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A Stochastic Game Framework for Analyzing Computational
Investment Strategies in Distributed Computing

Swapnil Dhamal, Walid Ben-Ameur, Tijani Chahed, Eitan Altman, Albert Sunny, and Sudheer Poojary

Abstract —We study a stochastic game framework with dynamic set of players, for modeling and analyzing their computational
investment strategies in distributed computing. Players obtain a certain reward for solving the problem or for providing their
computational resources, while incur a certain cost based on the invested time and computational power. We rst study a scenario
where the reward is offered for solving the problem, such as in blockchain mining. We show that, in Markov perfect equilibrium, players
with cost parameters exceeding a certain threshold, do not invest; while those with cost parameters less than this threshold, invest
maximal power. Here, players need not know the system state. We then consider a scenario where the reward is offered for
contributing to the computational power of a common central entity, such as in volunteer computing. Here, in Markov perfect
equilibrium, only players with cost parameters in a relatively low range in a given state, invest. For the case where players are
homogeneous, they invest proportionally to the “reward to cost' ratio. For both the scenarios, we study the effects of players' arrival and
departure rates on their utilities using simulations and provide additional insights.

F

1 INTRODUCTION

D ISTRIBUTED computing systems comprise computers whictmputs from a very large search space. A miner is rewarded for
coordinate to solve large problems. In a classical senseméning a block, if it nds one of the rare inputs that generates a
distributed computing system could be viewed as several providéesh value satisfying certain constraints, before the other miners.
of computational power contributing to the power of a commo@iven the cryptographic hash function, the best known method for
central entity (e.g. in volunteer computing [1], [2]). The centrahding such an input is randomized search. Since the proof-of-
entity could, in turn, use the combined power for either ful llingwork procedure is computationally intensive, successful mining
its own computational needs or distribute it to the next level @équires a miner to invest signi cant computational power, result-
requesters of power (e.g. by a computing service provider ittg in the miner incurring some cost. Once a block is mined, it is
its customers in a utility computing model). The center woulttansmitted to all the miners. A miner's objective is to maximize
decide the time for which the system is to be run, and henite utility based on the offered reward for mining a block before
the compensation or reward to be given out per unit time tahers, by strategizing on the amount of power to invest. There is
the providers. This compensation or reward would be distributadhatural tradeoff: a higher investment increases a miner's chance
among the providers based on their respective contributions.of solving the problem before others, while a lower investment
provider incurs a certain cost per unit time for investing a certaneduces its incurred cost.
amount of power. So, in the most natural setting where the reward In this paper, we study the stochastic game where players
per unit time is distributed to the providers in proportion to theifminers or providers of computational power) can arrive and depart
contributed power, a higher power investment by a provider diring the mining of a block or during a run of volunteer comput-
likely to fetch it a higher reward while also increasing its incurrethg. We consider two of the most common scenarios in distributed
cost, thus resulting in a tradeoff. computing, namely, (1) in which the reward is offered for solving

Distributed computing has gained more popularity than evére problem (such as in blockchain mining) and (2) in which the
owing to the advent of blockchain. Blockchain has found applicaeward is offered for contributing to the computational power of a
tion in various elds [3], such as cryptocurrencies, smart contractspmmon central entity (such as in volunteer computing).
security services, public services, Internet of Things, etc. I_Ile Preliminari

. reliminaries

functioning relies on a proof-of-work procedure, where miners

(providers of computational power) collect block data consistingtochastic Game[4] It is a dynamic game with probabilistic tran-

of a number of transactions, and repeatedly compute hashesStigns across different system states. Players' payoffs and state
transitions depend on the current state and players' strategies. The
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It is worth noting that, while game theoretic solution concepiomputing considering the set of players to be dynamic. We
such as MPE, Nash equilibrium, etc. may seem impractical owiegnsider the most general case of heterogeneous players; the cases
to the common knowledge assumption, they provide a strategfhomogeneous as well as multi-type players (which also have not
pro le which can be suggested to players (e.g. by a mediatdseen studied in the literature) are special cases of this study.
from which no player would unilaterally deviate. Alternatively,
if players play the game repeatedly while observing each othefs QUR MODEL

actions, they would likely settle at such a strategy pro le. Consider a distributed computing system wherein agents provide

1.2 Related Work their computational power to the system, and receive a certain
. . . reward for successfully solving a problem or for providing their
Stochastic games have been studied from theoretical perspec- i y gap pro 9
tive [6], 71, [8], [9], [10] as well as in lication h computational resources. We rst model the scenario where the
P e AT S N applicalions SUch as,q a4 is offered for solving the problem, such as in blockchain

computer neworks [11], cognitive radio networks [12], Wirelesﬁ‘lining and explain it in detail. We then model the scenario where

network virtualization [13], queuing systems [14], multlagen[the reward is offered for contributing to the computational power

reinforcement learning [15], and complex living systems [16]. of a common central entity, such as in volunteer computing. We
We enlist some of the important works on stochastic games, i '

e . . ence point out the similarities and differences between the utility
Altman and Shimkin [17] consider a processor-sharing syste . . -
L hctions of the players in the two scenarios.
where an arriving customer observes the current load on the
shared system and chooses whether to join it or use a consta-  gcenario 1: Model

cost alternative. Nahir et al. [18] study a similar setup, with o )
the difference that customers consider using the system ovefVg Present our model for blockchain mining, one of the most in-

long time scale and for multiple jobs. Hassin and Haviv ugjlemand contemporary applications of the scenario where .reward
propose a version of subgame perfect Nash equilibrium for ganfe@ffered for solving the problem. We conclude this subsection by
where players are identical; each player selects strategy baSBgWwing that the utility function thus obtained, generalizes to other
on its private information regarding the system state. Wang afigtributed computing applications belonging to this scenario.
Zhang [20] investigate Nash equilibrium in a queuing system, Letr be the.reward offered to a miner for successfully sqlvmg
where reentering the system is a strategic decision. Hu and waproblem, thatis, for nding a solution before all the other miners.
man [21] use the framework of general-sum stochastic gamesPiayers. We consider that there are broadly two types of players
extend Q-learning to a noncooperative multiagent context. Thereiners) in the system, namely, (a) strategic players who can
exist works which develop algorithms for computing good, natrrive and depart while a problem is being solved (e.g., during
necessarily optimal, strategies in a state-learning setting [22], [28]e mining of a block) and can modulate the invested power based
Distributed systems have been studied from game theoretit the system state so as to maximize their expected reward and
perspective in the literature [24], [25]. Wei et al. [26] study &b) xed players who are constantly present in the system and
resource allocation game in a cloud-based network, with coimnvest a constant amount of power for large time durations (such
straints on quality of service. Chun et al. [27] analyze the sel s&s typical large mining rms). In blockchain mining, for instance,
caching game, where sel sh server nodes incur either cost fithe universal set of players during the mining of a block consists of
replicating resources or cost for access to a remote replica. Gragiuhose who are registered as miners at the time. In particular, we
and Chronopoulos [28] propose a game theoretic framework fdenote byl, the set of strategic players during the mining of the
obtaining a user-optimal load balancing scheme in heterogeneblack under consideration. We denote hythe constant amount
distributed systems. of power invested by the xed players throughout the mining of
Zheng and Xie [3] present a survey on blockchain. Sapirshtgime block under consideration. We consider 0O (which is true
et al. [29] study sel sh mining attacks, where a miner postponés actual mining owing to mining rms); so the mining does not
transmission of its mined blocks so as to prevent other miners fratall even if the set of strategic players is empty. Since the xed
starting the mining of the next block immediately. Lewenberg et glayers are constantly present in the system and invest a constant
[30] study pooled mining, where miners form coalitions and shasmount of power, we denote them as a single aggregate ftayer
the obtained rewards, so as to reduce the variance of the rewatt invests a constant power ofrrespective of the system state.
received by each player. Xiong et al. [31] consider that miners Since it may not be feasible for a player to manually modulate
can of oad the mining process to an edge computing serviges invested power as and when the system changes its state, we
provider. They study a Stackelberg game where the provider setssider that the power to be invested is modulated by a pre-
price for its services, and the miners determine the amount @fn gured automated software running on the player's machine.
services to request. Altman et al. [32] model the competition ovéhe player can strategically determine the policy, that is, how
several blockchains as a non-cooperative game, and hence shaveh to invest if the system is in a given state.
the existence of pure Nash equilibria using a congestion game We denote by cost paramet®r, the cost incurred by playér
approach. Kiayias et al. [33] consider a stochastic game, whéoe investing unit amount of power for unit time. We consider
each state corresponds to the mined blocks and the players et players are not constrained by the cost they could incur.
mined them; players strategize on which blocks to mine and whbrstead, they aim to maximize their expected utilities (the expected
to transmit them. reward they would obtain minus the expected cost they would
In general, there exist game theoretic studies for distributéttur henceforth), while forgetting the cost they have incurred thus
systems, as well as stochastic games for applications includiiag That is, players are Markovian. In our work, we assume that
blockchain mining (where a state, however, signi es the state tife cost parameters of all the players are common knowledge. This
the chain of blocks). To the best of our knowledge, this wor&ould be integrated in a blockchain mining or volunteer computing
is the rst to study a stochastic game framework for distributethterface where players can declare their cost parameters. This



SWAPNIL DHAMAL ET AL. A STOCHASTIC GAME FRAMEWORK FOR ANALYZING COMPUTATIONAL INVESTMENT STRATEGIES IN DISTRIBUTED COMPUTING 3

information is then made available to the interfaces of all other TABLE 1
players (that is, to the automated software running on the players' Notation
machines). In real world, it may not be practical to make the
players' cost parameters a common knowledge, and furthermare;
players may not reveal them truthfully. To account for sugh
limitations, a mean eld approach could be used by assuming__
homogeneous or multi-type players (which are special cases/ of |
our analysis). Furthermore, it is an interesting future direction o U | universal set of strategic players

design incentives for the players to reveal their true costs. " | constant amount of power invested by the xed players

Arrival and Departure of Players. For modeling the arrivals and k__|aggregate plgyer accounting for all the X?d players
departures of players, we consider a standard queueing setting i) set of strategic p!a'yers currently present in the system

A player j, who is not in the system, arrives after time which X~ |Strategy of player in stateS

is exponentially distributed with meat= ; (that is, the rate x(®) [strategy pro le of players in stat®

parameter is j); this is in line with the Poission arrival process X | policy prole

where the time for the rst arrival is exponentially distributed (5:x*))/ rate of problem getting solved in staeunder strategy pro lex(S)
with the rate parameter corresponding to the Poisson arrivaigsx)
Further, the departure time of a playjerwho is in the system, '
is exponentially distributed with rate parameter The stochastic
arrival of players is natural, like in most applications. FurtheRate of Problem Getting Solved.As explained earlier, the time
players would usually shut down their computers on a regulagquired to nd a solution in a large search space is independent
basis, or terminate the computationally demanding mining taskthe search space explored thus far. We consider this time to be
(by closing the automated software) so as to run other criticgponentially distributed to model its memoryless propettyif(
tasks. Note that since players are Markovian, they do not accodngontinuous random variable has the memoryless property over
for how much computation they have invested thus far for mininge set of reals, it is necessarily exponentially distributed). Let
the current block. Also, as we shall later see, the computatiolS:x*) pe the corresponding rate of problem getting solved in
itself is memoryless, that is, the time required to nd the solutiogtate S, when players' strategy pro le i(S). Since the time
does not depend on the time invested thus far. Owing to these §@uired is independent of the search space explored thus far, the
reasons, the players do not monitor block mining progress, apghbability that a player nds a solution before others at timis
hence depart stochastically. proportional to its invested power at time

State Space.Due to the arrivals and departures of strategic Note that the time required for the problem to get solved is
players, we could view this as a continuous time multi-statf® minimum of the times required by the players to solve the
process, where a state corresponds to the set of strategic plapépdlem. Now, the minimum of exponentially distributed random
present in the system. So, if the set of strategic players in thariables, is another exponentially distributed random variable
system isS (which excludes the xed players), we say that thavith rate which is the sum of the rates corresponding to the
system is in stat&. So, we havés U or equivalentlyS 2 2V. original random variables. Furthermore, the probability of an
In addition, we havgUj + 1 absorbing states corresponding t@riginal rando(rsr; variable being the minimum, is proportional to its
the problem being solved by the respective player (one of thate. Let Ff’s;x ) be the rate (corresponding to an exponentially
strategic players itJ or a xed player). The players involved at distributed random variable) of playgrsolving the problem in
any given time would in uence each others' utilities, thus resultingtateS, when the strategy pro le ig(S). So, we have (5x'*) =

in a game. The stochastic arrival and departure of players makes it kg pj(S:X(S))_ Since the probability that playérsolves the

. . 2]
a stochastic game. As we will see, there are also other StOChaEPéblem before the other players is proportional to its invested

events in addition to the arrivals and departures, and which depegghputational power at that time, we have that the rate of player
' S

on the players' strategies. i solving the problem is i(i§;x<5>) — x! 33) ‘ (5;X<s>)’ and

Players' Strategies.Let = 0 denote the time when the mining jzs Xyt Six(8))

of the current block begins. Laf >’ ) denote the strategy of playerthe rate of other players solving the problem i$50 ) =

i (amount of power it decides to invest) at timevhen the system ' , p(Six*)) _ M (six13))

is in stateS. Since players use a randomized search approach ovelrz(Snf 'Ol ko ] j2s X+

a search space which is exponentially large as compared to it Continuous Time Markov Chain. Owing to the players

solution space, the time required to nd the solution is independe?@ing Markovian, when the system transits from sttt state

of the search space explored thus far. That is, the search follo® €ach playerj 2 S\ SP could be viewed as effectively

memoryless property. Also, note that a player has no incentit@entering the system. So, the expected utility could be written

to change its strategy amidst a state owing to this memoryld8s2 recursive form, which we now derive. Table 1 presents the

property and if no other player changes its strategy. Hence in diitation. The possible events that can occur in a Sa2e2” are:

analysis, we consider that no Qlayer changes its strategy Withiri)athe problem gets solved by playemith rate éS;x(S’) thus
S ) = (S . o S . . .

state. So we have{> ) = Xi( ) for any ; © hence playei's terminating the game in the absorbing state whegets a

r reward parameter
Ci cost incurred by playerwhen it invests unit power for unit time
arrival rate corresponding to player

departure rate corresponding to player

expected utility ofi computed in stat& under policy pro lex

I
strategy could be written as a function of the state, thaxi(ig),. reward ofr;

For a stateS wherej 2 S, we havexj(s) = 0 by convention. 2) the problem gets solved g))’ one of the other player6Sm
Let x(S) denote the strategy pro le of the players in st&telLet fig) [f kg with rate @5 ), thus terminating the game in
x = (x(®))gy denote the policy pro le. an absorbing state where playegets no reward;
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3) anew playej 2 U nS arrives and the system transits to stat@.2 Scenario 2: Model
S[f jgwithrate j;

4) one of the player$ 2 S departs and the system transits tdVe now consider the scenario where the reward is offered for
stateS n fj g with rate ;. contributing to the computational power of a common central

In what follows, we unambiguously wrife2 U nS asj 2 S, for entity, such as in volunteer computing. Here, the reward offered

) i x(8) (Sx®)) _ (s:x(5)y . . per unit time is inversely proportional to the expected time for
prevny. S|.nce f_x(s)) T B ' tlhe Sojo(ljsrg)t'me which the center decides to run the system. Considering that the
n sta(tse)S 1S ' +P jzs it j2s ) - LetD™ =" 4ime for which the center plans to run the system is exponentially

(Sx) + j2s i T j2s i-So,the expected costincurreddistributed with rate parameter, the reward offered per unit time

cix® is inversely proportional ta-, and hence directly proportional to
D(six)~ . Hence, let the offered reward per unit timerbe wherer is the
Utility Function. The probability of an event occurring beforeyeyard constant of proportionality. Furthermore, the reward given
any other event is equivalent to the corresponding exponentially 5 player is proportional to its computational in\é?stment. So,

distributed random variable being the minimum, which in turn, il‘.%e revenue received by plavieper unit time isp—*" ;
proportional to its rate. So, playes expected utility as computed y playep s X e

. . (s)
in stateS is and hence its net pro t per unit time @%r cixi(s).

by playeri while the system is in stat8 is

2S %j
The sojourn time in stat&, silg;ilar to the p'revious scenario, is

P
(sx3)) X (six(9) _pzsnr g7+ 5 WhereDSX) =+ © o 1+ 0 (here, we
' MORE ’ S DA - j2s i j2s | ,
. i X i X . .
R(SX) = 1257 r+ i2s 7 0 have instead of (5%')). Sp, the net expected pro t made b
' D (six) D (5:x) p p y
X X (s) playeri in stateS before the system transits to another state, is
1 p(sI jg;x)+ i (snfjgix) C|X7, ><i(5) s
D(Sx) i D(Sx) i D (8:x) jzsx(5)+*r GiXj
j2s j2s i i
(1) oo

Hence, playei's expected utility as computed in steffeis

Note that we do not incorporate an explicit discounting factor

with time. However, the utility of playei can be viewed as (s)
X

discounting the future owing to the possibility that the problem Py T CiXi(S) X

can get solved in a stat® wherei 2 S. Moreover, our anal- RS = 128 5 5E0 + D(Sj,x) R(SI 19X

yses are easily generalizable if an explicit discounting factor is ' igs '

incorporated. ¥ i (Snfigix) 3y
For distributed computing applications with a xed objective i2s D(sx

such as nding a solution to a given problem, it is reasonable to

assume that the rate of the problem getting solved is proportional ) p

to the total power invested by the lp_;oviders of computation. We, Note that sincd (5*) = + j2s it j2s j here Ex-
hence, consider that(Sx'®) = i2s xj(s) +° , where  pression (3) is obtainable from Expression (1), whé®**)) =
is the rate constant of proportionality determined by the problem

being solved. Hence, playéls expected utility as computed in

. Other Variants of Scenario 2. We considered that the time
stateS is

for which the center decides to run the system is exponentially
distributed with rate parameter, where is a constant. For
x(®) X . theoretical interest, one could consider a generalization where the

R(S:X) =(r G)—2 + i R~(S[f igix) i X X

i YD) psx) system may dynamically determine this parameter based on the set

s - of playersS[f kg present in the system. Let such a rate parameter

n X . . P
D(SJ;X) RS9 (2) be given byf (S). Since the xed players and their invested power
i2s do not change, these could be encoded (r), thus making it a
=) P P function of only the set of strategic players. The center could
(S;ix) = (8) 4 ~ . .
whereD*>") = j2sXj 't * jas jt j2s j-  determinef (S) based on the cost parameters of the players in set

Other Applications of Scenario 1.We derived Expression (1) S: the past records of the investments of players inSsegtc. If
for the expected utility by considering that the probability of€ time for which the system is to run is independent of the set of
playeri being the rst to solve the problem is proportional ioplayers currently present |n_the system, we have tr_le special case:
its invested power at the time, and hence obtains the reward (S) = ; 8S. It can be easily seen that the analysis presented in
with this probability. Now, consider another type of system whicHS paper (Secn(cs)g\ 4) goes through directly by replacingith
aims to solve an NP-hard problem where players search fof &), since (Six _) = f (S) is also independent of the players'
solution, and the system rewards the players in proportion f@/€stment strategies.
their invested power when the problem gets solved. In this case, Further, note that if the rate parameter is not just dependent
the rst two terms of,Expression (1) are replaced with the terran the set of players present in the system but also proportional
(s:x(5)) x{) to their invested power, it could be written agdSx®)
(5) 4~ This leads to the utility function being given

'
. So, the_mathematical form stays the j2s X

j2s Xj( S
D (S x) 5] . A o .
same, and so whenSx®)) = o XJ_(S) + ", our analysis DY Equation (2) and hence its analysis is same as that of Scenario

presented in Section 3 holds for this case too. 1 (Section 3).
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Convergence of Expected Utility 3 SCENARIO 1: ANALYSIS OF MPE

Note that Equa}g'on (1) encompasses both scenarios, wheet IQi(S;X) be the equilibrium utility of player in stateS, that
(S:x(S)) jZSXj(S) +°  leads to Scenario 1, while is, wheni plays its best response strategy to the equilibrium
. strategies of the other playgr® Snfig (while foreseeing effects
leads to Scenario 2. We now show the CONVEL5 its actions on state transitions and resulting utilities). We can
%8lermine MPE similar to optimal policy in MDP (using policy-
value iterations to reach a xed point). Here, for maximizing

Let us de ne an orderin@ on sets which presents a one-to-4(s: o
. ® - P Ui IQ-(S’X), we could assume that we have optimized for other states
one mapping fromas& U to an integer betweehand2*!, ! oo -
and use those values to nd an optimizing for maximizing

. . x)
both inclusive. LetR*) be the vector whose com onedi(S : .
. (Six) : (x) . P ), lQi(S’X). In our case, we have a closed form expression for vector
is R{™"". We now show thaR "’ computed using the recursive _ (x) . . " .

. : (x) R ;" in terms of policyx (Proposition 1); so we could effectively
Equation (1), converges for any policy pro e LetW *) be the | . b

I . . etermine the xed point directly.
state transition matrix, among the states corresponding to the set o o ; . i
A policy is said to beproper if from any initial state, the

strategic players present in the system. In what follows, instead cP:)babilit of reaching a terminal state is strictly positive. Con-
writing W ) (O(S); O(S9), we simply writeW ) (S: S9) since P yorre 9 . yp .

. . - ) sider the condition that, there exists at least one proper policy, and
it does not introduce any ambiguity. So, the elementd/df) are . .

as follows: for any non-proper policy, there exists at least one state where

the value function is negatively unbounded. It is known that,
under this condition, the optimal value function is bounded, and

expression for utility function.

Forj 2 S:W"(S;S[f jg) =

J
D20 it is the unique xed point of the optimal Bellman operator [35].
Forj 2 S:W(S;Snfjg)= D(SJ;X) ; Our model satis es this condition, since there does not exist any
non-proper policy as the probability of reaching a terminal state
All other elements otV X) are0. corresponding to the problem getting solved (either by player

p Since " p 0, we have that (5x*) 5 0, 50,D(¥ >  orany o(tsh)er player including the xed players) is strictly positive
jas j T j2s j-HenceW ) s strictly substochastic (sum (*  (5x*)) > q),

of the elements in each of its rows is less than 1). Now, from Equation (2), the Bellman equations over states

Let 2™ be the vector whose compondd(S) is Z5*), where S 2 2 for playeri can be written as

! (

(s) X . .
i (s:x(8)) (S) (Six) _ X i (SIf jgix)
2{%0= p——m—T G sy RP=max (1 e)gsn*  pew N
i2s X + ' j2s )
+ X i p(snfigix)
Proposition 1. R™) = (1w () 1709 25 DT
. uj . . i . . . .
Proof. Let Rm)l =( Ri(rl]t’ix); N Ri(ﬁ“ 'X))T, wheret is the iter- We now derive some results, leading to the derivation of MPE.

ation number and )T stands for matrix transpose. The iteration amma 1. In Scenario 1. for any stats and policy pro lex, we
for the value oﬂ?i(rxﬁ)i starts at = 0; we examine if it converges p3,eR(5™) <r ¢ jf r>’c CandRGM) sp ciif r<c X
whent 1 1 . Now, the expression for the expected utility in all ' a ' a
states can be written in matrix form and then solving the recursigsyoof, Let V5% be the expected utility of playerin state

as S computed without considering the arrivals and departures of
RO = wMRX 4 7() players (j =0;8j 2 Sand ; =0,8j 2 S). So, we have
|
t X1 ' (s:x(9) _ x> _ G x(3)
= we RE e W z UET = e 2 e g
=0 jes Xj  t j2s?

. . . L . . % (S)
Now, sinceW (%) is strictly substochastic, its spectral radius is less Letvi(x) be the vector whose compond®(S) is \/i(s’X ),

th?xr; 1.Sowhet ! 1 , we havelimy; (W )t :(XO). Since Let_z™ = YCOV™  Note that when (Sx®*)
i i - t - . . .
Ripo is a nite constant, we havéimg, (W ®))'R:. = 0. jZSXj(S) +° , we have thatY ®) is a diagonal ma-
Further,limyy "o (W®)) = (1 W ®) 1 [34] This P xS
H H H . —_ ] f—
implicitly means tha(l W () is invertible. Hence, trix, with d|agonals?lementé((x)(8, S) = I
| ) S0
. % ' P 1285 o it can hence be seen that
lim R = lim w® R+ w ez jos it s it jasX¥
t t -0 W ) + Y (¥) is a stochastic matrix (the sum of elements in each
=0+(1 w®y 1z o ofitsrowsis 1).

Let UX) = (1 w®) 1y 1 wherel is the vector
whose each element I It is clear that all the elements &f ()
e, non-negative. We will now show thjt) ®jiy 1, that
is, the maximum element of the vectbr®®) is not more than
Letus, be the element with the maximum value (one of the

Owing to the requirement of deriving the inversd of W (),
it is clear that a general analysis of the concerned stochastic g
when considering an arbitraly *) is intractable. In this work,
we consider two special scenarios that we motivated earlier in til're ; ) ) X) — ()
context of distributed computing systems, for which we show thgt@ximum, if there are multiple). Suppos%o = U™ > 1
the analysis turns out to be tractable. So, we would have
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U(X) = (I Y, (X)) 1Y(X)1 (r Ci)E-(S;X(S)) (E-(S;X(S)) + x -(S))W(S;X)Q-(X)
I | I I
- (x) — (X)) (x) . . . .
=) U( ) =W 'EJ) (+)Y 1 N =(r Ci)Ei(S’X(S)) (Ei(s,x(S)) +ox REN Zsx)y
— X) — X X . X .
=) Ug, = Ug "W (So; S) + Y/ (So; So) (1 G)ESHP) RENEE, ()
SzzU I I | I
=) u <u) T WSy 8)+ uldY ) (So; So) b X peen, ey
0 0 0 (S,X(S)) (S) 1 I
s22V E; + X
y [* msaxu(sx) = ul) > 1] =(r )ES™ REOEEK L O (r 0 g)x®
:) W(X)(SO;S)+ Y(X)(So;So) > 1 :( r Ci)Ei(S;X(S)) If\;i(s;x)Ei(s;x(S))_'_ X i(s)(r c Fc\yi(s;x))
s22Y - Ei(S;x(S))( r G IQi(s;x))_‘_ X i(S)( r G |Qi(s;x))
However, this is a contradiction sind& ) + Y ) is a = ¢ RE0)EEHD) 4 6)
stochastic matrix. So, we have shown tfjal ®)jj; = jj(I G (Sx) o (Six(S)) )
W) 1y 01jj, 1 Thatis,(I W) Y0 iseither = T — ROV (EPTT+ x)

stochastic or substochastic.

From Proposition IR ™) =(1 W (9) 1y (v ) since(l
W () 1y () is stochastic or substochastR!>*) for eachS is (s
a linear combination (with weights summing to less than or equiie same sign asr  ¢) from Lemma 1, we have th%

. (S)
Ei(SrX )

Since + x &) is positive, andr & RE5™) has

to 1) of\/i(s;x(s)) overallS 2 2Y. has the same sign 45 G). Also, note that if r = G, we
For eachs, VS**) = 1« PL()S) So we have havlgRi(S'x) = 0;8S 2 2Y from Proposition 1 when (5%'*) =
vl x(Shge (S) N
(Six(9)) c ) (S;X‘JSZ)§ J c j2s X " F
Vi <r  =if r>ci; andV; >r =if r<c . So, in any staté, it is a dominant strategy for a playéto

Since Ri(s;x) for eachS is a linear combination (with weights invest its maximal power ifr > ¢ i, no powerifr < c ;, and any
. (S) . — g . .
summing to less than or equal to 1)\qf5vx ) over allS 2 2V, amountof power ifr = ¢;. Since the maximal power of a player

we haveRi(s;X) <r S if r>c,, and Ri(s;x) > o if i would be bounded (let the boun_d &), it wquld investX; if
r<c ;. O r> c i. Hence, we hz?\ve a Ci)nglstent solutlc_)n for the Bellman
equations that a playerinvestsx; if r>c ;,0if r<c ;, and
Lemma 2. In Scenario 1Ri(S;X)is a monotone function o<fi(s). any amount of power in the rang@; X;] if r = ¢. O
Proof. We de ne the following for simplifying notation. Thus, the MPE strategy of a player follows a threshold policy,
AS) = X YO X @(sntig with a thresho!d on its cost parametgr(whether it is lower than
! ) P , P r ) or alternatively, a threshold on the offered rewarfivhether
128 123 | it is higher than®). Note that though a playérinvests maximal
(), _ X X X s) N power whenr > ¢ j, this is not inef cient since the power would
Ei = it it Xpo be spent for less time as the problem would get solved faster. An
128 128 [28Snfig intuition behind this result is that, when there are several miners in

the system, the competition drives miners to invest heavily. On the

other hand, when there are few miners in the system, miners invest

R(S%) Ay (v o)™ heavily so that the problem gets solved faster (before arrival of
i

Hence, we can write

S:x(5) s more competition). Also, since the strategies do not depen
E( )4 x (5 tit Al the MPE strat d td d
' ' on S, the assumption of state knowledge can be relaxed.
dREY  (r c-)E-(S;X(S)’ A (5% _ We now provide an intuition for why the MPE strategies_ are
'(5) = ! ('S) ! independent of the arrival and departure rates. From Proposition 1,
dx; ES*T 4+ x® R = w®) 1z For r > ¢, when powerx'®
. _ N . _ increases,Zi(X) increases andl W ™)) 1 decreases. But
The denominator is positive, while the numerator |saconstqqti(><) increases withxi(s) when r > ¢ ; (shown in the proof

. .y (S)
with respect t_O(i(S)isinceAi(S’X) andE{>* ") do not depend on o Proposition 2), implying that the rate of increase "
x{%). 50,R{®™ is a monotone function at{®’, and whether it dominates the rate of decrease(bf W X)) 1. So, the effect of

is increasing O(rsf)iecreasing, depends on the sign of the numerar{*) and hence state transitions is relatively weak, thus resulting
(r g)ES*) A O in Markovian players playing strategies that are independent of the
arrival and departure rates. Similar argument holdsifor ¢;. It
would be interesting to study scenarios where the rate of problem
getting solved is a non-linear function of the players' invested
powers. While a linear function is suited to most distributed
Proof. Let W (5%) be the rowO(S) of W *). Note thatAi(S;X) = computing applications, a non-linear function could possibly see
(E_(s;x<5>) + X _(S))W(S;X)IQ_(x)_ From the proof of Lemma 2 W ) having a strong effect leading to MPE being dependent on
de(s;x) v ! (S:x(5)) (Sx) _ ' the arrival and departure rates.

L nassamesigndsr - G)E;™ A ™", which can For analyzing the expected utility of a strategic player

be written as let us consider that the power available to it is very large,

=)

Proposition 2. In MPE for Scenario 1, a player invests its
maximal power ifr > ¢ j, no power if r < ¢ j, and any amount
of powerifr = ¢.
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say X;. Following our result on MPE, every playgr satis- !
ing G < ld investX; entirely. S have th X s s X
fyipg ¢ r would investX; entirely. So, we have that Xj( Vit = ) g g +°
( j2se<r X * ) js very large, and hencB (%) (which i2s SN
now approximates to ( j2sc<r Xt ")) is also very large. ©

P
since we know thatR®I" 19%) and RS 9X) are pounded Substituting ;5 X
by a small quantity from Lemma 1, the limit of the expected X
utility R'®™) computed in any stat§ (from Equation (2)) is 1

- s el P jZS::Ijtlr w5y To get further insight " 2e
into this, say is considered insigni cant, that is, the computation ] ) N
is dominated by strategic players. Furthermore, say for evepP!Ving this equation for positive value of®, we get

strategic player, ¢ < r , and let the very large amount of power

+as (5 we get

2
g © @ n® =0

. o q p
available to these players be the sarRg € X;;8i;) 2 U). iSi 1+ (S 12+ ;L" 128G
Thus, the limit of the expected utilitR>™) computed in any )= r P
state S simplies to ﬁ % This is intuitive, since if 28

Xi = X;;8i;j 2 U, the reward would be won by the playersg it ing this expression for(S) in Equation (4) gives the
with equal probability (hence the terrgﬁ), and the cost is reduced MPE strategy of player O

owing to the reduced time due to the combined rate of the problem

etting solved (hence the teris-). P e
geting ( i) So,x!® > 0iff g < 41289 | . That is,
iSi 1+ (8 D2+E e
only players with cost parameters in a relatively low range in a

4 SCENARIO 2: ANALYSIS OF MPE

Proposition 3. In MPE for Scenario 2, a playerinvests given state, invest. The constraint implies that if plaly@mvests,
o (S then playej with ¢; < c; also invests. So, there exists a threshold
xS =max 1 X 0 player? such that any playef with ¢ > ¢4 would not invest.

r . . TR
Hence, setS can be constructed iteratively (initiating from an

() - Y empty set) by adding playejsfrom setS n S one at a time, in
where = 2 56 . Here, S is the  ascending order af , until the above constraint is violated for the
maximal set of player§ 2 S which collectively satisfy the cost parameter of the newly added player.

constraintsg; < 5. To get a better understanding of this result, if the power

. . . . invested by xed players is considered insigni cant, we have
Proof. Recall that sinceW (X)F;s a strictly substochastic ma- y pay g

X s) — iSi 1 - (s) L
trix, (I W) 1=lim gy 1:3 (W @) Since all the el- Pr szﬁ and the condition fox;~’ > 0 simplies

ements ofW ) are non-negative, all the elements@ *))  tog < ,;7@161

also are non-negative for any natural numberand hence all Furthisr]more, if the strategic players are homogeneous (
the elements ofl W ™)) * are non-negative. Also, sinceg ; 8i;j 2 U), the cost constraint is satis ed for all players
R = (1 w®) 1z% (Proposition 1) and sinctV ) i g (sincec < -51°) and so, all the strategic players invest

. (S) . . . . N iSj 1
is independent ok;~ in this scenario, maximizing the compo-% stéjZl . That is, if the computation is dominated by strategic

S; AT ; S . . .
nents ofZ{) (namely,z{®*)) individually with respect tox®) players which are homogeneous, they would invest proportionally

would essentially maximize all the elementsl-'ofx). Now, since to the “reward to cost parameter' ratio in MPE.

(Sx*)) = in this scenario, we have Since the transition probabilities, and herde®), are con-
! ) stant w.r.t. players' strategies |Sn this scenario, a player's MPE
z50= p - roG X(is_x) utility computed in stateS (Ri( 'X)) is a linear combination
28X+ D= (with constant non-negative weights) of its utilities over all states
(Six) e (S) o o computed without accounting for state transitions. Hence, the
As D> is independent ok~ in this scenario, it can be shownypE strategies are independent of the arrival and departure rates.

Six) , : S . - . .
thatZi( %) is a concave function with respect)t(f) ) (the second Note that while the decision regarding whether or not to invest

=

iSi 1+ (8] D2+ e

derivative turns out to b%). The rst order was independent of the cost parameters of the other players in
L gz (50 . 128 the system in Scenario 1, this decision highly depends on the cost
condition =<~ = 0 gives | | parameters of other players in Scenario 2.
X o X '
xS = R T 5 SIMULATION STUDY
i2s i2s

Throughout the paper, we determined MPE strategies, which we
Let (=" i2s xj(s) + . Asx‘® is non-negative, we have  Observed to be independent of players' arrival and departure rates.
©) However, it is clear f_r_o_m Equatloqs (1), (2), (3) and Proposition 1
Xi(S) =max 1 —¢ -0 (4) that the players' utilities would indeed depend or_1_t_hes_e rates.
r We now study the effects of these rates on the utilities in MPE
) (s) ~using simulations. In order to reliably obtain an accurate relation
LetS = fj 2 S: x> > 0g. We later show how to determine petween the arrival/departure rates and the expected utilities of
set$. Summing the above over all players$nand then adding the players, we consider that the computation is dominated by
on both sides, we get the strategic players (that is, the power invested by the xed
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players is insignicant:” ! 0) and the strategic players ai 10°¢ ——
homogeneous (their arrival/departure rates and their cost pa Tl — =1
eters are the same). Let;c denote the common arrival rateglo4 _ igo
departure rate, and cost parameter, respectively. Note that ig 10° s =1000
strategic players are considered homogeneous, the pIayers‘% ﬁ\ SNE
(states) can be mapped to their cardinalities. We observe hovg 10° \\\
expected utility of a player changes as a function of the numbedi N
other players present in the system, for different arrival/depar

rates. In our simulations, we consider the following valu 1¢°
r =10% = =0:1jUj = 10%c = 0:003 (a justicaton 10 100 10 100 10’

of these values is provided in Appendix). N“".’ber of Otlher players . '
Statewise Nash Equilibrium. For a comparative study, we also (2) for different s (= 10) (b) for different s (= 10)
look at the equilibrium strategy pro le of a given set of playersig. 1. Expected utility of a player in Scenario 1

S, when there are no arrivals and departures € 0;8j 2 S

and ; = 0,8 2 S). We call this,statewiseNash equilibrium

(SNE) in stateS. Since the MPE strategies of the players are

independent of the arrival and departure rates, a player's SNE

strategy in a state is same as its MPE strategy corresponding to

that state. Note, however, that the expected utilities in SNE would

be different from those in MPE, since the expected utilities highly

depend on the arrival and departure rates (Equations (1), (2), (3)

and Proposition 1). Also, since SNE does not account for change

of the set of players present in the system, the expected utilities

in SNE for different values on X-axis in the plots are computed

independently of each other.
(a) for different 's ( = 10) (b) for different 's ( =10)

5.1 Simulation Results Fig. 2. Expected utility of a player in Scenario 2

In Figures 1 and 2, the plots for expected utility largely follow

near-linear curve (of nega_ltive slope) on Iog-qu scale, with IreSpP§(t,enario 2.Since a player's SNE strategy in a state is same
to the number (.)f players in the systgm. That'is, they nearly follo s its MPE strategy corresponding to that state, a player's SNE
power law, which means that scaling the number of players Wortegy is to invest- 11 in stateS (as explained at the end

a constant factor would lead to proportionate scaling of expectg Section 4 when cc:omJSsztation is dominated by strategic players
utilty. ) . . . that are homogeneous). Furthermore, in SNE, the expected utility
Scenario 1.Figure 1 presents plots for expected utilities withhf each player can be shown to l?é,? in stateS (this can be
MPE policy for various values of and , and compares them ggqpy by substituting in Equation (3); =0 8 2 S, ; =0

with expected utilities in SNE. Following are some insights: = ¢ X]_(S) _ r_jsj1 '8j 2 S, and” ! 0). Figure 2

. . o . RS

As seen at the end of Section 3, if the mining is dominated hytesents the plots for expected utilities with the analyzed MPE
strategic players which are homogeneous, the expected utilitfgsiicy for different values of and , and compares them against
in MPE are bounded by % It can be similarly shown that SNE. Following are some insights:

the limit of the players' expected utilities in SNEf’ls‘T %

An increase in the number of players increases competition for

(this can be seen byssubstituting in Equation ()= 0 8] 2 the offered reward and hence reduces the reward per unit time
S, j=0,g=c¢ XJ-( Y11 ;8 2S,and"! 0).0Owingto  received by each player, with no balancing factor (unlike in
this, the expected utilities in MPE are bounded by the expectedScenario 1); so the expected utility decreases.

utilities in SNE, which is re ected in Figure 1. For higher , there is higher likelihood of system having

In Scenario 1, a higher results in a higher likelihood of the  more players, thus resulting in lower expected utility owing to
system having more players, which results in a higher rate ofaforementioned reason. Also, from Figure 2(a), i not very

the problem getting solved as well as more competition. This, high, an increase in is likely to reduce the competition to the

in turn, reduces the time spent in the system as well as the probextent that the expected MPE utility when the number of players
ability of winning for each player, which hence reduces the costin the system is large, can exceed the corresponding SNE utility
incurred as well as the expected reward. Figure 1(a) suggest@#, which would be very low when the number of players in
that, as changes, the change in cost incurred balances with thqfqe system is large).

change in expected reward, since the change in expected utility higher likely results in less competition, however it also
is insigni cant. results in a higher probability of playerdeparting from the
For a given , if the number of players changes, there is a system and hence losing out on the reward for the time it stays
balanced tradeoff between the cost and the expected reward asut; this leads to a tradeoff. Figure 2(b) shows that the effect of
above; so the change in expected utility is insigni cant. But a the probability of playei departing from the system dominates
higher results in a higher probability of playerdeparting  the effect of the reduction in competition. For similar reasons as
from the system and staying out when the problem gets solvedabove, the expected MPE utility when the number of players in
thus lowering its expected utility (Figure 1(b)). the system is large, can exceed the corresponding SNE utility.
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6 FUTURE WORK

(23]

One could study a variant of Scenario 1 where the rate of problem

getting solved (and perhaps also the cost) increases non-linegrly

with the invested power. Since players are seldom completely
rational in real world, it would be useful to study the game undit
ic

bounded rationality. To develop a more sophisticated stocha
model, one could obtain real data concerning the arrivals a

nd

departures of players and their investment strategies. Another ) vy o
6] N. Bellomo, Modeling complex living systems: A kinetic theory and

promising possibility is to incorporate state-learning in our mod

A Stackelberg game could be studied, where the system g¢gen
cides the amount of reward to offer, and then the computational
providers decide how much power to invest based on the oﬁerﬁgl

reward.

APPENDIX

We take cues from bitcoin mining for our numerical simulationd!®!

The current offered reward for successfully mining a blockab
bitcoins. Assuming 1 bitcoin $800Q the reward translates to

[20]

$1C. The bitcoin problem complexity is set such that it takes
around10 minutes on average for a block to get mined. That is, trlgl]

rate of problem getting solved &1 per minute on average. One
of the most powerful ASIC (application-speci c integrated circuit
currently available in market is Antminer S9, which perform
computations of upto 13 TeraHashes per sec, while consum
about1:5 kWh in 1 hour, which translates #0:18 per hour (at

the rate of$0:12 per kWh), equivalently$0:003 per minute. As

per BitNode (bitnodes.earn.com), a crawler developed to estim

F. Fu and U. C. Kozat, “Stochastic game for wireless network virtualiza-
tion,” IEEE/ACM Transactions on Networkingol. 21, no. 1, pp. 84-97,
2013.

E. Altman, “Non zero-sum stochastic games in admission, service and
routing control in queueing systemsQueueing Systemsol. 23, no.

1-4, pp. 259-279, 1996.

M. Bowling and M. Veloso, “An analysis of stochastic game theory for
multiagent reinforcement learning,” Carnegie-Mellon University Pitts-
burgh Pennsylvania School of Computer Science Technical Report No.
CMU-CS-00-165, Tech. Rep., 2000.

stochastic game approach Springer Science & Business Media, 2008.
E. Altman and N. Shimkin, “Individual equilibrium and learning in
processor sharing system&perations Researchol. 46, no. 6, pp. 776—
784, 1998.

A. Nahir, A. Orda, and D. Raz, “Workload factoring with the cloud:
A game-theoretic perspective,” ItEEE International Conference on
Computer Communications (INFOCOMjol. 12. |EEE, 2012, pp.
2566-2570.

R. Hassin and M. Haviv, “Nash equilibrium and subgame perfection in
observable queuesAnnals of Operations Researtctol. 113, no. 1-4,
pp. 15-26, 2002.

J. Wang and F. Zhang, “Strategic joining in M/M/1 retrial queues,”
European Journal of Operational Reseayatol. 230, no. 1, pp. 76-87,
2013.

J. Hu and M. P. Wellman, “Nash Q-learning for general-sum stochastic
games,”Journal of Machine Learning Researchol. 4, no. Nov, pp.
1039-1069, 2003.

2] C. Jiang, Y. Chen, Y.-H. Yang, C.-Y. Wang, and K. R. Liu, “Dynamic

ing
(23]
ate

the size of bitcoin network, the number of bitcoin miners is

around10*. Hence, we consider = 10°;
0:003 jUj = 10%.
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