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ABSTRACT. In this paper, we developed a mathematical model that describes the infestation dy-
namics of coffee berry by Hypothenemus hampei (CBB). This model takes into account control some
integrated pest management strategies which are used by coffee growers to eradicate CBB in plan-
tations, represented by two functions depending on time. We design these functional controls to
maximize the yield of healthy berries at the end of the cropping season, while minimising the borer
population for the next cropping season and the control costs. By using optimal control theory, we
show that an optimal control exists for this problem and Pontryagin’s maximum principle is used to
characterize an optimal control. Numerical simulations are provided to illustrate our results.

RÉSUMÉ. Dans ce papier, nous développons un modèle mathématique qui décrit la dynamique
d’infestation des baies du caféier par les scolytes (CBB). Ce modèle prend en compte certaines
stratégies de lutte intégrée utilisées par les caféiculteurs pour éradiquer les CBB dans les plantations,
représentées par deux fonctions dépendantes du temps. Nous concevons ces contrôles fonctionnels
pour maximiser le rendement des baies saines à la fin de la saison, tout en minimisant la population
de CBB pour la prochaine saison et les coûts de contrôle. En utilisant la théorie du contrôle optimal,
nous montrons qu’un contrôle optimal existe pour ce problème et le principe du maximun de Pon-
tryagin est utilisé pour caractériser ce contrôle optimal. Des simulations numériques sont faites pour
illustrer nos résultats.
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1. Introduction
Coffee plays an important role in the economic growth of many developing countries

such as Brazil, Cameroon, Ethiopia, Ivory Coast, Mexico, Viet Nam and many others.
Coffee production throughout the world is affected by several pests and diseases. Among
these pests, the coffee berry borer (CBB), Hypothenemus hampei, is considered as the
most important pest economically [2, 1, 9]. The CBB feeds and spends its entire devel-
opment cycle in the berries, developing in the berry of the coffee tree in all maturation
stages. It causes direct loss such as a reduction of coffee production and indirect losses
such as a lowering of the quality of the coffee berries. Sibling mating inside the berry
makes this insect quite difficult to control. The levels of infestation of CBB in coffee
growing areas are estimated at 60% in Mexico, 50− 90% in Malaysia, 60% in Colombia,
75% in Jamaica, 80% in Uganda and 90% in Tanzania [8]. It is now present in almost all
of the major coffee producing countries. It lives the greatest part of its life cycle inside
the coffee berry, which involves egg laying followed by the emergence of adult females
from the berry. The life cycle of the CBB is composed of four stages: eggs, larvae,
nymphs and adults. Mature females are responsible for the dispersal of the population:
they emerge from the berries to colonize and lay their eggs in new berries, while males
and larvae stages remain inside the berries. Faced with the extent of the damages, several
programs and control methods have been developed by the coffee growers, such as im-
proved cultural practices, chemical and biological control and trapping [2, 1, 9]. In this
paper, we propose an epidemiological model to describe the dynamics of infestation of
coffee berries by CBB. This model takes into account several control strategies. Our aim
is to design an optimal strategy, that maximizes the yield of healthy berries at the end of
the cropping season, while minimizing the CBB population for the next season.

After a formulation of the model and the control problem in Section 2, we study the
stability of equilibrium points in the absence of control in Section 3. In Section 4, we
prove the existence of the optimal control which is later characterized in Section 5. We
illustrate these analytical results by simulations in Section 6 and conclude our work.

2. The model
We propose an epidemiological model of infestation of coffee berries by CBB. We

subdivide the total number of coffee berries into two compartments: the healthy coffee
berries s, and the infested coffee berries i. We assume that the new coffee berries are pro-
duced at a constant rate Λ and we place ourselves during a cropping season. We assume
that adult males are not limited, so we only consider female CBB, which are responsible
for dispersal and host selection. We subdivide the female population in two compart-
ments: the colonizing females or host-searching females which emerge from the berries
and search for a new host denoted by y and the infesting females who can find and in-
fested the coffee berry and denoted by z. The healthy berries are submitted to a force
of infestation β y

y+d by colonizing females, which compete for this resource, hence the
saturation term. We denote by µ and δ the natural mortality of healthy and infested coffee
berries respectively. According to the biology of CBB, we assume that the average num-
ber of new colonizing females produced is taken proportional of the number of infesting
females. Let φ be that average number per unit of time. We denote by µy and µz the
natural mortality rates of colonizing and infesting females respectively. We denote by ε



the conversion parameter from the coffee berries to CBB population, that is the number
of CBB colonizing females that can infest one unit of healthy berry. Usually ε = 1, but if
the infestation process fails, ε < 1. The first control u represents the efforts made to re-
duce the infestation of healthy coffee berries. In practice, this control function represents
the biological control using entomopathogenic fungi such as Beauveria bassiana, that is
applied to the surface of the coffee berries and that kills the colonizing females of CBB
when they drill an entry hole into the coffee berries [1]. The second control v represents
the efforts made to reduce the colonizing females. It consists mainly of the use of chem-
icals, traps and the parasitoids. We associate to these control functions, the parameters
αi ∈ (0, 1), i = u, v which measure the effectiveness of control u and v respectively. The
dynamics of CBB is given by the following nonlinear differential equations:

s′ = Λ− (1− αuu)β
sy

y + d
− µs

i′ = (1− αuu)β
sy

y + d
− δi

y′ = φz − εβ sy

y + d
− (µy + αvv) y

z′ = (1− αuu)εβ
sy

y + d
− µzz

(1)

Since variable i does not interact with the other variables of system (1), its dynamics can
be decoupled from the system. We will focus on the dynamics of the other three variables.
Thus we obtain the following system:

s′ = Λ− (1− αuu)β
sy

y + d
− µs

y′ = φz − εβ sy

y + d
− (µy + αvv) y

z′ = (1− αuu)εβ
sy

y + d
− µzz

(2)

The goal of coffee farmers is the production of high quality coffee at the best market
price produced at lowest cost. So our problem consists in maximizing the yield at the end
of the cropping season, while minimizing the coffee berry borer population for the next
season. Since all these methods of control are expensive and require a lot of energy in
their implementation. We propose the following objective function:

J (u, v) =

∫ tf

0

1

2

[
Cuu

2(t) + Cvv
2(t)

]
dt−Dss(tf ) +Dyy(tf ) (3)

where tf represents the time at the end of the cropping season and the parameters, Cu and
Cv measure the relative cost of interventions associated with controls u and v respectively;
Ds and Dy represent the weights of healthy coffee berries and of colonizing females at
the end of the season respectively. The set of admissible controls is defined as follows

U =
{
u, v ∈ L1(0, tf )/(u, v) ∈ [0, 1]× [0, 1],∀t ∈ [0, tf ]

}
(4)



Table 1. Biological meaning and value of parameters (with s in number of berries and y, z
in number of females).

symbol Description value
Λ Production rate of new coffee berries 1200 berries day−1

µ Natural mortality rate of healthy coffee berries 0.01 day−1

φ Emergence of new colonizing females 2 day−1

β Infestation rate 0.0125 day−1

d Saturation constant 2 females
ε Conversion rate from coffee berries to CBB 1 female berry−1

µy Natural mortality rate of colonizing females 1/81 day−1

µz Natural mortality rate of infesting females 1/28 day−1

αu Effectiveness rate of control u(t) 0.62
αv Effectiveness rate of control v(t) 0.31

The problem now is to find the control pair (u?, v?) satisfying:

J (u?, v?) = min
(u,v)∈U

J (u, v) (5)

3. Basic properties
For model (2) to be biologically acceptable, it is important to show that all these

variables are always positive when time evolves.

Theorem 1 If the initial condition (s(0), y(0), z(0)) ∈ R3
+, then the solution (s(t), y(t), z(t))

of system (2) are non negative for all time t > 0 and bounded. Moreover, the compact set

Ω =

{
(s, y, z) ∈ R3

+/s ≤
Λ

µ
, εs+ z ≤ εΛ

ξ
, y ≤ εφΛ

ξµy

}
where ξ = min{µ, µz}, is positively invariant for the model system (2).

Proof: See Appendix A.
In the absence of controls ( u = v = 0), system (2) has one trivial equilibrium

E0 = (s0, 0, 0) where s0 = Λ
µ , which corresponds to a plantation without infestation.

Thereafter, we will define the basic offspring number which is the average number of
new females originated from a single infesting female in the healthy coffee berries in
plantation. The basic offspring number is defined by

N =
εφβ s

0

d

µz
(
εβ s

0

d + µy
) . (6)

Lemma 1 There exists another coexistence equilibrium E∗ = (s∗, y∗, z∗) which is bio-
logically realistic when N > 1:

s∗ =
Λ +

µyd
εT

β + µ
, y∗ =

µz
µy
T z∗, z∗ =

µd
(
εβs0

d + µy

)
µz(β + µ)T

(N − 1) with T =
φ

µz
−1.



It is easy to prove that N > 1 implies T > 0.
The long term behavior of model system (2) without controls is given by:

Proposition 1 1) The trivial equilibrium E0 is locally asymptotically stable when-
ever N < 1, and unstable otherwise.

2) The coexistence equilibrium E∗ exists and is locally asymptotically stable when-
ever N > 1.

Proof: See Appendix B.
The aim of our control problem is to prove the existence of the optimal control and

uniqueness of the optimality system and the characterisation of the optimal control.

4. Existence of an optimal control
The existence of an optimal control is obtained by the theorem of Fleming and Richer

[4].

Theorem 2 There exists an optimal control pair (u?, v?) and a corresponding solution
(s?, y?, z?) of the initial value problem (2) that minimizes the cost function J in U such
that

J (u?, v?) = min
(u,v)∈U

J (u, v) (7)

Proof: we use Theorem 4.1 in Fleming and Ricker [4] which gives the conditions
of existence of optimal control for the optimal system (2), which we recall here for self-
containeness:

(i) the set of controls and corresponding state variables is non-empty;
(ii) the control set U is convex and closed;

(iii) the right hand side of the state system (2) is bounded by a linear function in the state
and control variable;

(iv) there exist constants ζ1, ζ2 > 0 and β > 1 such that the integrand function define
by f0 of the objective functional satisfies f0(t, x̃, ũ) ≥ ζ1‖ũ‖β − ζ2 for all t ∈ [0, tf ].

The existence of the solution of system (2) is obtained in using the result from Lukes
[5](Theorem 9.2.1), since system (2) has bounded coefficients and any solution is bounded
on the finite interval time [0, tf ], so condition (i) is satisfied. By definition, the con-
trol set U is convex and closed, so condition (ii) is satisfied. The right hand side of
the state system satisfies condition (iii) since we have a linear dependence of the state
equations on controls u and v. Finally, the integrand function f0 of the objective func-
tional is clearly convex in the controls since it is quadratic. Moreover, since all states are
bounded, it is easy to find ζ > 0 such that we have f0(t, x̃, ũ) = 1

2 (Cuu
2 + Cvv

2) ≥
1
2 min{Cu, Cv}(u2 +v2)− ζ ≥ 1

2 min{Cu, Cv}‖ũ‖2− ζ which proves property (iv). We
conclude that there exists an optimal control pair (u?, v?) that minimizes the cost function
J in U .

5. Characterization of the optimal control
Since an optimal control minimizing the objective function (3) exists, we use Pon-

tryagin’s principle [7] to have the necessary conditions for the optimal control u? and



v? of our control problem . Let x̃ = (s, y, z) and ũ = (u, v) ∈ U . According to this
principle, there exists a nontrivial absolutely continuous mapping λ : [0, tf ] −→ R3,
t 7−→ λ(t) = (λ1(t), λ2(t), λ3(t)) called the adjoint vector containing the adjoint vari-
ables. We define the Hamiltonian by

H(x̃, λ, ũ) =
1

2

[
Cuu

2 + Cvv
2
]

+ λ1

[
Λ− (1− αuu)β

sy

y + d
− µs

]
+ λ2

[
φz − εβ sy

y + d
− (µy + αvv)y

]
+ λ3

[
(1− αuu)εβ

sy

y + d
− µzz

]
.

Theorem 3 Given an optimal control (u?, v?) and corresponding solutions (x?, y?, z?),
there exist adjoint variables λi(t) for i = 1, 2, 3 satisfying the following system of linear
differential equation

λ′1 = [(λ1 − ελ3)(1− αuu) + ελ2]β
y

y + d
+ µλ1

λ′2 = [(λ1 − ελ3)(1− αuu) + ελ2]β
ds

(y + d)2
+ λ2(µy + αvv)

λ′3 = −λ2φ+ µzλ3

(8)

for almost all t ∈ [0, tf ], with transversality conditions λ1(tf ) = −Ds, λ2(tf ) = Dy

and λ3(tf ) = 0. Furthermore, we can characterize the optimal control pair by

u?(t) = min

{
max

{
0,

1

Cu
(ελ3 − λ1)αuβ

sy

y + d

}
, 1

}
;

v?(t) = min

{
max

{
0,
αv
Cv

λ2y

}
, 1

}
.

Proof: We use the direct application of Pontryagin’s maximum principle for bounded
control [7]. The differential equations governing these adjoint variables (λi)i={1,2,3} are
obtained by differentiation of the Hamiltonian (8), evaluated at the optimal control:

λ′1 = −∂H
∂s

, λ′2 = −∂H
∂y

, and λ′3 = −∂H
∂z

and the traversality conditions are obtained by λ1(tf ) =
[
∂Θ
∂s

]
t=tf

, λ2(tf ) =
[
∂Θ
∂y

]
t=tf

and λ3(tf ) =
[
∂Θ
∂z

]
t=tf

with the function Θ(x̃) = −Dss+Dyy. To determine an explicit
expression for the optimal control (u?, v?), we use the standard optimality technique
given in [6]. On the set I1 = {t ∈ [0, tf ] : 0 < u?(t) < 1 0 < v?(t) < 1} ; The
minimum condition is

∂H
∂u

= Cuu+ (λ1 − ελ3)αuβ
sy

y + d
= 0,

∂H
∂v

= Cvv − αvλ2y = 0;

Thus, the controls have the explicit expression given by:

u?(t) =
1

Cu
(ελ3 − λ1)αuβ

sy

y + d
and v?(t) =

αv
Cv

λ2y.



On the set I2 = {t ∈ [0, tf ] : u?(t) = 0}, the minimum condition of control u? is given
by ∂H

∂u ≥ 0, which implies that 1
Cu

(ελ3 − λ1)αuβ
sy
y+d ≤ 0.

On the set I3 = {t ∈ [0, tf ] : u?(t) = 1}, then the minimum condition of control
u? is ∂H

∂u ≤ 0, which implies that 1
Cu

(ελ3 − λ1)αuβ
sy
y+d ≥ 0. All these criteria on the

control u? can be written in the compact form given in the theorem. The characterization
of control v? is obtained in a similar way.

6. Numerical simulations
In this section, we present the numerical solution of our control problem and com-

pare it with the solution in the absence of controls. We use the forward-backward sweep
method to solve numerically our optimal model[6]. The process begins by using an initial
guess on the control variable, then the state variables are solved simultaneously forward
in time with a semi-implicit finite difference method developed and the adjoint equations
are solved using the backward semi-implicit finite difference method. The controls are
updated by inserting the new values of state and adjoint variables into its characterization.
We assume that the implementation costs of these controls are Cu=3 day−1 and Cv= 1
day−1 and we use the following weights, Ds = 1 berry−1 and Dy=1 female−1 with initial
values (s(0), y(0), z(0)) = (0, 20, 0). The other parameter values are given in Table 1.
Since coffee berries become mature after 8–9 months, we simulate the system (2) over a
period tf = 250 days.

The simulations plots are given in figure 1. We compare the cases with (dashed red
curves) and without (plain blue curves) controls in the presence of pests. We observe
that the control u(t) (lower-right panel: black curve) significantly reduces infestation
(lower-left panel) and increases at its maximum value at almost mid-season, while control
v(t) (lower-right panel: magenta curve) greatly reduces colonizing females at the end of
season (upper-right panel: 6 × 104 females instead of 2.5 × 106 at tf ). The fairly long
and high application of these controls, especially of u(t), is due to the relatively low costs
of the controls. The yield increases with the controls (upper-left) but, due to the limited
effectiveness of the controls (parameters αu and αv), it remains below its value in the
pest-free case (plain green curve).

7. Conclusion
In this paper, we formulate a deterministic epidemiological control model that de-

scribes the infestation of coffee berries by the CBB. We have designed an optimal control
problem that consists in maximizing the yield of healthy berries at the end of the cropping
season, while minimizing the CBB population for the next season. We have computed the
basic offspring number and investigated the existence and stability of equilibria in the
absence of controls. We have showed that an optimal control exists and that it can be
characterized using the Pontryagin’s maximum principle. Furthermore, we have solved
numerically the system to assess the role of controls on dynamics of CBB population.
This numerical result shows that, the application of these controls reduce the CBB popu-
lation and increase the healthy berries at the end of the cropping season.
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Figure 1. Simulations of system (2) with (plain blue curves) or without (dashed red curves)
controls. Upper-left panel: healthy coffee berries s (plain green curve: pest-free case);
Upper-right: colonizing females y; Lower-left: infesting females z; Lower-right: evolution of
controls u(t) (plain black curve) and v(t) (plain magenta curve).
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Appendix. A:
For any initial condition (s(0), y(0), z(0)) ∈ R3

+, the corresponding solution
(s(t), y(t), z(t)) of system (1) lies in R3

+, since we have s′|s=0
= Λ > 0, y′|y=0

=

φz ≥ 0 and z′|z=0
= (1 − αuu)εβ sy

y+d ≥ 0. Therefore, all solutions of system (2) with
initial positive condition stay in first quadrant. Hence, R3

+ is positively invariant.
Since all variables are nonnegative for all t > 0, then s′(t) ≤ Λ − µs(t). It can be

shown that using a standard comparison principle, that

s(t) ≤ s(0)e−µt +
Λ

µ

(
1− e−µt

)
(9)

from which we deduce that s ≤ Λ
µ if s(0) ≤ Λ

µ and we have lim s(t) ≤ Λ
µS

.
Let z̃(t) = εs(t) + z(t) and ξ = min{µ, µz}, then adding the first and third equation

of model system (2), we obtain

z̃(t) = εΛ− εµy − µzz ≤ εΛ− ξz̃(t). (10)

In particular z̃(t) ≤ εΛ
ξ if z(0) ≤ εΛ

ξ and we have lim supt→∞ z̃(t) ≤ εΛ
ξ . Now, using

the second equation of model system (2), we have

y′(t) ≤ φz(t)− µyy ≤
φεΛ

ξ
− µyy. (11)

proceeding in the same way as previously, then y(t) ≤ φεΛ
ξµy

if y(0) ≤ φεΛ
ξµy

and we have

lim supt→∞ y(t) ≤ φεΛ
ξµy

.

Appendix. B:
A method for computing the basic reproduction number in epidemiological models

which corresponds to the number of secondary infections produced by a single infectious
individual in a susceptible population was developed in [3]. We use the same technique
to compute the basic offspring number for model system (2 in absence of controls.

Let x̃ = (s, y, z) be the set of state variables. The system (2) can be rewritten as
dx̃i

dt = Fi(x̃)−Vi(x̃), whereFi is the rate of new recruits (birth of new colonizing females)
in compartment i, Vi = V −i − V +

i , where V +
i representing the rate of transfer into a

compartment i by all other means, and V −i is the rate of transfer out the compartment i.
For this model, F and V are given by

F =

 0
φz
0

 ; V =

 −Λ + β sy
y+d + µs

εβ sy
y+d + µyy

−εβ sy
y+d + µzz

 .
To obtain the next generation matrix, we compute the Jacobian matrices of F and V
denoted by R = JF (E0) and T = JV (E0). Here, we have

R =

 0 0 0
0 0 φ
0 0 0

 ; T =

 µ β s
0

d 0

0 εβ s
0

d + µy 0

0 −εβ s
0

d µz

 .



The basic offspring is obtained by computing the spectral radius of the next generation
matrix RT−1:

N = ρ(RT−1) =
εφβ s

0

d

µz
(
εβ s

0

d + µy
) . (12)

The immediate consequence of the next generation method is that, the equilibrium E0 is
locally asymptotically stable if N < 1 and unstable otherwise.

The Jacobian matrix associated with system (2) at equilibrium point E∗ is given by:

J =

 −β
y∗

y∗+d − µ −β s∗d
(y∗+d)2 0

−εβ y∗

y∗+d −εβ s∗d
(y∗+d)2 − µy φ

εβ y∗

y∗+d εβ s∗d
(y∗+d)2 −µz

 .

The characteristic equation of which is

λ3 + a2λ
2 + a1λ+ a0 = 0.

where

a0 = µyµzβ
y∗

y∗ + d
+ µµyµz

(
1− d

y∗ + d

)
;

a1 =

(
µ+

βy∗

y∗ + d

)
(µz + µy) + µε

βs∗d

(y∗ + d)2
+ µyµz

(
1− d

y∗ + d

)
;

a2 = µz + µ+ µy +
βy∗

y∗ + d
+

εβs∗d

(y∗ + d)2
.

Since a2, a1 and a0 are positive, The Routh-Hurwitz criterion for stability only im-
poses the a2a1 − a0 > 0 needs to be positives, which can easily be shown. This implies
that E∗ exists and is asymptotically stable if and only if N > 1.


