case c′ is marked as covered and discarded
(see the argument for c′.sup computation later on). To obtain right parent information, we thus
process all c ∈ Inter by non-decreasing cardinality. The produced combinations c′ = c ∩ r such c′

were not in UC are called new combinations. Their atom size is initialized to c′.atsize = |c′|. See
the “Parent computation” part of Algorithm 2.

We then remark that we only need to compute (or update) c.sup for combinations that include
r, which we store in a set Incl. We also note that c.atsize needs to be computed when c is new
and updated when c is the parent of a new combination. A second subtlety resides in computing
(or updating) c.sup only when c is not covered that is when c.atsize (after computation) appears
to be non-zero. As the computation of c.sup lists is the most heavy part of the computation,
this is necessary to enable our complexity analysis. For that purpose, we scan Incl by non-
decreasing cardinality so that the correct value of c.atsize is known when c is scanned similarly
as in Algorithm 1. However, we avoid any useless computation when c.atsize is zero. Otherwise,
we compute (or update) c.sup and decrease d.atsize by c.atsize from d ∈ c.sup for adequate d: if
c and d where both in UC, this computation has already been made; it is only necessary when d is
new or when d is the parent of c. We optionally maintain for each combination c a list c.cont that
contain the list of sets r ∈ R that contain c (Such lists are not necessary for the computation but
they are useful for loop detection as detailed in Appendix A.3). See the “Atom size computation”
part of Algorithm 2.

A last critical point resides in the computation of c′.sup for each new combination c′. The c′.sup
list can be obtained from c′.parent.sup by copying and also intersecting elements of c′.parent.sup
with r. This is sufficient: for d ∈ UC such that c′ ( d ∩ r, we can consider c = c′.parent ∩ d.
If c ∈ UC, c′.parent = c by minimality of c′.parent and we thus have d ∈ c′.parent.sup. The
case where c /∈ UC and d /∈ c′.parent.sup cannot happen as it would imply that two different
combinations c1 = c′.parent and c2 ⊆ c generate c′ by intersection with r (c1 ∩ r = c2 ∩ r = c′)
and are both minimal for inclusion. In such case, c1 ∩ c2 was covered in R and so would be c′ in
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Procedure add(r,R,UC = UC(R))
New := ∅; Incl := ∅;
/* ---------------------- Parent computation ---------------------- */

Inter := {c ∈ UC | c ∩ r 6= ∅}
Sort Inter by non-decreasing cardinality.
For each c ∈ Inter do

c′ := c ∩ r
If c′ /∈ Incl then

If c′ /∈ UC then

UC := UC ∪ {c′}; New := New ∪ {c′};
c′.atsize := |c′|; c′.sup := {}; c′.cont := {} /* Updated later. */

c′.parent := c; c′.covered := false; Incl := Incl ∪ {c′};

else

If c′.parent 6⊆ c then c′.covered := true

Remove from Incl, New and UC all c such that c.covered = true.
/* ---------------------- Atom size computation ---------------------- */

Sort Incl by non-decreasing cardinality.
For each c ∈ Incl do

If c.atsize > 0 then

/* Adjust c.sup, c.cont and update d.atsize for impacted d ) c: */

If c ∈ New then

c.parent.atsize := c.parent.atsize− c.atsize
c.sup := {c.parent} ∪ c.parent.sup
c.cont := c.parent.cont

c.sup := c.sup ∪ {d ∩ r | d ∈ c.sup and d ∩ r ∈ Incl \ {c}}
c.cont := c.cont ∪ {r}
For each d ∈ c.sup s.t. d ∈ New do

d.atsize := d.atsize− c.atsize

/* ---------------------- Remove covered combinations ----------------------

*/

For each c ∈ Incl do

Remove from c.sup any d such that d.atsize = 0.
If c.atsize = 0 then UC := UC \ {c}; Incl := Incl \ {c};
If c ∈ New and c.parent.atsize = 0 then UC := UC \ {c.parent}

Algorithm 2: Add a set r to a collection R and update the collection UC of its uncovered
combinations accordingly.

R (and also in R ∪ {r}). That is why such combination c′ are already discarded during parent
computation. On the other hand, the list c.sup of a combination c ∈ UC can be updated by
intersecting elements of c.sup with r: when c ( d ∩ r for c ⊆ r, we have c ( d.

Finally, combinations c with c.atsize = 0 are discarded and removed from b.sup list of remain-
ing combinations as detailed in the “Remove covered combinations” part of Algorithm 2.

The main argument in the complexity analyzis of Algorithm 2 comes from bounding the size of
each c.sup list by |UC(a(c))| (this is where the overlapping degree of C(R) is used). The number
of elementary set operations performed is indeed O(m +

∑

a∈Ar

∣

∣UC′(a)
∣

∣ logm) where m denotes
the number of atoms of R, Ar = {a ∈ A(R′) | a ⊆ r} denotes the atoms of R′ = R∪{r} included
in r, and UC′(a) denotes the uncovered combinations of R′ that contain a. A key step consists
in proving |Inter| ≤

∑

a∈Ar

∣

∣UC′(a)
∣

∣. The logm accounts for membership tests and add/remove
operations on collections of combinations. In the case of ℓ-wildcard and (d, ℓ)-multi-ranges, this
factor can be saved by storing collections of sets in tries rather than balanced binary search trees.
With (d, ℓ)-multi-ranges, a segment tree allows to retrieve Inter in O(|Inter|+ logd m) elementary
set operations [2, 8].
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The various bounds for low overlapping degree of Theorem 1 results from applying iteratively
Algorithm 2 for each set of R and by carefully bounding the sums of

∣

∣UC′(a)
∣

∣ terms. Intuitively,
each atom a generated by the collection Ri of the first i sets of R can be associated to an atom
a′ of R such that

∣

∣UC′(a)
∣

∣ ≤ |C(a′)| where C = C(R). As each atom is included in k sets of R

at most, this allows to bound the overall sum of
∣

∣UC′(a)
∣

∣ terms by kKm. Details are given in
Appendix A.2.

5 Comparison with previous works

We give in Appendix C more details about “linear fragmentation”, a phenomenon observed by
Kazemian et al. [14], and propose small overlap degree as a plausible cause. The notion of un-
covered combination is linked to that of weak completion introduced by [5] in the context of
rule-conflict resolution as detailed in Appendix D. We now provide examples where use of set
complement computation can lead to exponential blow-up in previous work.

5.1 Veriflow

Veriflow [17] incrementally computes a partition into sub-classes that forms a refinement of the
header classes: when a rule r is added, each sub-class c is replaced by c∩ r and a partition of c\ r.
Veriflow benefits from the hypothesis that headers can be decomposed into d fixed fields and that
each rule set can be represented by a multi-range r = [a1, b1] × · · · × [ad, bd]. The intersection of
two multi-ranges is obviously a multi-range. However, set difference is obtained by intersection
with the complement which is represented as the union of up to 2d − 1 multi-ranges. We prove
in Appendix B.1 that successive difference with rules of the form [O,∞]i−1 × [aj , aj ] × [b, b]d−i

with 0 < a1, . . . , ap < b can generate Ω(
(

n
d

)d m
d ) multi-ranges in the computations of Veriflow as

indicated in Table 1.

5.2 HSA / NetPlumber

HSA/NetPlumber [15, 13] use clever heuristics to efficiently compute the set of headers HP than
can traverse a given path P . An important one consists in lazy subtraction: set difference compu-
tations are postponed until the end of the path. For that purpose, this set HP is represented as a
union of terms of the form s = c0 \ ∪i=1..pci where the elementary sets c0, . . . , cp are represented
with wildcards. The emptiness of such terms is regularly tested. A simple heuristic is used during
the construction of the path: s is obviously empty if c0 is included in ci for some i ≥ 1. But if the
path loops, HSA has to develop the corresponding terms into a union of wildcards to determine if
one of them may produce a forwarding loop.

We now provide an example where this emptiness test can take exponential time. Consider a
node whose forwarding table consists in ℓ+ 1 rules with following rule sets:

r0 = 1ℓ, ri = 1ℓ−i0 ∗i−1 for i = 1..ℓ, and rℓ+1 = ∗ℓ.

All rules are associated with the drop action except the last rule (with rule set rℓ+1) whose action
is to forward to the node itself. Such a forwarding table is depicted in Figure 1 for ℓ = 4.
Starting a loop detection from that node, HSA detects a loop for headers in rℓ+1 \ ∪i=0..ℓri. The
emptiness of this term is thus tested. For that purpose, HSA represents the complement of ri with
0 ∗ℓ−1 ∪ ∗ 0 ∗ℓ−2 ∪ · · · ∪ ∗ℓ−i−10 ∗i ∪ ∗ℓ−i 1∗i−1. Note that each of the ℓ− i wildcard expressions in
that union have only one non-∗ letter. Distributivity is then used to compute rℓ+1 \ ∪i=0..ℓri as
r0 ∩ · · · ∩ rℓ. After expanding the first j − 1 intersections, HSA thus obtains a union of wildcards
with j letters in {0, 1} and ℓ− j letters equal to ∗ that has to be intersected with rj+1 ∩ · · · ∩ rℓ.
In particular, this unions contains all strings with j letters equal to 0 and ℓ − j equal to ∗. All
ℓ-letter strings with alphabet {∗, 0} are produced during the computation which thus requires
Ω(ℓ2ℓ) time. For testing a network with nG similar nodes, HSA thus requires time Ω(ℓnG2

ℓ). As
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all sets r0, . . . , rℓ are pairwise disjoint, the overlapping degree of the collection is k = 2 and this
justifies the two lower-bounds indicated for NetPlumber in Table 1.

6 Future work

Our approach could be naturally integrated in the Veriflow [17] framework both for speed-up and
performance-guarantee considerations. Our ideas can also be integrated in the NetPlumber [13]
framework (see the similar approach proposed in Appendix E). This would allow to enhance the
emptiness tests performed within NetPlumber to guarantee polynomial time execution when the
number of header classes is polynomially bounded. In the context of multi-ranges, the emptiness
test of expressions is equivalent to the Klee measure problem which consists in computing the
volume of a union of boxes. Indeed, expression rp \ ∪i=1..p−1ri is empty when the volume of the
union of the boxes r1 ∩ rp, . . . , rp−1 ∩ rp equals that of rp. According to recent work [6], the
complexity of this problem is believed to be Θ(nd/2). It would be interesting to determine if such
low complexity bounds extend to atom computation in the case of multi-ranges rules.
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Appendix A : Proof details of Theorem 1 and Corollary 1

We present here a refined version of Theorem 1 with more hypothesis about the data-structure
used to store a collection of sets. We first review these hypothesis and then the proof details of
both versions.

A.1 Collection of sets representation

When manipulating a collection of p sets in D, we assume that their representations are stored
in a collection data-structure allowing to dynamically add, remove or test membership of a set.
Such operation are called p-collection operations. We can use a balanced binary search tree when
comparisons according to a total order can be performed. Such comparison can usually be obtained
by comparing directly the binary representations themselves of the set in linear time (and thus
O(TH) for sets with TH -bounded representation). It is considered as an elementary set operation.
In the case of wildcard expressions, the complexity of these operations can be reduced to O(ℓ)
time by using a trie or a Patricia tree. Our algorithms will also make use of an operation similar
to stabbing query that we call p-intersection query. It consists in producing the list Ls of sets in a
collection R of p sets that intersect a given query set s (Ls = {r ∈ R | s ∩ r 6= ∅}). We additionally
require that the list Ls is topologically sorted according to inclusion. We say that p-intersection
queries can be answered with overhead (Tinter(p), Tupdt(p)) when dynamically adding or removing
a set from the collection takes time Tupdt(p) at most and the p-intersection query for any set s ∈ D
takes time Tinter(p) + |Ls|TH at most. In the case of d-dimensional multi-ranges, a segment tree
allows to answer p-intersection queries with overhead (O(logd p), O(logd p)) [2, 8]. In the case of
wildcard expressions, a trie or a Patricia tree allows to answer p-intersection queries with overhead
(O(ℓp), O(ℓ)) (the whole tree has to be traversed in the worse case, but no sorting is necessary as
the result is naturally obtained according to lexicographic order).

A.2 Incremental computation of atoms (Theorem 1)

The following is a refinement of Theorem 1 with respect to data-structures that provide time
bounds on p-collection operations and p-intersection queries. For the sake of simplicity of asymp-
totic expressions, we make the very loose assumption that ℓ = o(m) and n ≤ m. (We are mainly
interested in the case where m is large. Note also that examples with m < n would be very
peculiar.)

Theorem 2. Given a space set H and a collection R of n subsets of H , the collection UC(R) of
combinations that canonically represent the atoms generated by R can be incrementally computed
withO(min(n+kK logm, km logm,nm)m) elementary set operations wherem denotes the number
of atoms generated by R, k denotes the overlapping degree ofR, k denotes the average overlapping
degree of R and K denotes the average overlapping degree of C(R).

More precisely, if the data-structures used for representing sets and collections of sets enable
elementary set operations within time Tset, p-collection operations within time Tcoll(p) and p-
intersection queries with overhead (Tinter(p), Tupdt(m)), then the representation of the atoms gen-
erated by R can be computed in O(nTinter(m) + kmTupdt(m) +min(kK, km)m(Tset + Tcoll(m)))
time.

The following lemma formally states that uncovered combinations of R∪ {r} can be obtained
from UC(R) and justifies the overall approach of Algorithm 2.

Lemma 1. Given a new rule r ⊆ H , the collection UC(R′) of uncovered combinations of R′ =
R∪{r} can be obtained by intersecting uncovered combinations in UC(R) with r. More precisely,
we have UC(R′) ⊆ UC(R) ∪ {c ∩ r|c ∈ UC(R)}.

Proof. Consider an uncovered combination c′ ∈ UC(R′). Let c be the intersection of the containers
of c′ in R: c = ∩r∈R(c′)r. We have either c′ = c if R′(c′) = R(c′) or c′ = c∩r if R′(c′) = R(c′)∪r.
To conclude, it is thus sufficient to show that c is uncovered in R. This follows from c′ ⊆ c and
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R′(c′) ⊆ R(c) ∪ {r}: the non-containers of c in R are also non-containers of c′ in R′ and if c was
covered, so would be c′.

The following Lemma, which expresses any combination as a disjoint union of atoms justify
the computation of atom cardinalities in Algorithm 2 by scanning c.sup lists for c ∈ UC.

Lemma 2. Given a combination collection C′ ⊆ C(R) containing UC(R), we have d = ∪c∈C′|c⊆da(c)
for all d ∈ C′. This union is disjoint and we have |a(d)| = |d| −

∑

c∈C′|c(d |a(c)|.

Proof. Reminding that any combination d includes a(d) = d∩
(

∩r∈R\R(d)r
)

, we have ∪c∈C′|c⊆da(c) ⊂
d. Conversely, consider h ∈ d. The sets of R containing h are R({h}), and we have h ∈ a(c) for
c = ∩r∈R({h})r. As R(d) ⊆ R({h}) (the sets that contain d also contain h) and d = ∩r∈R(d)r, we
have c ⊆ d. Hence d ⊂ ∪c∈C′|c⊆da(c). This union is disjoint as each a(c) is either an atom or is
empty.

We can now state the following proposition about the guarantees of Algorithm 2.

Proposition 2. Algorithm 2 allow to dynamically update the collection UC of uncovered com-
binations of a collection R using O(m +

∑

a∈Ar

∣

∣UC′(a)
∣

∣ logm) elementary set operations when
a rule r is added to R, where m denotes the number of atoms of R, Ar = {a ∈ A(R′) | a ⊆ r}
denotes the atoms of R′ included in r, and UC′(a) denotes the uncovered combinations of R′ that
contain a.

More precisely, if the data-structures used for representing sets and collections of sets enable
elementary set operations within time Tset, p-collection operations within time Tcoll(p) and p-
intersection queries with overhead (Tinter(p), Tupdt(m)), then the update of UC can be performed
in O(Tinter(m) + |Ar|Tupdt(m) + (Tset + Tcoll(m))

∑

a∈Ar

∣

∣UC′(a)
∣

∣) time.

Proof. As discussed before the correctness of Algorithm 2 for obtaining uncovered combinations
after adding set r to a collection R from UC = UC(R) and {c ∩ r | c ∈ UC} results from Lemma 1.
For a new combination c, the c.sup list is obtained from c.parent.sup and c.sup is updated similarly
for c ∈ UC such that c ⊆ r. The correctness of this approach has already been discussed in
Subsection 4. We develop here the key argument for ignoring a combination c′ = c ∩ r when
it is produced by several minimal elements c1, . . . , ci ∈ UC such that cj ∩ r = c′ for j in 1..i.
If this happens, we know that ∩j∈1..icj is not in UC, meaning that it is covered in R and so is
c′ ⊆ ∩j∈1..icj in R∪ {r}. We can thus safely eliminate c′ in the first phase of the algorithm. For
the remaining new combinations c′, the parent c of c′ is the unique combination c ∈ UC such that
c ∩ r = c′ and which is minimal for inclusion.

The correctness of the atom cardinality computation follows by induction on the number
combinations in Incl processed so far in the corresponding for loop. Consider a newly created
combination c. The initial value of c.atsize is |c|. Assuming that the correct value b.atsize has
been obtained for b processed before c and c ∈ b.sup, |a(b)| has been subtracted from c.atsize and
Lemma 2 implies that c.atsize = |a(c)| when we consider c in the for loop. For c already in UC
before adding r and for b ⊆ c processed before c, b.atsize has been subtracted from c.atsize only
for newly created b. For b ∈ UC, |a(b)| may have decreased but this difference is compensated by
∑

b′∈New|b′(b |a(b
′)|. This is the reason why Algoritihm 2 updates only c.parent.atsize besides

d ∈ c.sup such that d ∈ New. The correctness of the atom cardinality computation implies that
all covered combinations are removed and the correctness of Algorithm 2 follows.

We now analyze the complexity of Algorithm 2. The bound in terms of elementary set op-
erations is obtained when balanced binary search tree (BST for short) are used to store the
various collections of sets (i.e. UC, Incl, New and c.sup for c ∈ UC). When adding a set r, find-
ing the combinations in UC that intersect r is a m-intersection query and can be performed in
O(Tinter(m) + |Inter|Tset) time or O(m logm) set operations using BST (sorting is only necessary
in that case). The collection Incl is then constructed in O(|Inter| logm) operations with BST
or O(|Inter|(Tset + Tcoll(m))) with appropriate data-structures. Removing combinations c such
that c.covered = true is just a matter of scanning Incl again and can be done within the same
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complexity. Let I denote the combinations included in Incl at that point (just before cardinality
computations). The computation of c.sup for c ∈ I is done only when c.atsize > 0, i.e. only if c
represents one of the atoms in Ar. we thus have |I| ≤ |Ar|. This requires at most O(|c.parent.sup|)
operations. Note that for each uncovered combination d ∈ c.parent.sup yields at least one uncov-
ered combination in c.sup (d itself or d ∩ r or both). We thus have |c.parent.sup| ≤

∣

∣UC′(a(c))
∣

∣.

The overall computation of sup lists can thus be performed within O(
∑

a∈Ar

∣

∣UC′(a)
∣

∣ logm) set op-

erations with BST and O((Tset+Tcoll(m))
∑

a∈Ar

∣

∣UC′(a)
∣

∣) time with appropriate data-structures.
The computation of class cardinalities and the removal of covered combinations from the sup lists
have same complexity. Removal of covered combinations from UC and Incl takes O(|Ar|) collec-
tion operations and fits within the same complexity bound. Additional cost of |Ar|Tupdt(m) is
necessary when maintaining data-structures enabling efficient m-intersection queries. The whole
algorithm can thus be performed in O(Tinter(m)+ |Ar|Tupdt(m)+ |Inter|(Tset+Tcoll(m))+(Tset+
Tcoll(m))

∑

a∈Ar

∣

∣UC′(a)
∣

∣) time or using O(m + |Inter| logm+
∑

a∈Ar

∣

∣UC′(a)
∣

∣ logm) elementary
set operations with BST.

To achieve the proof of complexity of Algorithm 2, we show |Inter| ≤
∑

a∈Ar

∣

∣UC′(a)
∣

∣. Consider
a combination c ∈ UC that intersects r. Then c can be associated to an atom c.atm of Ar included
in c∩r (such atoms exist according to Lemma 2). For any atom a ∈ Ar, let a.par denote the atom
in A(R) that contains a (we have a = a.par or a = a.par ∩ r). Now for c ∈ Inter, consider the
atom a = c.atm ∈ Ar. As a.par ∈ A(R) is an atom and c ∈ C(R) is a combination intersecting
a.par, we have a.par ⊆ c and c ∈ UC(a.par) is one of the combinations in UC(R) that contains
a.par. For each such combination c, a(c) intersects r or r (or both), and c or c ∩ r is uncovered
in R′ = R ∪ {r}. Both contain a and we have |UC(a.par)| ≤

∣

∣UC′(a)
∣

∣. We can thus write

|Inter| =
∑

a∈Ar
|{c ∈ Inter | c.atm = a}| ≤

∑

a∈Ar
|UC(a.par)| ≤

∑

a∈Ar

∣

∣UC′(a)
∣

∣.

It should be noted that in the case of (d, ℓ)-multi-ranges, we can distinguish in the analysis, the
computation of |c| for new c that costsO(ℓ log ℓ) from other cardinality manipulations (subtractions
and comparisons) that take O(ℓ). This allows to obtain the bound claimed in Theorem 1.

Theorem 2 results from iteratively applying Algorithm 2 (or Algorithm 1) for each set of
R = {r1, . . . , rn}.

Proof of Theorem 2. From Proposition 2, the overall complexity of atom computation is
O(

∑

i=1..n

(

mi +
∑

a∈Ai
|UCi(a)|

)

logm) set operations where mi denotes the number of atoms
in A({r1, . . . , ri−1}) and Ai denotes the atoms of A({r1, . . . , ri}) included in ri and UCi =
UC({r1, . . . , ri}). We first consider the case where K is unbounded (it is possible to construct
examples with m = n and K = Ω(2n)). As we add a set to R, the number of atoms can
only increase (each atom remains unchanged or is eventually split into two). We thus have
mi ≤ m and |Ai| ≤ |{a ∈ A(R) | a ⊆ ri}|. Using |UCi(a)| ≤ mi+1 ≤ m, the overall complexity
is O(nm +m logm

∑

i

∑

a∈A(r) |{r ∈ R | a ⊆ r}|) = O(nm + km2 logm) by definition of average

overlap. The O(nm2) bound is obtained by using Algortihm 1 instead of Algorithm 2.
We now derive a bound depending on the average overlapping degree K of combinations. Con-

sider an atom a ∈ Ai and an uncovered combination c ∈ UCi(a). We can associate a to an atom
a.desc ⊆ a in A(R). As c is also a combination in C(R), we have c ∈ C(a.desc) where C(s)
denotes the combinations of R containing s. As the atoms in Ai are disjoint, the atoms a.desc
for a ∈ AR are pairwise distinct. We thus have

∑

a∈Ai
|UCi(a)| ≤

∑

a∈A(R)|a⊆ri
|C(a)|. The over-

all complexity of atom computation is O(nm + logm
∑

a∈A(R)

∑

c∈C(a) |{i | a ⊆ ri}|) = O(nm +

k logm
∑

a∈A(R) |C(a)|) = O(nm + kKm logm) by definition of overlapping degree and average

overlapping degree respectively. The refined bound in terms of Tset, Tcoll(m), Tinter(m), Tupdt(m)
is obtained similarly.

A.3 Application to forwarding loop detection (Corollary 1)

Corollary 1 directly follows from the following claim and Theorem 1.
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Claim 1. Given the collection R of rule sets of a network N , and for each atom a ∈ A(R) the
list R(a) of sets in R that contain a, forwarding loop detection can be solved in O(knGm) time
where m = |A(R)| is the number of header classes, k is the average overlapping degree of R and
nG is the number of nodes in N .

Proof. For that, we assume that each rule set r ∈ R is associated with the list Lr of forwarding
rules (r, a) that have rule set r. Each such rule is also supposed to be associated to the node u
whose table contains it and the index i of the rule in T (u). Each list Ls is additionally supposed to
be sorted according to associated nodes. Such lists can easily be obtained by sorting the collection
of all forwarding tables according to the predicate filters of rules.

The claim comes from the fact that uncovered combination in UC(R) represent atoms of A(R).
It follows from testing for each header class a ∈ A(R) whether the graph Ga = Gh for all h ∈ a
has a directed cycle. Ga is computed by merging the lists Ls for s ∈ R(a) in time O(|R(a)|nG).
This graph has at most nG edges and cycle detection can be performed in O(nG) time. The overall
complexity follows from km =

∑

a∈A(R) |R(a)| by definition of k.

Appendix B : Difficult inputs for previous works

B.1 Veriflow

Verfilow [17] represents the complementary of a multi-range r = [a1, b1]×· · ·× [ad, bd] as the union
of 2d− 1 multi-ranges (at most):

• [0, a1 − 1]×H2..d and [b1 + 1,∞1]×H2..d,

• [a1, b1]× [0, a2 − 1]×H3..d and [a1, b1]× [b2 + 1,∞2]×H3..d,

• · · · ,

• [a1, b1]× · · · × [ad−1, bd−1]× [0, ad − 1] and [a1, b1]× · · · × [ad−1, bd−1]× [bd + 1,∞d],

where ∞i denotes the maximum possible value in field i, and Hi..j = [0,∞i]×· · ·× [0,∞j] denotes
the multi-range of all possible values for fields i, . . . , j for 1 ≤ i ≤ j ≤ d.

The difficult input for Veriflow consists in a network with n = dp + 1 rules associated to the
following multi-ranges:

• r0 = H1..d,

• rji = H1..i−1 × [aj , aj]× [b, b]d−i for i, j ∈ [1..d]× [1..p].

Consider the sub-classes generated while computing r0 ∩
(

∩i,j∈[1..d]×[1..p]r
j
i

)

. The union of

multi-ranges representing rji contains in particular H1..i−1× [0, aj−1]×Hi+1..d and H1..i−1× [aj+
1,∞i] × Hi+1..d. This implies that Veriflow generates on such an input all pd sub-classes of the
form I1×· · ·× Id with Ii = [aj +1, aj+1− 1] for some j ∈ [0, d] (we set a0 = −1). Forwarding loop

detection of an nG-node network thus requires Ω(pdnG) = Ω(
(

n
d

)d
nG

m
d ) time for Veriflow. As

this example has overlappingd degree 2, this justifies the two lower-bounds indicated for Veriflow
in Table 1 for d-multi-ranges.

It is possible to adapt Veriflow to support general wildcard matching by considering each field
bit as a field. The wildcard expressions r0 = ∗ℓ, r1 = 01ℓ−1, . . . , rℓ = 0ℓ−11 will then similarly
generate all 2ℓ/2 sub-classes obtained by concatenation of words 10 and 11. This justifies the two
lower-bounds indicated for Veriflow in Table 1 for ℓ-wildcards.
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Appendix B.2 : HSA/NetPlumber approach

The NetPlumber approach could be generalized to more general types of rules. However, we
show that the simple heuristic for emptiness tests described in Section 5.2 is not sufficient. We
provide an example where the HSA/NetPlumber approach generates an exponential number of
paths while the number of classes is linear if it relies solely on this heuristic. Consider header
space H = {1..n} and the following n + 1 rule sets: r1 = {1}, . . . , rn = {n} and rn+1 = H .
Consider a network N with nG = n(n+1) nodes. Each node ui,j for 0 ≤ i ≤ n and 1 ≤ j ≤ n has
table T (ui,j) = (ri+1, FwdDi+1,1), . . . , (rn, FwdDi+1,n), (rn+1, FwdDi+1,n) where action FwdDi,j

indicates to forward packets to node ui,j for i ≤ n and to drop packets for i = n + 1. Starting
from u0,1, the HSA approach generates a path for each combination ri1 ∩ · · · ∩ rip for p ≤ n
and 1 ≤ i1 < · · · < ip ≤ n. This path goes through u0,1, u1,i1 , . . . , up,ip and then through
up+1,n, . . . , un,n. It is constructed at least for term ri1 ∩ · · · ∩ rip \ ∪j /∈{i1,...,ip}rj . The heuristical
emptiness test of NetPlumber does not detect that it is empty since ri1 ∩ · · · ∩ rip contains j
for j /∈ {i1, . . . , ip} and it is not included in rj . The number of paths generated is thus at least
∑

1≤p≤n

(

n
p

)

= 2n − 1. However, the header classes are all singletons of H and their number is
m = n. Note the high overlapping degree k = n of this collection of rule sets.

Appendix C : Linear fragmentation versus overlapping degree

Interestingly, a complexity analysis of HSA loop detection is given in the technical report [14]
under an assumption called “linear fragmentation”. This assumption, which is based on empirical
observations, basically states that there exists a constant c such that a given routing path P will
branch at most c times. More precisely it states that a term s = c0 \ ∪i=1..pci in the expression
representing HP , the set of headers that can follow P , intersects at most c of the rule sets in the
table of the end node of P . A simple induction allows to bound the number of terms generated by
all paths of p hops from a given source by cpn. Under linear-fragmentation, the time complexity
of HSA loop detection (excluding emptiness tests) is thus proved to be O(cDGDGn

2mG) in [14]
where DG is the diameter of network graph G, n the number of rules, and mG the number of
ports in G (in our simplified model each node has a single input port and mG = nG the number
of nodes in G). It is then argued that in practice the constant c gets smaller as the length p of
the path considered increases and that practical loop detection has complexity O(DGn

2mG) as
claimed in [15]. However, it is not rigorous to neglect the (exponential) cDG factor under the sole
linear-fragmentation hypothesis.

Additionally, we think that low overlapping degree provides a simple explanation for the phe-
nomenon observed by Kazemian et al.: as the path length increases, the terms representing the
header that can traverse the path result from the intersection of more rules and become less likely
to intersect other rules when overlapping degree is limited. Moreover, bounded overlapping degree
k implies that the number of terms generated by HSA within p hops is bounded by O(nmin(p,k)).
The total number of terms generated is thus bounded by O(nGn

k). This guarantees that all HSA
computations besides emptiness tests remain polynomial for constant k. In contrast, with the
example provided in Appendix B.2 (which has unbounded overlapping degree), the HSA approach
can generate exponentially many paths compared to the number of header classes in the context
of general rules.

Appendix D : Related notion of weak completeness

In the context of resolution of conflicts between rules, Boutier and Chroboczek [5] introduce the
concept of weak completeness : a collection R is weakly complete iff for any sets r, r′ ∈ R, we
have r ∩ r′ = ∪r′′⊆r∩r′r

′′. They show that this is a minimal necessary and sufficient condition
for all rule conflicts to be solved when priority of rules extends inclusion (i.e. r has priority over
r′ when r ( r′). Interestingly, we can make the following connection with this work: given a
combination collection C′ ⊆ C(R) containing UC(R), we have a(c) = c \ ∪c′∈C′|c′(cc

′ for all c ∈ C′.
(See Lemma 2 in Appendix A.2.) This allows to show that UC(R) is weakly complete. It is indeed
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the smallest collection of combinations of R that contains R∪ {H} and that is weakly complete.
Our work thus also provides an algorithm for computing such an optimal “weak completion”.

Appendix E : Topological header classes

Inspired by the HSA/NetPlumber [15, 13] approach, we can refine the definition of header classes.
We fix a source node s. A forwarding path P originating from s is a sequence (u0, i0), . . . , (up, ip)
where u0, . . . , up are the nodes encountered along the path and i0, . . . , ip are the indexes of the
forwarding rules followed: rule i0 is applied at node u0 = s, then rule i1 at node u1 and so on.
We then define two headers as topologically equivalent from s if they follow the same forwarding
paths. Note that each topological class for that relation corresponds to a unique path (if some
headers match two distinct rules at a node, the first one is followed).

We now show that the topological classes (from s) are indeed certain atoms of partial collections
of rule sets. Given a forwarding path P = (u0, i0), . . . , (up, ip). Let Rj = {rj1, . . . , r

j
nj
} denote the

collection of rule sets of node uj where r
j
1, . . . , r

j
nj

corresponds to the order of the nj rules in T (uj).

Let also Rj
i = {rj1, . . . , r

j
i } denote the partial collection of the i first rule sets. The set of headers

that can follow rule i in node uj is sji = rj1 ∩ · · · ∩ rji−1 ∩ rji . If P corresponds to a topological
class cl(P ), we have cl(P ) = s0i0 ∩ · · · ∩ spip . As the only positive terms of this intersection are

ri0 , . . . , rip , cl(P ) is indeed the atom a(cP ) associated to the combination cP = ri0 , . . . , rip in
A(R0

i0
∪ · · · ∪ Rp

ip
). Note that we consider a different partial collection R0

i0
∪ · · · ∪ Rp

ip
for each

path. Our framework can thus be applied to test whether the combination cP associated to any
path P does correspond to a topological class by testing the emptiness of a(cP ). We detect a
forwarding loop (starting from s) as soon as a path P reaches a former node of P .

Our incremental algorithm is well suited for incrementally augmenting the collection of rules as
we progress along the path. Using a persistent style implementation for the data structure storing
collections (as classically done when implementing binary search trees in functional languages), we
can step back at a branching node v and follow a different branch without having to recompute the
collection of atoms generated by the path up to v. The collection is also incrementally augmenting
as we progress in routing table of a branching node v and explore different paths. This allows to
efficiently perform a search of the graph in a depth first search manner.

It is important to note that two different explored paths P and Q are associated to different
combinations cP 6= cQ. To see this, suppose that P and Q branch at node u: P follows rule ri of
T (u) while Q follows rj with i < j. After (u, i), path Q cannot follow any rule associated with set
ri due to emptiness tests. This ensures that the number of paths generated is bounded. Similarly
to the proof of Proposition 2 and Theorem 2, each combination cP generated by a path P can
be associated to an atom of A(R) where R denotes the collection of all rule sets in the network.
The number of topological classes is thus always bounded by m = |A(R)|. However, for a given
collection R of rule sets generating m atoms, one can easily produce a network topology with m
topological classes.

When performing the search from source s, the number of paths (and prefixes of paths) gener-
ated is at most

∑

a∈A(R) |UC(a)| = Km ≤ nm where UC = UC(A) are the uncovered combinations
generated by R. As each path prefix accounts for one call of Algorithm 1, this search thus costs
O(nm3) elementary set operations. Repeating this for all possible source nodes, we get an overall
complexity of O(nGnm

3) operations for forwarding loop detection. (This complexity analysis can
be refined in terms of overlapping degree and optimized by using potentially Algorithm 2 instead
of Algorithm 1.)

Note that the number of paths explored could grow exponentially without appropriate empti-
ness tests as exemplified in Appendix B.2. Although this approach remains polynomial in terms
of n and m, its complexity guaranties are less interesting than what we propose in Section 4.
However, it allows to extend our framework with write actions as detailed in the next appendix.
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Appendix F : Write actions

First note that allowing any write operations and variable header length (by allowing to push sub-
headers) make the forwarding loop detection problem undecidable as we can then easily simulate a
pushdown automaton with several stacks. However, in the context of MPLS, it is natural to allow
to push and pop MPLS headers (and only that type). In the classical functioning of MPLS, each
push or swap action always writes a fixed label value, rules taking into account the MPLS header
always have higher priority and base their decisions on the outermost label only (and no other
field). In that case, paths with MPLS forwarding can be factored out by adding shortcut edges
(from the first push action to last pop action) in a preliminary step which should also include loop
detection for each label value pushed somewhere in the network. This can clearly be performed in
polynomial time. We reserve the study of more general write action with push and pop actions for
future work. However, we now sketch how to handle write actions in the context of fixed length
headers.

We suppose that a forwarding rule applied to a packet can perform a write action before
forwarding the packet. We typically think of write actions that write some fixed values at fixed
positions. We then see a write action as a projection of the header space in a smaller sub-space.
More generally, we assume that each write action w is associated with a function pw : H → H
with the following properties (we set pw(s) = {pw(h) | h ∈ s} for s ⊆ H) :

• intersection preservation: for s ∩ s′ 6= ∅, we have pw(s ∩ s′) = pw(s) ∩ pw(s
′);

• two consecutive write operations w and w′ are equivalent to a single write operation w′′ with
pw′′ = pw′ ◦ pw, w′′ is then called a write pattern assumed to be efficiently computable.

We do not need to formally assume that pw is a projection (i.e. pw ◦ pw = pw) although this is
typically the case.

We additionally make the following assumption with respect the data-structure D used for
sets:

• pw(s) is in D and can be computed in O(Tℓ) time.

All the above requirements are clearly met for any write action (of fixed bits at fixed positions) in
the context of wildcard expressions. In the context of prefix matching we can only allow to write
a prefix of bits to ensure that a set represented by a prefix is always mapped to a set that can
be represented by a prefix. We can generalize this to the context of interval matching when low
order bits are ordered first (little-endian order). We still represent a set s with an interval [a, b]
but we additionally consider a write pattern w and the number i of bits of w written so far. The
write pattern w is simply an integer with same bit representation as a and b. To test whether a
header h is in s, we first check that its i lowest bits are identical to those of w, then shift a, b, and
h by i bits to erase low order bits, obtaining a′, b′, h′ respectively and test whether a′ ≤ h′ ≤ b′.
Other set operations are handled similarly. Note that the computation of pw′([a, b]) just requires
to update the write pattern which can be globally shared for a collection of sets. A similar trick
can be used with wildcard expressions. In the context of multi-ranges, our model thus enables
prefix writes on one or several fields. (This includes in particular writing of exact values in one or
several fields.)

Forwarding loop detection can then be performed using the approach detailed in Appendix E
by additionally decorating each node of an explored path with a write pattern w equivalent to the
sequence of write actions performed so far along the path. A forwarding loop is detected when
a former node u associated to write pattern w is reached again with same write pattern w′ = w
while growing a path P containing u. If the number the of write patterns that can be generated
by combining various write actions is bounded by p, then the length of each path is at most nGp.

Our algorithms for incremental atom computation can easily be extended in that context:
when a write action w is performed when growing a path P , we update the collection of uncovered
combinations representing the atoms of the current collection RP of rule sets encountered along
P as follows. Each combination c is replaced by pw(c) (which typically amounts to a single
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update a the global write pattern in the contexts of wildcard expressions and multi-ranges). We
then recompute the inclusion relations between them and atom sizes in O(m2) elementary set
operations as in Algorithm 1. Combinations that are detected as covered are removed (or just
saved apart for efficient backtracking). We finally obtain a valid representation of {pw(r) | r ∈ RP }
since pw preserves intersection.

Note that write operations can only reduce the number of atoms. Forwarding loop detection
can thus be performed within a factor nGp compared to the search procedure of Appendix E, that
is in O(n2

Gnm
3p) elementary set operations. This is again polynomial in terms of number of rules

n, number of atoms m generated by the collection of rule sets, and the number p of write patterns
that can be generated by write operations.
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