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A Stochastic Game Framework for Analyzing Computational
Investment Strategies in Distributed Computing

Swapnil Dhamal, Walid Ben-Ameur, Tijani Chahed, Eitan Altman, Albert Sunny, and Sudheer Poojary

Abstract —We study a stochastic game framework with dynamic set of players, for modeling and analyzing their computational
investment strategies in distributed computing. Players obtain a certain reward for solving the problem or for providing their
computational resources, while incur a certain cost based on the invested time and computational power. We �rst study a scenario
where the reward is offered for solving the problem, such as in blockchain mining. We show that, in Markov perfect equilibrium, players
with cost parameters exceeding a certain threshold, do not invest; while those with cost parameters less than this threshold, invest
maximal power. Here, players need not know the system state. We then consider a scenario where the reward is offered for
contributing to the computational power of a common central entity, such as in volunteer computing. Here, in Markov perfect
equilibrium, only players with cost parameters in a relatively low range in a given state, invest. For the case where players are
homogeneous, they invest proportionally to the `reward to cost' ratio. For both the scenarios, we study the effects of players' arrival and
departure rates on their utilities using simulations and provide additional insights.

F

1 INTRODUCTION

D ISTRIBUTED computing systems comprise computers which
coordinate to solve large problems. In a classical sense, a

distributed computing system could be viewed as several providers
of computational power contributing to the power of a common
central entity (e.g. in volunteer computing [1], [2]). The central
entity could, in turn, use the combined power for either ful�lling
its own computational needs or distribute it to the next level of
requesters of power (e.g. by a computing service provider to
its customers in a utility computing model). The center would
decide the time for which the system is to be run, and hence
the compensation or reward to be given out per unit time to
the providers. This compensation or reward would be distributed
among the providers based on their respective contributions. A
provider incurs a certain cost per unit time for investing a certain
amount of power. So, in the most natural setting where the reward
per unit time is distributed to the providers in proportion to their
contributed power, a higher power investment by a provider is
likely to fetch it a higher reward while also increasing its incurred
cost, thus resulting in a tradeoff.

Distributed computing has gained more popularity than ever
owing to the advent of blockchain. Blockchain has found applica-
tion in various �elds [3], such as cryptocurrencies, smart contracts,
security services, public services, Internet of Things, etc. Its
functioning relies on a proof-of-work procedure, where miners
(providers of computational power) collect block data consisting
of a number of transactions, and repeatedly compute hashes on
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inputs from a very large search space. A miner is rewarded for
mining a block, if it �nds one of the rare inputs that generates a
hash value satisfying certain constraints, before the other miners.
Given the cryptographic hash function, the best known method for
�nding such an input is randomized search. Since the proof-of-
work procedure is computationally intensive, successful mining
requires a miner to invest signi�cant computational power, result-
ing in the miner incurring some cost. Once a block is mined, it is
transmitted to all the miners. A miner's objective is to maximize
its utility based on the offered reward for mining a block before
others, by strategizing on the amount of power to invest. There is
a natural tradeoff: a higher investment increases a miner's chance
of solving the problem before others, while a lower investment
reduces its incurred cost.

In this paper, we study the stochastic game where players
(miners or providers of computational power) can arrive and depart
during the mining of a block or during a run of volunteer comput-
ing. We consider two of the most common scenarios in distributed
computing, namely, (1) in which the reward is offered for solving
the problem (such as in blockchain mining) and (2) in which the
reward is offered for contributing to the computational power of a
common central entity (such as in volunteer computing).

1.1 Preliminaries

Stochastic Game.[4] It is a dynamic game with probabilistic tran-
sitions across different system states. Players' payoffs and state
transitions depend on the current state and players' strategies. The
game continues until it reaches a terminal state, if any. Stochastic
games are thus a generalization of both Markov decision processes
and repeated games.

Markov Perfect Equilibrium (MPE). MPE [5] is an adaptation
of subgame perfect Nash equilibrium to stochastic games. An
MPE strategy of a player is a policy function describing its strategy
for each state, while ignoring history. Each player computes its
best response strategy in each state by foreseeing the effects of
its actions on the state transitions and the resulting utilities, and
the strategies of other players. A player's MPE policy is a best
response to the other players' MPE policies.
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It is worth noting that, while game theoretic solution concepts
such as MPE, Nash equilibrium, etc. may seem impractical owing
to the common knowledge assumption, they provide a strategy
pro�le which can be suggested to players (e.g. by a mediator)
from which no player would unilaterally deviate. Alternatively,
if players play the game repeatedly while observing each other's
actions, they would likely settle at such a strategy pro�le.

1.2 Related Work

Stochastic games have been studied from theoretical perspec-
tive [6], [7], [8], [9], [10] as well as in applications such as
computer networks [11], cognitive radio networks [12], wireless
network virtualization [13], queuing systems [14], multiagent
reinforcement learning [15], and complex living systems [16].

We enlist some of the important works on stochastic games.
Altman and Shimkin [17] consider a processor-sharing system,
where an arriving customer observes the current load on the
shared system and chooses whether to join it or use a constant-
cost alternative. Nahir et al. [18] study a similar setup, with
the difference that customers consider using the system over a
long time scale and for multiple jobs. Hassin and Haviv [19]
propose a version of subgame perfect Nash equilibrium for games
where players are identical; each player selects strategy based
on its private information regarding the system state. Wang and
Zhang [20] investigate Nash equilibrium in a queuing system,
where reentering the system is a strategic decision. Hu and Well-
man [21] use the framework of general-sum stochastic games to
extend Q-learning to a noncooperative multiagent context. There
exist works which develop algorithms for computing good, not
necessarily optimal, strategies in a state-learning setting [22], [23].

Distributed systems have been studied from game theoretic
perspective in the literature [24], [25]. Wei et al. [26] study a
resource allocation game in a cloud-based network, with con-
straints on quality of service. Chun et al. [27] analyze the sel�sh
caching game, where sel�sh server nodes incur either cost for
replicating resources or cost for access to a remote replica. Grosu
and Chronopoulos [28] propose a game theoretic framework for
obtaining a user-optimal load balancing scheme in heterogeneous
distributed systems.

Zheng and Xie [3] present a survey on blockchain. Sapirshtein
et al. [29] study sel�sh mining attacks, where a miner postpones
transmission of its mined blocks so as to prevent other miners from
starting the mining of the next block immediately. Lewenberg et al.
[30] study pooled mining, where miners form coalitions and share
the obtained rewards, so as to reduce the variance of the reward
received by each player. Xiong et al. [31] consider that miners
can of�oad the mining process to an edge computing service
provider. They study a Stackelberg game where the provider sets
price for its services, and the miners determine the amount of
services to request. Altman et al. [32] model the competition over
several blockchains as a non-cooperative game, and hence show
the existence of pure Nash equilibria using a congestion game
approach. Kiayias et al. [33] consider a stochastic game, where
each state corresponds to the mined blocks and the players who
mined them; players strategize on which blocks to mine and when
to transmit them.

In general, there exist game theoretic studies for distributed
systems, as well as stochastic games for applications including
blockchain mining (where a state, however, signi�es the state of
the chain of blocks). To the best of our knowledge, this work
is the �rst to study a stochastic game framework for distributed

computing considering the set of players to be dynamic. We
consider the most general case of heterogeneous players; the cases
of homogeneous as well as multi-type players (which also have not
been studied in the literature) are special cases of this study.

2 OUR MODEL

Consider a distributed computing system wherein agents provide
their computational power to the system, and receive a certain
reward for successfully solving a problem or for providing their
computational resources. We �rst model the scenario where the
reward is offered for solving the problem, such as in blockchain
mining, and explain it in detail. We then model the scenario where
the reward is offered for contributing to the computational power
of a common central entity, such as in volunteer computing. We
hence point out the similarities and differences between the utility
functions of the players in the two scenarios.

2.1 Scenario 1: Model

We present our model for blockchain mining, one of the most in-
demand contemporary applications of the scenario where reward
is offered for solving the problem. We conclude this subsection by
showing that the utility function thus obtained, generalizes to other
distributed computing applications belonging to this scenario.

Let r be the reward offered to a miner for successfully solving
a problem, that is, for �nding a solution before all the other miners.

Players.We consider that there are broadly two types of players
(miners) in the system, namely, (a) strategic players who can
arrive and depart while a problem is being solved (e.g., during
the mining of a block) and can modulate the invested power based
on the system state so as to maximize their expected reward and
(b) �xed players who are constantly present in the system and
invest a constant amount of power for large time durations (such
as typical large mining �rms). In blockchain mining, for instance,
the universal set of players during the mining of a block consists of
all those who are registered as miners at the time. In particular, we
denote byU, the set of strategic players during the mining of the
block under consideration. We denote by` , the constant amount
of power invested by the �xed players throughout the mining of
the block under consideration. We consider` > 0 (which is true
in actual mining owing to mining �rms); so the mining does not
stall even if the set of strategic players is empty. Since the �xed
players are constantly present in the system and invest a constant
amount of power, we denote them as a single aggregate playerk,
who invests a constant power of` irrespective of the system state.

Since it may not be feasible for a player to manually modulate
its invested power as and when the system changes its state, we
consider that the power to be invested is modulated by a pre-
con�gured automated software running on the player's machine.
The player can strategically determine the policy, that is, how
much to invest if the system is in a given state.

We denote by cost parameterci , the cost incurred by playeri
for investing unit amount of power for unit time. We consider
that players are not constrained by the cost they could incur.
Instead, they aim to maximize their expected utilities (the expected
reward they would obtain minus the expected cost they would
incur henceforth), while forgetting the cost they have incurred thus
far. That is, players are Markovian. In our work, we assume that
the cost parameters of all the players are common knowledge. This
could be integrated in a blockchain mining or volunteer computing
interface where players can declare their cost parameters. This
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information is then made available to the interfaces of all other
players (that is, to the automated software running on the players'
machines). In real world, it may not be practical to make the
players' cost parameters a common knowledge, and furthermore,
players may not reveal them truthfully. To account for such
limitations, a mean �eld approach could be used by assuming
homogeneous or multi-type players (which are special cases of
our analysis). Furthermore, it is an interesting future direction to
design incentives for the players to reveal their true costs.

Arrival and Departure of Players. For modeling the arrivals and
departures of players, we consider a standard queueing setting.
A player j , who is not in the system, arrives after time which
is exponentially distributed with mean1=� j (that is, the rate
parameter is� j ); this is in line with the Poission arrival process
where the time for the �rst arrival is exponentially distributed
with the rate parameter corresponding to the Poisson arrival.
Further, the departure time of a playerj , who is in the system,
is exponentially distributed with rate parameter� j . The stochastic
arrival of players is natural, like in most applications. Further,
players would usually shut down their computers on a regular
basis, or terminate the computationally demanding mining task
(by closing the automated software) so as to run other critical
tasks. Note that since players are Markovian, they do not account
for how much computation they have invested thus far for mining
the current block. Also, as we shall later see, the computation
itself is memoryless, that is, the time required to �nd the solution
does not depend on the time invested thus far. Owing to these two
reasons, the players do not monitor block mining progress, and
hence depart stochastically.

State Space.Due to the arrivals and departures of strategic
players, we could view this as a continuous time multi-state
process, where a state corresponds to the set of strategic players
present in the system. So, if the set of strategic players in the
system isS (which excludes the �xed players), we say that the
system is in stateS. So, we haveS � U or equivalently,S 2 2U .
In addition, we havejUj + 1 absorbing states corresponding to
the problem being solved by the respective player (one of the
strategic players inU or a �xed player). The players involved at
any given time would in�uence each others' utilities, thus resulting
in a game. The stochastic arrival and departure of players makes it
a stochastic game. As we will see, there are also other stochastic
events in addition to the arrivals and departures, and which depend
on the players' strategies.

Players' Strategies.Let � = 0 denote the time when the mining
of the current block begins. Letx (S;� )

i denote the strategy of player
i (amount of power it decides to invest) at time� when the system
is in stateS. Since players use a randomized search approach over
a search space which is exponentially large as compared to the
solution space, the time required to �nd the solution is independent
of the search space explored thus far. That is, the search follows
memoryless property. Also, note that a player has no incentive
to change its strategy amidst a state owing to this memoryless
property and if no other player changes its strategy. Hence in our
analysis, we consider that no player changes its strategy within a
state. So we havex (S;� )

i = x (S;� 0)
i for any �; � 0; hence playeri 's

strategy could be written as a function of the state, that is,x (S)
i .

For a stateS where j =2 S, we havex (S)
j = 0 by convention.

Let x (S) denote the strategy pro�le of the players in stateS. Let
x = ( x (S) )S�U denote the policy pro�le.

TABLE 1
Notation

r reward parameter
ci cost incurred by playeri when it invests unit power for unit time
� i arrival rate corresponding to playeri
� i departure rate corresponding to playeri
U universal set of strategic players
` constant amount of power invested by the �xed players
k aggregate player accounting for all the �xed players
S set of strategic players currently present in the system

x ( S )
i strategy of playeri in stateS

x ( S ) strategy pro�le of players in stateS
x policy pro�le

� ( S; x ( S ) ) rate of problem getting solved in stateS under strategy pro�lex ( S )

R( S; x )
i expected utility ofi computed in stateS under policy pro�lex

Rate of Problem Getting Solved.As explained earlier, the time
required to �nd a solution in a large search space is independent
of the search space explored thus far. We consider this time to be
exponentially distributed to model its memoryless property (* if
a continuous random variable has the memoryless property over
the set of reals, it is necessarily exponentially distributed). Let
� (S;x ( S ) ) be the corresponding rate of problem getting solved in
stateS, when players' strategy pro�le isx (S) . Since the time
required is independent of the search space explored thus far, the
probability that a player �nds a solution before others at time� is
proportional to its invested power at time� .

Note that the time required for the problem to get solved is
the minimum of the times required by the players to solve the
problem. Now, the minimum of exponentially distributed random
variables, is another exponentially distributed random variable
with rate which is the sum of the rates corresponding to the
original random variables. Furthermore, the probability of an
original random variable being the minimum, is proportional to its

rate. Let P(S;x ( S ) )
j be the rate (corresponding to an exponentially

distributed random variable) of playerj solving the problem in
stateS, when the strategy pro�le isx (S) . So, we have� (S;x ( S ) ) =
P

j 2 S[f kg P(S;x ( S ) )
j . Since the probability that playeri solves the

problem before the other players is proportional to its invested
computational power at that time, we have that the rate of player

i solving the problem is P(S;x ( S ) )
i = x ( S )

iP
j 2 S x ( S )

j + `
� (S;x ( S ) ) , and

the rate of other players solving the problem is Q(S;x ( S ) )
i =

P
j 2 (Snf i g) [f kg P(S;x ( S ) )

j =
P

j 2 S nf i g x ( S )
j + `

P
j 2 S x ( S )

j + `
� (S;x ( S ) ) .

The Continuous Time Markov Chain. Owing to the players
being Markovian, when the system transits from stateS to state
S0, each playerj 2 S \ S0 could be viewed as effectively
reentering the system. So, the expected utility could be written
in a recursive form, which we now derive. Table 1 presents the
notation. The possible events that can occur in a stateS 2 2U are:

1) the problem gets solved by playeri with rate P(S;x ( S ) )
i , thus

terminating the game in the absorbing state wherei gets a
reward ofr ;

2) the problem gets solved by one of the other players in(S n

f ig) [ f kg with rate Q(S;x ( S ) )
i , thus terminating the game in

an absorbing state where playeri gets no reward;
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3) a new playerj 2 U n S arrives and the system transits to state
S [ f j g with rate� j ;

4) one of the playersj 2 S departs and the system transits to
stateS n f j g with rate� j .

In what follows, we unambiguously writej 2 U nS asj =2 S, for

brevity. Since P(S;x ( S ) )
i + Q(S;x ( S ) )

i = � (S;x ( S ) ) , the sojourn time
in stateS is (� (S;x ( S ) ) +

P
j =2 S � j +

P
j 2 S � j ) � 1. Let D (S;x ) =

� (S;x ( S ) ) +
P

j =2 S � j +
P

j 2 S � j . So, the expected cost incurred

by playeri while the system is in stateS is ci x ( S )
i

D ( S; x ) .

Utility Function. The probability of an event occurring before
any other event is equivalent to the corresponding exponentially
distributed random variable being the minimum, which in turn, is
proportional to its rate. So, playeri 's expected utility as computed
in stateS is

R( S; x )
i =

� ( S; x ( S ) ) x ( S )
iP

j 2 S x ( S )
j + `

D ( S; x )
� r +

� ( S; x ( S ) )
P

j 2 S nf i g x ( S )
j + `

P
j 2 S x ( S )

j + `

D ( S; x )
�0

+
X

j =2 S

� j

D ( S; x )
�R( S [f j g;x )

i +
X

j 2 S

� j

D ( S; x )
�R( S nf j g;x )

i �
ci x

( S )
i

D ( S; x )

(1)

Note that we do not incorporate an explicit discounting factor
with time. However, the utility of playeri can be viewed as
discounting the future owing to the possibility that the problem
can get solved in a stateS where i =2 S. Moreover, our anal-
yses are easily generalizable if an explicit discounting factor is
incorporated.

For distributed computing applications with a �xed objective
such as �nding a solution to a given problem, it is reasonable to
assume that the rate of the problem getting solved is proportional
to the total power invested by the providers of computation. We,
hence, consider that� (S;x ( S ) ) = 

� P
j 2 S x (S)

j + `
�

, where 
is the rate constant of proportionality determined by the problem
being solved. Hence, playeri 's expected utility as computed in
stateS is

R( S; x )
i = ( r � ci )

x ( S )
i

D ( S; x )
+

X

j =2 S

� j

D ( S; x )
�R( S [f j g;x )

i

+
X

j 2 S

� j

D ( S; x )
�R( S nf j g;x )

i (2)

whereD (S;x ) = 
� P

j 2 S x (S)
j + `

�
+

P
j =2 S � j +

P
j 2 S � j .

Other Applications of Scenario 1. We derived Expression (1)
for the expected utility by considering that the probability of
player i being the �rst to solve the problem is proportional to
its invested power at the time, and hence obtains the rewardr
with this probability. Now, consider another type of system which
aims to solve an NP-hard problem where players search for a
solution, and the system rewards the players in proportion to
their invested power when the problem gets solved. In this case,
the �rst two terms of Expression (1) are replaced with the term

� ( S; x ( S ) )

 
x

( S )
i

P
j 2 S x

( S )
j + `

r

!

D ( S; x ) . So, the mathematical form stays the

same, and so when� (S;x ( S ) ) = 
� P

j 2 S x (S)
j + `

�
, our analysis

presented in Section 3 holds for this case too.

2.2 Scenario 2: Model

We now consider the scenario where the reward is offered for
contributing to the computational power of a common central
entity, such as in volunteer computing. Here, the reward offered
per unit time is inversely proportional to the expected time for
which the center decides to run the system. Considering that the
time for which the center plans to run the system is exponentially
distributed with rate parameter� , the reward offered per unit time
is inversely proportional to1

� , and hence directly proportional to
� . Hence, let the offered reward per unit time ber� , wherer is the
reward constant of proportionality. Furthermore, the reward given
to a player is proportional to its computational investment. So,

the revenue received by playeri per unit time is x ( S )
iP

j 2 S x ( S )
j + `

r� ,

and hence its net pro�t per unit time is x ( S )
iP

j 2 S x ( S )
j + `

r� � ci x
(S)
i .

The sojourn time in stateS, similar to the previous scenario, is
1

D ( S; x ) , whereD (S;x ) = � +
P

j =2 S � j +
P

j 2 S � j (here, we

have� instead of� (S;x ( S ) ) ). So, the net expected pro�t made by
player i in stateS before the system transits to another state, is

x
( S )
i

P
j 2 S x

( S )
j + `

r� � ci x ( S )
i

D ( S; x ) .

Hence, playeri 's expected utility as computed in stateS is

R( S; x )
i =

x ( S )
iP

j 2 S x ( S )
j + `

r� � ci x
( S )
i

D ( S; x )
+

X

j =2 S

� j

D ( S; x )
�R( S [f j g;x )

i

+
X

j 2 S

� j

D ( S; x )
�R( S nf j g;x )

i (3)

Note that sinceD (S;x ) = � +
P

j =2 S � j +
P

j 2 S � j here, Ex-

pression (3) is obtainable from Expression (1), when� (S;x ( S ) ) =
� .

Other Variants of Scenario 2. We considered that the time
for which the center decides to run the system is exponentially
distributed with rate parameter� , where � is a constant. For
theoretical interest, one could consider a generalization where the
system may dynamically determine this parameter based on the set
of playersS[f kg present in the system. Let such a rate parameter
be given byf (S). Since the �xed players and their invested power
do not change, these could be encoded inf (�), thus making it a
function of only the set of strategic players. The center could
determinef (S) based on the cost parameters of the players in set
S, the past records of the investments of players in setS, etc. If
the time for which the system is to run is independent of the set of
players currently present in the system, we have the special case:
f (S) = �; 8S. It can be easily seen that the analysis presented in
this paper (Section 4) goes through directly by replacing� with
f (S), since� (S;x ( S ) ) = f (S) is also independent of the players'
investment strategies.

Further, note that if the rate parameter is not just dependent
on the set of players present in the system but also proportional
to their invested power, it could be written as� (S;x ( S ) ) =


� P
j 2 S x (S)

j + `
�

. This leads to the utility function being given
by Equation (2) and hence its analysis is same as that of Scenario
1 (Section 3).
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Convergence of Expected Utility

Note that Equation (1) encompasses both scenarios, where
� (S;x ( S ) ) = 

� P
j 2 S x (S)

j + `
�

leads to Scenario 1, while

� (S;x ( S ) ) = � leads to Scenario 2. We now show the conver-
gence of this recursive equation, and hence derive a closed-form
expression for utility function.

Let us de�ne an orderingO on sets which presents a one-to-
one mapping from a setS � U to an integer between1 and2jUj ,
both inclusive. LetR (x )

i be the vector whose componentO(S)
is R(S;x )

i . We now show thatR (x )
i computed using the recursive

Equation (1), converges for any policy pro�lex . Let W (x ) be the
state transition matrix, among the states corresponding to the set of
strategic players present in the system. In what follows, instead of
writing W (x ) (O(S); O(S0)) , we simply writeW (x ) (S; S0) since
it does not introduce any ambiguity. So, the elements ofW (x ) are
as follows:

For j =2 S : W ( x )
i (S; S [ f j g) =

� j

D ( S; x )

For j 2 S : W ( x )
i (S; S n f j g) =

� j

D ( S; x )
;

All other elements ofW (x ) are0.
Since ` > 0, we have that� (S;x ( S ) ) > 0. So, D (S;x ) >P

j =2 S � j +
P

j 2 S � j . Hence,W (x )
i is strictly substochastic (sum

of the elements in each of its rows is less than 1).
Let Z (x )

i be the vector whose componentO(S) is Z (S;x )
i , where

Z ( S; x )
i =

 
� ( S; x ( S ) )

P
j 2 S x ( S )

j + `
r � ci

!
x ( S )

i

D ( S; x )
;

Proposition 1. R (x )
i = ( I � W (x ) ) � 1Z (x )

i .

Proof. Let R (x )
i ht i = ( R(1 ;x )

i ht i ; : : : ; R(2 jUj ;x )
i ht i )T , wheret is the iter-

ation number and(�)T stands for matrix transpose. The iteration
for the value ofR (x )

i ht i starts att = 0 ; we examine if it converges
when t ! 1 . Now, the expression for the expected utility in all
states can be written in matrix form and then solving the recursion,
as

R ( x )
i ht i = W ( x ) R ( x )

i ht � 1i + Z ( x )
i

=
�

W ( x )
� t

R ( x )
i h0i +

 
t � 1X

� =0

�
W ( x )

� �
!

Z ( x )
i

Now, sinceW (x ) is strictly substochastic, its spectral radius is less
than 1. So whent ! 1 , we havelim t !1 (W (x ) )t = 0. Since
R (x )

i h0i is a �nite constant, we havelim t !1 (W (x ) )t R (x )
i h0i = 0.

Further, lim t !1
P t � 1

� =0 (W (x ) ) � = ( I � W (x ) ) � 1 [34]. This
implicitly means that(I � W (x ) ) is invertible. Hence,

lim
t !1

R ( x )
i ht i = lim

t !1

�
W ( x )

� t
R ( x )

i h0i +

 
1X

� =0

�
W ( x )

� �
!

Z ( x )
i

= 0 + ( I � W ( x ) ) � 1Z ( x )
i

Owing to the requirement of deriving the inverse ofI � W (x ) ,
it is clear that a general analysis of the concerned stochastic game
when considering an arbitraryW (x ) is intractable. In this work,
we consider two special scenarios that we motivated earlier in the
context of distributed computing systems, for which we show that
the analysis turns out to be tractable.

3 SCENARIO 1: A NALYSIS OF MPE
Let R̂(S;x )

i be the equilibrium utility of playeri in stateS, that
is, when i plays its best response strategy to the equilibrium
strategies of the other playersj 2 Snf ig (while foreseeing effects
of its actions on state transitions and resulting utilities). We can
determine MPE similar to optimal policy in MDP (using policy-
value iterations to reach a �xed point). Here, for maximizing
R̂(S;x )

i , we could assume that we have optimized for other states
and use those values to �nd an optimizingx for maximizing
R̂(S;x )

i . In our case, we have a closed form expression for vector
R (x )

i in terms of policyx (Proposition 1); so we could effectively
determine the �xed point directly.

A policy is said to beproper if from any initial state, the
probability of reaching a terminal state is strictly positive. Con-
sider the condition that, there exists at least one proper policy, and
for any non-proper policy, there exists at least one state where
the value function is negatively unbounded. It is known that,
under this condition, the optimal value function is bounded, and
it is the unique �xed point of the optimal Bellman operator [35].
Our model satis�es this condition, since there does not exist any
non-proper policy as the probability of reaching a terminal state
corresponding to the problem getting solved (either by playeri
or any other player including the �xed players) is strictly positive
(* � (S;x ( S ) ) > 0).

Now, from Equation (2), the Bellman equations over states
S 2 2U for playeri can be written as

R̂( S; x )
i = max

x

(

(r � ci )
x ( S )

i

D ( S; x )
+

X

j =2 S

� j

D ( S; x )
� R̂( S [f j g;x )

i

+
X

j 2 S

� j

D ( S; x )
� R̂( S nf j g;x )

i

)

We now derive some results, leading to the derivation of MPE.

Lemma 1. In Scenario 1, for any stateS and policy pro�lex , we
haveR(S;x )

i <r � ci
 if r >c i , andR(S;x )

i >r � ci
 if r <c i .

Proof. Let V (S;x ( S ) )
i be the expected utility of playeri in state

S computed without considering the arrivals and departures of
players (� j = 0 ; 8j =2 S and� j = 0 ; 8j 2 S). So, we have

V ( S; x ( S ) )
i = ( r � ci )

x ( S )
i


� P

j 2 S x ( S )
j + `

� =
�

r �
ci



�
x ( S )

iP
j 2 S x ( S )

j + `

Let V (x )
i be the vector whose componentO(S) is V (S;x ( S ) )

i .
Let Z (x )

i = Y (x ) V (x )
i . Note that when � (S;x ( S ) ) =


� P

j 2 S x (S)
j + `

�
, we have thatY (x ) is a diagonal ma-

trix, with diagonal elementsY (x ) (S; S) =


� P
j 2 S x ( S )

j + `
�

D ( S; x ) =


� P
j 2 S x ( S )

j + `
�

P
j =2 S � j +

P
j 2 S � j + 

� P
j 2 S x ( S )

j + `
� . It can hence be seen that

W (x ) + Y (x ) is a stochastic matrix (the sum of elements in each
of its rows is 1).

Let U (x ) = ( I � W (x ) ) � 1Y (x ) 1, where 1 is the vector
whose each element is1. It is clear that all the elements ofU (x )

are non-negative. We will now show thatjjU (x ) jj1 � 1, that
is, the maximum element of the vectorU (x ) is not more than
1. Let uS0 be the element with the maximum value (one of the
maximum, if there are multiple). Supposeu(x )

S0
= jjU (x ) jj1 > 1.

So, we would have
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U ( x ) = ( I � W ( x ) ) � 1Y ( x ) 1

=) U ( x ) = W ( x ) U ( x ) + Y ( x ) 1

=) u( x )
S0

=
X

S 2 2U

u( x )
S W ( x ) (S0 ; S) + Y ( x ) (S0 ; S0)

=) u( x )
S0

< u ( x )
S0

X

S 2 2U

W ( x ) (S0 ; S) + u( x )
S0

Y ( x ) (S0 ; S0)

[* max
S

u( x )
S = u( x )

S0
> 1]

=)
X

S 2 2U

W ( x ) (S0 ; S) + Y ( x ) (S0 ; S0) > 1

However, this is a contradiction sinceW (x ) + Y (x ) is a
stochastic matrix. So, we have shown thatjjU (x ) jj1 = jj (I �
W (x ) ) � 1Y (x ) 1jj1 � 1. That is,(I � W (x ) ) � 1Y (x ) is either
stochastic or substochastic.
From Proposition 1,R (x )

i =( I � W (x ) ) � 1Y (x ) V (x )
i . Since(I �

W (x ) ) � 1Y (x ) is stochastic or substochastic,R(S;x )
i for eachS is

a linear combination (with weights summing to less than or equal

to 1) of V (S;x ( S ) )
i over allS 2 2U .

For eachS, V (S;x ( S ) )
i =

�
r � ci



�
x ( S )

iP
j 2 S x ( S )

j + `
. So we have

V (S;x ( S ) )
i <r � ci

 if r >c i ; andV (S;x ( S ) )
i >r � ci

 if r <c i .

Since R(S;x )
i for eachS is a linear combination (with weights

summing to less than or equal to 1) ofV (S;x ( S ) )
i over allS 2 2U ,

we haveR(S;x )
i < r � ci

 if r > c i , and R(S;x )
i > r � ci

 if
r <c i .

Lemma 2. In Scenario 1,R(S;x )
i is a monotone function ofx (S)

i .

Proof. We de�ne the following for simplifying notation.

A ( S; x )
i =

X

j =2 S

� j R̂( S [f j g;x )
i +

X

j 2 S

� j R̂( S nf j g;x )
i

E ( S; x ( S ) )
i =

X

j =2 S

� j +
X

j 2 S

� j + 

 
X

j 2 S nf i g

x ( S )
j + `

!

Hence, we can write

R( S; x )
i =

A ( S; x )
i + ( r � ci )x

( S )
i

E ( S; x ( S ) )
i + x ( S )

i

=)
dR( S; x )

i

dx( S )
i

=
(r � ci )E

( S; x ( S ) )
i � A ( S; x )

i�
E ( S; x ( S ) )

i + x ( S )
i

� 2

The denominator is positive, while the numerator is a constant

with respect tox (S)
i , sinceA (S;x )

i andE (S;x ( S ) )
i do not depend on

x (S)
i . So,R(S;x )

i is a monotone function ofx (S)
i , and whether it

is increasing or decreasing, depends on the sign of the numerator:

(r � ci )E
(S;x ( S ) )
i � A (S;x )

i .

Proposition 2. In MPE for Scenario 1, a playeri invests its
maximal power ifr > c i , no power ifr < c i , and any amount
of power ifr = ci .

Proof. Let W (S;x ) be the rowO(S) of W (x ) . Note thatA (S;x )
i =

(E (S;x ( S ) )
i + x (S)

i )W (S;x ) R̂(x )
i . From the proof of Lemma 2,

dR ( S; x )
i

dx ( S )
i

has same sign as(r � ci )E
(S;x ( S ) )
i � A (S;x )

i , which can

be written as

(r � ci )E
( S; x ( S ) )
i �  (E ( S; x ( S ) )

i + x ( S )
i )W ( S; x ) R̂( x )

i

= ( r � ci )E
( S; x ( S ) )
i �  (E ( S; x ( S ) )

i + x ( S )
i )( R̂( S; x )

i � Z ( S; x )
i )

= ( r � ci )E
( S; x ( S ) )
i �  R̂( S; x )

i (E ( S; x ( S ) )
i + x ( S )

i )

+ 
(r � ci )x

( S )
i

E ( S; x ( S ) )
i + x ( S )

i

(E ( S; x ( S ) )
i + x ( S )

i )

= ( r � ci )E
( S; x ( S ) )
i �  R̂( S; x )

i (E ( S; x ( S ) )
i + x ( S )

i )+  (r � ci )x
( S )
i

= ( r � ci )E
( S; x ( S ) )
i �  R̂( S; x )

i E ( S; x ( S ) )
i + x ( S )

i (r � ci �  R̂( S; x )
i )

= E ( S; x ( S ) )
i (r � ci �  R̂( S; x )

i ) + x ( S )
i (r � ci �  R̂( S; x )

i )

= ( r � ci �  R̂( S; x )
i )(E ( S; x ( S ) )

i + x ( S )
i )

= 
�

r �
ci


� R̂( S; x )

i

�
(E ( S; x ( S ) )

i + x ( S )
i )

SinceE (S;x ( S ) )
i + x (S)

i is positive, and(r � ci
 � R̂(S;x )

i ) has

the same sign as(r � ci ) from Lemma 1, we have thatdR ( S; x )
i

dx ( S )
i

has the same sign as(r � ci ). Also, note that ifr = ci , we
haveR(S;x )

i = 0 ; 8S 2 2U from Proposition 1 when� (S;x ( S ) ) =


� P
j 2 S x (S)

j + `
�

.
So, in any stateS, it is a dominant strategy for a playeri to

invest its maximal power ifr > c i , no power ifr < c i , and any
amount of power ifr = ci . Since the maximal power of a player
i would be bounded (let the bound bex i ), it would investx i if
r > c i . Hence, we have a consistent solution for the Bellman
equations that a playeri investsx i if r > c i , 0 if r < c i , and
any amount of power in the range[0; x i ] if r = ci .

Thus, the MPE strategy of a player follows a threshold policy,
with a threshold on its cost parameterci (whether it is lower than
r ) or alternatively, a threshold on the offered rewardr (whether
it is higher thanci

 ). Note that though a playeri invests maximal
power whenr > c i , this is not inef�cient since the power would
be spent for less time as the problem would get solved faster. An
intuition behind this result is that, when there are several miners in
the system, the competition drives miners to invest heavily. On the
other hand, when there are few miners in the system, miners invest
heavily so that the problem gets solved faster (before arrival of
more competition). Also, since the MPE strategies do not depend
on S, the assumption of state knowledge can be relaxed.

We now provide an intuition for why the MPE strategies are
independent of the arrival and departure rates. From Proposition 1,
R (x )

i = ( I � W (x ) ) � 1Z (x )
i . For r > c i , when powerx (S)

i

increases,Z (x )
i increases and(I � W (x ) ) � 1 decreases. But

R (x )
i increases withx (S)

i when r > c i (shown in the proof
of Proposition 2), implying that the rate of increase ofZ (x )

i
dominates the rate of decrease of(I � W (x ) ) � 1. So, the effect of
W (x ) and hence state transitions is relatively weak, thus resulting
in Markovian players playing strategies that are independent of the
arrival and departure rates. Similar argument holds forr � ci . It
would be interesting to study scenarios where the rate of problem
getting solved is a non-linear function of the players' invested
powers. While a linear function is suited to most distributed
computing applications, a non-linear function could possibly see
W (x ) having a strong effect leading to MPE being dependent on
the arrival and departure rates.

For analyzing the expected utility of a strategic playerj ,
let us consider that the power available to it is very large,
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say x j . Following our result on MPE, every playerj satis-
fying cj < r would invest x j entirely. So, we have that
 (

P
j 2 S;c j <r x j + `) is very large, and henceD (S;x ) (which

now approximates to (
P

j 2 S;c j <r x j + `)) is also very large.

Since we know thatR(S[f j g;x )
i and R(Snf j g;x )

i are bounded
by a small quantity from Lemma 1, the limit of the expected
utility R(S;x )

i computed in any stateS (from Equation (2)) is
x iP

j 2 S;c j <r x j + ` r � ci x i
 (

P
j 2 S;c j <r x j + ` ) . To get further insight

into this, saỳ is considered insigni�cant, that is, the computation
is dominated by strategic players. Furthermore, say for every
strategic playeri , ci < r , and let the very large amount of power
available to these players be the same (x i = x j ; 8i; j 2 U ).
Thus, the limit of the expected utilityR(S;x )

i computed in any
state S simpli�es to r

jSj � ci
 jSj . This is intuitive, since if

x i = x j ; 8i; j 2 U , the reward would be won by the players
with equal probability (hence the termr

jSj ), and the cost is reduced
owing to the reduced time due to the combined rate of the problem
getting solved (hence the termci

 jSj ).

4 SCENARIO 2: A NALYSIS OF MPE
Proposition 3. In MPE for Scenario 2, a playeri invests

x ( S )
i = max

�
 ( S )

�
1 �

ci  ( S )

r�

�
; 0

�

where  (S) = r�
j Ŝ j� 1+

q
( j Ŝ j� 1) 2 + 4`

r�

P
j 2 Ŝ cj

2
P

j 2 Ŝ cj
. Here, Ŝ is the

maximal set of playersj 2 S which collectively satisfy the
constraintscj < r�

 ( S ) .

Proof. Recall that sinceW (x ) is a strictly substochastic ma-
trix, (I � W (x ) ) � 1 = lim t !1

P t � 1
� =0 (W (x ) ) � . Since all the el-

ements ofW (x ) are non-negative, all the elements of(W (x ) ) �

also are non-negative for any natural number� , and hence all
the elements of(I � W (x ) ) � 1 are non-negative. Also, since
R (x )

i = ( I � W (x ) ) � 1Z (x )
i (Proposition 1) and sinceW (x )

is independent ofx (S)
i in this scenario, maximizing the compo-

nents ofZ (x )
i (namely,Z (S;x )

i ) individually with respect tox (S)
i

would essentially maximize all the elements ofR (x )
i . Now, since

� (S;x ( S ) ) = � in this scenario, we have

Z ( S; x )
i =

 
�

P
j 2 S x ( S )

j + `
r � ci

!
x ( S )

i

D ( S; x )

As D (S;x ) is independent ofx (S)
i in this scenario, it can be shown

thatZ (S;x )
i is a concave function with respect tox (S)

i (the second
derivative turns out to be � 2r`�

(
P

j 2 S x ( S )
j + ` )3 D ( S; x )

). The �rst order

condition dZ ( S; x )
i

dx ( S )
i

= 0 gives

x ( S )
i =

 
X

j 2 S

x ( S )
j + `

! 

1 �
ci

r�

� X

j 2 S

x ( S )
j + `

�
!

Let  (S) =
P

j 2 S x (S)
j + ` . As x (S)

i is non-negative, we have

x ( S )
i = max

�
 ( S )

�
1 �

 ( S )

r�
ci

�
; 0

�
(4)

Let Ŝ = f j 2 S : x (S)
j > 0g. We later show how to determine

setŜ. Summing the above over all players inS and then adding̀
on both sides, we get

X

j 2 S

x ( S )
j + ` =  ( S )

 

jŜj �
 ( S )

r�

X

j 2 Ŝ

cj

!

+ `

Substituting
P

j 2 S x (S)
j + ` as (S) , we get

1
r�

X

j 2 Ŝ

cj

�
 ( S )

� 2
� (jŜj � 1) ( S ) � ` = 0

Solving this equation for positive value of (S) , we get

 ( S ) = r�
jŜj � 1 +

q
(jŜj � 1)2 + 4`

r�

P
j 2 Ŝ cj

2
P

j 2 Ŝ cj

Substituting this expression for (S) in Equation (4) gives the
MPE strategy of playeri .

So,x (S)
i > 0 iff ci <

2
P

j 2 Ŝ cj

j Ŝ j� 1+
q

( j Ŝ j� 1) 2 + 4`
r�

P
j 2 Ŝ cj

. That is,

only players with cost parameters in a relatively low range in a
given state, invest. The constraint implies that if playeri invests,
then playerj with cj < c i also invests. So, there exists a threshold
player î such that any playerj with cj > c î would not invest.
Hence, setŜ can be constructed iteratively (initiating from an
empty set) by adding playersj from setS n Ŝ one at a time, in
ascending order ofcj , until the above constraint is violated for the
cost parameter of the newly added player.

To get a better understanding of this result, if the power`
invested by �xed players is considered insigni�cant, we have
 (S) = r� j Ŝ j� 1P

j 2 Ŝ cj
and the condition forx (S)

i > 0 simpli�es

to ci <
P

j 2 Ŝ cj

j Ŝ j� 1
.

Furthermore, if the strategic players are homogeneous (ci =
cj ; 8i; j 2 U ), the cost constraint is satis�ed for all players
in S (since c < jSjc

jSj� 1 ) and so, all the strategic players invest
r�
c

� jSj� 1
jSj2

�
. That is, if the computation is dominated by strategic

players which are homogeneous, they would invest proportionally
to the `reward to cost parameter' ratio in MPE.

Since the transition probabilities, and henceW (x ) , are con-
stant w.r.t. players' strategies in this scenario, a player's MPE
utility computed in stateS (R(S;x )

i ) is a linear combination
(with constant non-negative weights) of its utilities over all states
computed without accounting for state transitions. Hence, the
MPE strategies are independent of the arrival and departure rates.

Note that while the decision regarding whether or not to invest
was independent of the cost parameters of the other players in
the system in Scenario 1, this decision highly depends on the cost
parameters of other players in Scenario 2.

5 SIMULATION STUDY

Throughout the paper, we determined MPE strategies, which we
observed to be independent of players' arrival and departure rates.
However, it is clear from Equations (1), (2), (3) and Proposition 1
that the players' utilities would indeed depend on these rates.
We now study the effects of these rates on the utilities in MPE
using simulations. In order to reliably obtain an accurate relation
between the arrival/departure rates and the expected utilities of
the players, we consider that the computation is dominated by
the strategic players (that is, the power invested by the �xed
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players is insigni�cant:` ! 0) and the strategic players are
homogeneous (their arrival/departure rates and their cost param-
eters are the same). Let�; �; c denote the common arrival rate,
departure rate, and cost parameter, respectively. Note that if the
strategic players are considered homogeneous, the players' sets
(states) can be mapped to their cardinalities. We observe how the
expected utility of a player changes as a function of the number of
other players present in the system, for different arrival/departure
rates. In our simulations, we consider the following values:
r = 105;  = � = 0 :1; jUj = 104; c = 0 :003 (a justi�cation
of these values is provided in Appendix).

Statewise Nash Equilibrium. For a comparative study, we also
look at the equilibrium strategy pro�le of a given set of players
S, when there are no arrivals and departures (� j = 0 ; 8j =2 S
and � j = 0 ; 8j 2 S). We call this,statewiseNash equilibrium
(SNE) in stateS. Since the MPE strategies of the players are
independent of the arrival and departure rates, a player's SNE
strategy in a state is same as its MPE strategy corresponding to
that state. Note, however, that the expected utilities in SNE would
be different from those in MPE, since the expected utilities highly
depend on the arrival and departure rates (Equations (1), (2), (3)
and Proposition 1). Also, since SNE does not account for change
of the set of players present in the system, the expected utilities
in SNE for different values on X-axis in the plots are computed
independently of each other.

5.1 Simulation Results

In Figures 1 and 2, the plots for expected utility largely follow
near-linear curve (of negative slope) on log-log scale, with respect
to the number of players in the system. That is, they nearly follow
power law, which means that scaling the number of players by
a constant factor would lead to proportionate scaling of expected
utility.

Scenario 1. Figure 1 presents plots for expected utilities with
MPE policy for various values of� and � , and compares them
with expected utilities in SNE. Following are some insights:

� As seen at the end of Section 3, if the mining is dominated by
strategic players which are homogeneous, the expected utilities
in MPE are bounded byrjSj �

c
 jSj . It can be similarly shown that

the limit of the players' expected utilities in SNE isrjSj � c
 jSj

(this can be seen by substituting in Equation (2):� j = 0 8j =2
S, � j = 0 , cj = c, x (S)

j ! 1 ; 8j 2 S, and` ! 0). Owing to
this, the expected utilities in MPE are bounded by the expected
utilities in SNE, which is re�ected in Figure 1.

� In Scenario 1, a higher� results in a higher likelihood of the
system having more players, which results in a higher rate of
the problem getting solved as well as more competition. This,
in turn, reduces the time spent in the system as well as the prob-
ability of winning for each player, which hence reduces the cost
incurred as well as the expected reward. Figure 1(a) suggests
that, as� changes, the change in cost incurred balances with the
change in expected reward, since the change in expected utility
is insigni�cant.

� For a given� , if the number of players changes, there is a
balanced tradeoff between the cost and the expected reward as
above; so the change in expected utility is insigni�cant. But a
higher � results in a higher probability of playeri departing
from the system and staying out when the problem gets solved,
thus lowering its expected utility (Figure 1(b)).

100 101 102 103 104

Number of other players

100

101

102

103

104

105

E
xp

ec
te

d 
ut

ili
ty

��  = 0
��  = 1
��  = 10
��  = 100
��  = 1000
SNE

(a) for different� 's (� = 10) (b) for different� 's (� = 10)

Fig. 1. Expected utility of a player in Scenario 1

(a) for different� 's (� = 10) (b) for different� 's (� = 10)

Fig. 2. Expected utility of a player in Scenario 2

Scenario 2. Since a player's SNE strategy in a state is same
as its MPE strategy corresponding to that state, a player's SNE
startegy is to investr�c

� jSj� 1
jSj2

�
in stateS (as explained at the end

of Section 4 when computation is dominated by strategic players
that are homogeneous). Furthermore, in SNE, the expected utility
of each player can be shown to berjSj2 in stateS (this can be
seen by substituting in Equation (3):� j = 0 8j =2 S, � j = 0 ,
cj = c, x (S)

j = r�
c

� jSj� 1
jSj2

�
; 8j 2 S, and ` ! 0). Figure 2

presents the plots for expected utilities with the analyzed MPE
policy for different values of� and� , and compares them against
SNE. Following are some insights:

� An increase in the number of players increases competition for
the offered reward and hence reduces the reward per unit time
received by each player, with no balancing factor (unlike in
Scenario 1); so the expected utility decreases.

� For higher � , there is higher likelihood of system having
more players, thus resulting in lower expected utility owing to
aforementioned reason. Also, from Figure 2(a), if� is not very
high, an increase in� is likely to reduce the competition to the
extent that the expected MPE utility when the number of players
in the system is large, can exceed the corresponding SNE utility
( r

jSj2 , which would be very low when the number of players in
the system is large).

� A higher � likely results in less competition, however it also
results in a higher probability of playeri departing from the
system and hence losing out on the reward for the time it stays
out; this leads to a tradeoff. Figure 2(b) shows that the effect of
the probability of playeri departing from the system dominates
the effect of the reduction in competition. For similar reasons as
above, the expected MPE utility when the number of players in
the system is large, can exceed the corresponding SNE utility.
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6 FUTURE WORK

One could study a variant of Scenario 1 where the rate of problem
getting solved (and perhaps also the cost) increases non-linearly
with the invested power. Since players are seldom completely
rational in real world, it would be useful to study the game under
bounded rationality. To develop a more sophisticated stochastic
model, one could obtain real data concerning the arrivals and
departures of players and their investment strategies. Another
promising possibility is to incorporate state-learning in our model.
A Stackelberg game could be studied, where the system de-
cides the amount of reward to offer, and then the computational
providers decide how much power to invest based on the offered
reward.

APPENDIX

We take cues from bitcoin mining for our numerical simulations.
The current offered reward for successfully mining a block is12:5
bitcoins. Assuming 1 bitcoin� $8000, the reward translates to
$105. The bitcoin problem complexity is set such that it takes
around10minutes on average for a block to get mined. That is, the
rate of problem getting solved is0:1 per minute on average. One
of the most powerful ASIC (application-speci�c integrated circuit)
currently available in market is Antminer S9, which performs
computations of upto 13 TeraHashes per sec, while consuming
about1:5 kWh in 1 hour, which translates to$0:18 per hour (at
the rate of$0:12 per kWh), equivalently$0:003 per minute. As
per BitNode (bitnodes.earn.com), a crawler developed to estimate
the size of bitcoin network, the number of bitcoin miners is
around104. Hence, we considerr = 105;  = � = 0 :1; c =
0:003; jUj = 104.
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“A survey on networking games in telecommunications,”Computers &
Operations Research, vol. 33, no. 2, pp. 286–311, 2006.

[11] E. Altman, R. El-Azouzi, and T. Jimenez, “Slotted Aloha as a stochastic
game with partial information,” inWiOpt'03: Modeling and Optimization
in Mobile, Ad Hoc and Wireless Networks, 2003, p. 9 pages.

[12] B. Wang, Y. Wu, K. R. Liu, and T. C. Clancy, “An anti-jamming
stochastic game for cognitive radio networks,”IEEE Journal on Selected
Areas in Communications, vol. 29, no. 4, pp. 877–889, 2011.

[13] F. Fu and U. C. Kozat, “Stochastic game for wireless network virtualiza-
tion,” IEEE/ACM Transactions on Networking, vol. 21, no. 1, pp. 84–97,
2013.

[14] E. Altman, “Non zero-sum stochastic games in admission, service and
routing control in queueing systems,”Queueing Systems, vol. 23, no.
1-4, pp. 259–279, 1996.

[15] M. Bowling and M. Veloso, “An analysis of stochastic game theory for
multiagent reinforcement learning,” Carnegie-Mellon University Pitts-
burgh Pennsylvania School of Computer Science Technical Report No.
CMU-CS-00-165, Tech. Rep., 2000.

[16] N. Bellomo, Modeling complex living systems: A kinetic theory and
stochastic game approach. Springer Science & Business Media, 2008.

[17] E. Altman and N. Shimkin, “Individual equilibrium and learning in
processor sharing systems,”Operations Research, vol. 46, no. 6, pp. 776–
784, 1998.

[18] A. Nahir, A. Orda, and D. Raz, “Workload factoring with the cloud:
A game-theoretic perspective,” inIEEE International Conference on
Computer Communications (INFOCOM), vol. 12. IEEE, 2012, pp.
2566–2570.

[19] R. Hassin and M. Haviv, “Nash equilibrium and subgame perfection in
observable queues,”Annals of Operations Research, vol. 113, no. 1-4,
pp. 15–26, 2002.

[20] J. Wang and F. Zhang, “Strategic joining in M/M/1 retrial queues,”
European Journal of Operational Research, vol. 230, no. 1, pp. 76–87,
2013.

[21] J. Hu and M. P. Wellman, “Nash Q-learning for general-sum stochastic
games,”Journal of Machine Learning Research, vol. 4, no. Nov, pp.
1039–1069, 2003.

[22] C. Jiang, Y. Chen, Y.-H. Yang, C.-Y. Wang, and K. R. Liu, “Dynamic
Chinese restaurant game: Theory and application to cognitive radio
networks,” IEEE Transactions on Wireless Communications, vol. 13,
no. 4, pp. 1960–1973, 2014.

[23] C.-Y. Wang, Y. Chen, and K. R. Liu, “Game-theoretic cross social media
analytic: How Yelp ratings affect deal selection on Groupon?”IEEE
Transactions on Knowledge and Data Engineering, vol. 30, no. 5, pp.
908–921, 2018.

[24] I. Abraham, D. Dolev, R. Gonen, and J. Halpern, “Distributed computing
meets game theory: Robust mechanisms for rational secret sharing and
multiparty computation,” inACM Symposium on Principles of Dis-
tributed Computing. ACM, 2006, pp. 53–62.

[25] Y.-K. Kwok, S. Song, and K. Hwang, “Sel�sh grid computing: Game-
theoretic modeling and NAS performance results,” inIEEE International
Symposium on Cluster Computing and the Grid. IEEE, 2005.

[26] G. Wei, A. V. Vasilakos, Y. Zheng, and N. Xiong, “A game-theoretic
method of fair resource allocation for cloud computing services,”The
Journal of Supercomputing, vol. 54, no. 2, pp. 252–269, 2010.

[27] B.-G. Chun, K. Chaudhuri, H. Wee, M. Barreno, C. H. Papadimitriou, and
J. Kubiatowicz, “Sel�sh caching in distributed systems: A game-theoretic
analysis,” inACM Symposium on Principles of Distributed Computing.
ACM, 2004, pp. 21–30.

[28] D. Grosu and A. T. Chronopoulos, “Noncooperative load balancing in
distributed systems,”Journal of Parallel and Distributed Computing,
vol. 65, no. 9, pp. 1022–1034, 2005.

[29] A. Sapirshtein, Y. Sompolinsky, and A. Zohar, “Optimal sel�sh mining
strategies in bitcoin,” inInternational Conference on Financial Cryptog-
raphy and Data Security. Springer, 2016, pp. 515–532.

[30] Y. Lewenberg, Y. Bachrach, Y. Sompolinsky, A. Zohar, and J. S. Rosen-
schein, “Bitcoin mining pools: A cooperative game theoretic analysis,” in
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS). IFAAMAS, 2015, pp. 919–927.

[31] Z. Xiong, S. Feng, D. Niyato, P. Wang, and Z. Han, “Optimal pricing-
based edge computing resource management in mobile blockchain,” in
IEEE International Conference on Communications (ICC). IEEE, 2018,
pp. 1–6.

[32] E. Altman, A. Reiffers, D. S. Menasché, M. Datar, S. Dhamal, and
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