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Abstract

In this article we consider the stabilization problem by a relay control using non-quadratic Lyapunov functions. First, a general result
is proposed for the case of nonlinear systems. A full state relay feedback controller is designed in order to ensure the local asymptotic
stability of the closed-loop system. Then, the result is applied to the particular case of LTI systems. A constructive method based on LMI
conditions is given in order to design nonlinear switching surfaces and provide an estimation of a non-ellipsoidal domain of attraction.
In addition, the approach is extended to observer-based relay feedback. Both linear and nonlinear switching surfaces dependent on the
estimated state are designed while using a Luenberger observer. Finally, illustrative examples are proposed in order to show the efficiency
of the proposed methods and simulations are performed for a Buck converter structure.

Key words: relay control, linear time invariant systems, nonlinear switching surfaces, switched affine systems, local asymptotic
stabilization.

1 Introduction

Relay feedback systems present the simplest class of
switched control systems [33]. They are widely used in dif-
ferent application fields - see for instance [23], [34], [49],
[50]. They are motivated by their use in simple electrical
(DC-DC converters) [14], [15], electromechanical [3], [47],
and aerospace applications [18], [19]. They are also used
for quantization errors modelling in digital control [33],
[39], delta-sigma modulator design in signal processing
[44], and controllers auto-tuning [23].

Relay systems are known for being simple, efficient and ro-
bust [16], [26], [41]. However, they may present complex
phenomena which make their study very challenging : zeno
solutions, limit cycles, chattering or sliding modes (see for
instance [21], [28], [29], and [48]). They are related to hy-
brid systems and more particularly to switched affine sys-
tems [11], [13], [20], [24], [31]. Various approaches have
been proposed for relay feedback control design in the litera-
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ture, both in the space domain and in the frequency domain -
see for instance [9], [26], [40], and [41]. However, the prob-
lem of relay feedback control design is still widely open.
Recently, a convex embedding formalism has been used in
order to design a stabilizing switching law [26]. The design
procedure uses the existence of an exponentially globally
stabilizing state feedback controller as a reference control
to be emulated by a relay feedback controller.

The work in this paper is in the same spirit. We generalize
the approach in several directions. In [26] consideration is
given to the stabilization of linear systems by relay feed-
back controllers. Here, we propose a general framework for
the design of a relay feedback control in the case of non-
linear input-affine systems. The designed switching surfaces
in [26] are linear and local stabilization of the closed-loop
system is ensured in an ellipsoidal domain of attraction. In
this paper we propose a numerical method for the design
of nonlinear switching surfaces using non-quadratic Lur’e
type Lyapunov functions. Local stability of the closed-loop
system is guaranteed in a larger non-ellipsoidal domain of
attraction. Since the state variables in real systems are not
always fully available to measurements, the approach is gen-
eralized to observer-based control. To the best of our knowl-
edge, no observer-based relay control design method exists
in the literature. We also provide a separation principle for
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LTI systems with an observer-based relay controller while,
to the best of our knowledge, the separation principle exists
only for systems with continuous controller [43] and thus
can not be applied to relay systems. In order to illustrate
the efficiency of the proposed methods a numerical example
is used and simulations are performed for a Buck converter
structure.

The result can be related to the simplex method [7]. We use
numerical tools which are inspired from convex optimization
approaches employed for systems with saturated actuators
[8], [10], [45] and LMIs [1], [2], [35].

The paper is structured as follows: Section 2 gives some
preliminaries and exposes the problem under study. In Sec-
tion 3 we consider the case of full state relay feedback con-
trol design. The section is organized as follows : in the first
part a general result is given for the local asymptotic stabi-
lization of nonlinear affine systems with relay feedback. In
the second part, we propose an LMI based approach allow-
ing the design of nonlinear state-dependent switching laws
that ensure the stability of LTI systems and provide a non-
ellipsoidal estimation of the domain of attraction. In addi-
tion, a numerical example that illustrates the efficiency of
the proposed method is also provided in the same section.
Design methods of observer-based relay feedback controller
are proposed in Section 4. We consider both linear and non-
linear switching laws dependent on the estimated state using
a Luenberger observer. Computer simulations are performed
for a Buck converter structure in order to asses the effective-
ness of the proposed approaches. The paper is ended with a
brief conclusion.

1.1 Notations

In this paper we use the notation R+ to refer to the interval
[0,∞). The transpose of a matrix M is denoted by MT and if
the matrix is symmetric the symmetric elements are denoted
by ∗. The notation M � 0 (resp. M � 0) means that the matrix
M is positive (resp. negative) semi-definite, and the notation
M ≻ 0 (resp. M ≺ 0) means that it is positive definite (resp.
negative definite). The identity matrix is denoted by I and
both notations eigmin(M) and eigmax(M) are used to refer
to the minimum and maximum eigenvalue respectively of a
matrix M. The notations M(i) and M(i, j) refer respectively to
the i-th row of a matrix (or vector) M, and the element of
the i-th row and the j-th column of a matrix M.

For a positive integer N, we denote by IN the set {1, . . . ,N}.
By ∆N we denote the unit simplex
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(1)
A vector v∈R

m is said to be strictly positive if for all i∈Im

v(i) > 0.

For a positive definite matrix P ∈R
n×n and a positive scalar

γ , we denote by E (P,γ) the ellipsoid

E (P,γ) = {x ∈ R
n : xT Px ≤ γ}, (2)

and for all positive scalar r, we denote by B(0,r) the ball
of radius

√
r

B(0,r) = E (I,r) = {x ∈ R
n : xT x ≤ r}. (3)

For a given set S , the notation Conv{S } indicates the con-

vex hull of the set, int{S } its interior and S its closure. The

closed convex hull of the set S will be noted by Conv{S }.
Finally, we denote by Vert{S } the set of vertices of S . Let
S ⊂ R

m be a finite set of vectors. The minimum argument
of a given function f : S −→R is noted by

argmin
x∈S

f (x) = {y ∈ S : f (y) ≤ f (z),∀z ∈ S }.

2 Preliminaries

2.1 System description

Consider the linear system

ẋ = Ax+Bu,

x(0) = x0 ∈ R
n,

(4)

with x ∈ R
n, and an input u which takes values in the set

V = {v1, . . . ,vN} ⊂ R
m. A ∈ R

n×n and B ∈ R
n×m are the

matrices describing the system. In the sequel we assume that:

A-1 The pair (A,B) is stabilizable. This means that there
exists a matrix K such that the closed-loop matrix Acl =
A+BK is Hurwitz.

A-2 The set int{Conv{V }} is nonempty and the null vector
is contained inside (0 ∈ int{Conv{V }}).

Note that for any finite set V there exists a finite number nl

of vectors li ∈ R
1×m, i ∈ Inl

such that

Conv{V }= {u ∈R
m : liu ≤ 1,∀i ∈ Inl

}. (5)

Note also that typical control sets V are often of the form

V = Vert{P(c)}, (6)

where the hyperrectangle P(c), with c a strictly positive
vector, is given by

P(c) =


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However, we want to keep the problem formulation as gen-
eral as possible. Note that since A.2 holds, even for more
general sets V there exists a vector c ∈ R

m such that the
hyperrectangle satisfies P(c) ⊆ Conv{V }. In the sequel,
we will consider such a vector c and use the notation (7) to
prove the results.

This paper deals with the stabilization of system (4). We
consider controllers described by

u(x) ∈ argmin
v∈V

Γ(x,v), (8)

where the mapping Γ : Rn × V −→ R characterizes the
switching surfaces.

This formulation encompasses the classical sign function
in the classical relay feedback controller. Indeed, if V =
{−v,v} with v > 0 and Γ(x,v) = xT Ψv for some Ψ ∈R

n×m,
we get

u(x) =

{

v, if ΨT x ≤ 0,

−v, if ΨT x > 0.
(9)

The interconnection (4), (8) can be rewritten as follows

ẋ = Ax+Bu(x) = X (x). (10)

Note that this is a differential equation with a discontinuous
right hand side X (x) [12], [17] and thus we need an ap-
propriate formalism and specific tools to define the system’s
solutions and analyse their behaviour, in particular when
sliding dynamics occur.

Therefore, in order to take into account possible sliding mo-
tions, to the discontinuous closed-loop system (10) we as-
sociate the differential inclusion

ẋ ∈ F [X ](x), (11)

with F [X ](x) the set-valued map which can be computed
from the differential equation with a discontinuous right
hand side using the construction given by Filippov [17] (see
also [5], [12], and [42])

F [X ](x) =
⋂

δ>0

⋂

µ(S )=0

Conv{X (B̃(x,δ )\ S )},∀x ∈ R
n
,

(12)
where B̃(x,δ ) is the open ball centered on x with radius√

δ , and S is a set of measure (in the sense of Lebesgue)
µ(S ) = 0.

System (10) is a subclass of the general class of time-varying
systems given by

ẋ = X̄ (t,x), x(t0) = x0, (13)

where X̄ (t,x) is locally bounded and Lebesgue measurable
with respect to (t,x) ∈ [0,+∞)×R

n.

To this system we associate the following time-varying dif-
ferential inclusion

ẋ ∈ F [X̄ ](t,x), x(t0) = x0, (14)

with

F [X̄ ](t,x) =
⋂

δ>0

⋂

µ(S )=0

Conv{X̄ (t,B̃(x,δ )\ S )},∀x ∈ R
n
, t ∈ R+.

(15)
The notion of solution of a differential inclusion was defined
in [17], and is recalled hereafter.

Definition 1 (Filippov solution) Consider the differential
inclusion (14). A Filippov solution of the discontinuous sys-
tem (13) over the interval [ta, tb] ⊂ [0,∞) is an absolutely
continuous mapping ς(t) : [ta, tb]−→R

n satisfying:

ς̇(t) ∈ F [X̄ ](t,ς(t)), for almost all t ∈ [ta, tb], (16)

with F [X̄ ](t,x) given by (15).

A differential inclusion has at least one solution if the set val-
ued map F [X̄ ](t,x) is nonempty, locally bounded, closed,
convex, and F is upper semicontinuous on x, t [4], [5], [12],
[17].

Definition 2 (Equilibrium point) xeq is said to be an equi-
librium point of the differential inclusion (14) (resp. of dif-
ferential inclusion (11)) if 0∈F [X̄ ](t,xeq) for all t ≥ t0 ≥ 0
(resp. if 0 ∈ F [X ](xeq)).

Hereafter the notions of stability which will be used are
introduced and we mathematically formalize the problem
under study.

Definition 3 (Stability concepts) The equilibrium point
x = 0 of the differential inclusion (14) is said to be :

(1) uniformly stable, if for any ε > 0, there exists δ > 0,
independent of t0, such that for all Filippov solutions
x(t) of (14), ‖x(t0)‖< δ =⇒‖x(t)‖< ε, ∀t ≥ t0 ≥ 0,

(2) locally uniformly asymptotically stable, if it is uni-

formly stable and there exists a set D̂ ⊂R
n, 0∈ int{D̂},

such that for all Filippov solutions x(t) of (14) with

x(t0) ∈ D̂ , x(t)−→ 0 when t −→ ∞,
(3) locally uniformly exponentially stable with a decay

rate α (or locally uniformly α-stable), if there exist a

set D̂ ⊂ R
n, 0 ∈ int{D̂}, and strictly positive scalars

κ independent of t0, and α such that for all Filippov

solutions x(t) of (14) with x(t0) ∈ D̂ ,

‖x(t)‖ ≤ κe−α(t−t0) ‖x(t0)‖ ,∀t ≥ t0 ≥ 0. (17)

A set D̂ satisfying one of these properties is usually called
an estimation of the domain of attraction.
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For the case of time invariant systems (11) (or equivalently
(10), (8)) the stability properties do not depend on the time
variable t. Therefore, the uniformity property can be omitted
for this class of systems.

We recall (see [17], Chapter 3, page 153, Theorem 1) that
sufficient conditions for the local uniform asymptotic stabil-
ity of Filippov solutions in the case of systems modelled by
a differential equation with a discontinuous right hand side
ẋ = X̄ (t,x), are given by the existence of a strict Lyapunov
function V , V (t,0) = 0, V (t,x) ≥ 0, ∀x 6= 0, t ≥ t0 ≥ 0 and
continuous positive definite functions W1, W2, and W3 (i.e.
Wi(0) = 0 and Wi(x)> 0 for all x 6= 0 and i ∈ {1,2,3}), such
that

W1(x)≤V (t,x)≤W2(x), (18)

and

sup
ς∈F [X̄ ](t,x)

{

∂V

∂ t
+

∂V

∂x
ς

}

≤−W3(x),∀x ∈ D \ {0},∀t ≥ 0,

(19)
for some domain D such that 0 ∈ D . For the case of local
uniform exponential stability, sufficient conditions can be
obtained from (18) and (19), by considering a particular
form of W3 such that W3(x) ≥ 2αV(t,x), ∀t ≥ 0, where α
is a positive scalar.

In [17], Chapter 3, page 153, Theorem 1, it is also required
that the mapping F [X̄ ](t,x) satisfies the ”basic conditions”
cited in [17], Chapter 2, page 76, point 2, in order to guaran-
tee the system’s local uniform asymptotic (or exponential)
stability. With the function X̄ (t,x) defining the system (13)
locally bounded and Lebesgue measurable, as we have as-
sumed, it has been shown in [17], Chapter 2, page 85, point
6, that the set-valued map F [X̄ ](t,x) defined in (14)-(15)
satisfies those ”basic conditions”.

Using these notations and definitions, we are now able to
state the problem under study in this article.

2.2 Recent results and problem statement

In this paper we are interested in the study of the following
problem:

Problem 1. Given system (4) under Assumptions A-1, A-2
and the set V , design a relay feedback controller (8) such that
the origin of the closed-loop system is locally asymptotically
stable.

In [25] a constructive method for a relay feedback controller
design is given. Assuming A-2 and

A-1’ There exist a positive definite matrix Q and positive
scalars χ and α such that

AQ+QAT − χBBT �−2αQ, (20)

it is proved that system (4) with a switching law (8) is locally
exponentially stable with a decay rate α . Note that A-1’
is equivalent to A-1. In [25], a linear switching function is

considered: Γ(x,v) = − 2
χ xT HT v with H = − χ

2 BT Q−1. An

ellipsoidal estimation of the domain of attraction is equally
given using a quadratic Lyapunov functionV (x)= xT Px with

P = Q−1 : E (P,γ) where γ is computed such that E (P,γ)
does not cross the convex hull

Cv(H) = {x ∈ R
n : liHx ≤ 1,∀i ∈ Inl

}, (21)

where li, i∈Inl
are vectors defined in (5), which leads to γ ≤

min
i∈Inl

(liHQHT lT
i )

−1 . Nevertheless, considering a quadratic

Lyapunov function, linear switching surfaces and an ellip-
soidal estimation of the domain of attraction introduces some
conservatism in the proposed method [8].

Here we would like to provide a more general design pro-
cedure using non-quadratic Lyapunov functions to compute
nonlinear switching surfaces and non-ellipsoidal estimations
of the domain of attraction.

With the above definitions, in the next section, we start
by providing sufficient conditions for nonlinear input-affine
systems stabilization with a relay feedback controller. A con-
structive method based on LMI criteria is also provided for
the class of LTI systems. It allows the design of nonlinear
stabilizing state-dependent switching laws and provides a
larger estimation of the domain of attraction.

3 Full state relay feedback control design

3.1 A general theoretical result

Before considering the case of linear systems, here we pro-
vide a general result for nonlinear systems stabilization with
a relay controller.

The method uses the existence of a locally stabilizing con-
tinuous control to design the relay controller.

Consider the following nonlinear input-affine system

ẋ = f (t,x)+ g(t,x)u(t,x) = X̄ (t,x), (22)

where f : R+×D −→ R
n, g : R+×D −→ R

n×m are Lips-
chitz functions in x on R+×D and piecewise continuous in
t, and where D ⊂R

n is a domain such that 0 ∈ int{D}. The
input u takes values in the set V = {v1, . . . ,vN} ⊂ R

m.

Using the above definitions we are now able to provide suf-
ficient conditions for the stabilization of the nonlinear time-
varying system (22) by relay controller.

Theorem 1 Consider the nonlinear system (22) and As-
sumption A-2. Assume that there exists a continuous con-
troller k(t,x) such that k(t,x) ∈ Conv{V } and g(t,x)k(t,x)
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is Lipschitz in x on R+×D and piecewise continuous in t,
for all x ∈ D and for all t ≥ 0. Assume that there exists a
continuously differentiable function V : R+×D −→R such
that

W1(x)≤V (t,x)≤W2(x), (23)

∂V

∂ t
+

∂V

∂x
{ f (t,x)+g(t,x)k(t,x)} ≤ −W3(x),∀t ≥ 0,∀x ∈ D ,

(24)
where W1, W2 and W3 are continuous positive definite func-
tions on D . Then, the origin of system (22) with the discon-
tinuous controller

u(t,x) = kd(t,x)∈ argmin
v∈V

∂V

∂x
g(t,x)v,∀t ≥ 0,∀x∈D , (25)

is locally uniformly asymptotically stable. Moreover, the
set LV (η̄) = {x ∈ R

n : V (t,x) ≤ η̄ ,∀t ≥ 0} ⊆ D with η̄ =
max{η > 0 : LV (η) ⊆ D} is an estimation of the domain
of attraction.

Proof. We would like to prove that the origin of the closed-
loop system

ẋ = f (t,x)+ g(t,x)kd(t,x) (26)

is locally uniformly asymptotically stable when solutions are

understood in the sense of Filippov. Since ∂V
∂x

and g(t,x) are

continuous, then Conv{argmin
v∈V

∂V
∂x

g(t,x)v} is upper semi-

continuous. Therefore, we consider the following differen-
tial inclusion [17], [22], [38]

ẋ ∈ F (t,x), (27)

with

F (t,x) = Conv

{

f (t,x)+g(t,x)ud : ud ∈ argmin
v∈V

∂V

∂x
g(t,x)v

}

.

(28)
The origin of the differential inclusion (27) is locally uni-
formly asymptotically stable if for a given Lyapunov func-
tion V (t,x) we have

sup
ς∈F (t,x)

{

∂V

∂ t
+

∂V

∂x
ς

}

≤−W3(x),∀t ≥ 0,∀x ∈ D . (29)

Thanks to the fact that k(t,x) ∈ Conv{V } for all t ≥ 0 and
for all x ∈ D , there exist N scalars ρi(t,x)≥ 0, i ∈ IN with

∑N
i=1 ρi(t,x) = 1 such that

k(t,x) =
N

∑
i=1

ρi(t,x)vi. (30)

Considering (30) and replacing k(t,x) by ∑N
i=1 ρi(t,x)vi, in

(24) we obtain

∂V

∂ t
+

∂V

∂x

(

f (t,x)+g(t,x)
N

∑
i=1

ρi(t,x)vi

)

+W3(x)≤ 0. (31)

Then, using the fact that ∑N
i=1 ρi(t,x) = 1, we get

N

∑
i=1

ρi(t,x)

(

∂V

∂ t
+

∂V

∂x
( f (t,x)+g(t,x)vi)+W3(x)

)

≤ 0, (32)

for all t ≥ 0 and for all x ∈ D .

Let us define the function

F(t,x,vi) =
∂V

∂ t
+

∂V

∂x
( f (t,x)+ g(t,x)vi)+W3(x). (33)

Since ρi(t,x) ≥ 0, ∀i ∈ IN and from inequality (32), it can
be inferred that the inequality

F(t,x,vi)≤ 0,∀x ∈ D ,∀t ≥ 0 (34)

holds at least for one index i(t,x) ∈IN . We can then define
the switching controller as follows

kd(t,x) ∈ argmin
v∈V

F(t,x,v) = argmin
v∈V

∂V

∂x
g(t,x)v. (35)

Let us define the set of minimizers corresponding to the
controller (35) as follows

I (t,x) =

{

i ∈ IN :
∂V

∂x
g(t,x)(v j − vi)≥ 0,∀ j ∈ IN

}

.

(36)
Consider the set valued map given by

F̃ (t,x) = Conv{ f (t,x)+ g(t,x)vi : i ∈ I (t,x)}. (37)

Since

argmin
v∈V

{

∂V

∂x
g(t,x)v

}

⊆ {vi : i ∈ I (t,x)} (38)

is satisfied, according to the definition of I (t,x) in (36),
one can show that

F (t,x)⊆ F̃ (t,x), (39)

with F (t,x) defined in (28) and F̃ (t,x) defined in (37).

Considering the relation (39), in order to prove (29), it is
sufficient to show that

sup
ς∈F̃ (t,x)

{

∂V

∂ t
+

∂V

∂x
ς

}

≤−W3(x), ∀t ≥ 0, ∀x ∈ D . (40)

Let us define the following set of vectors

∆(t,x) = {β ∈ ∆N : β(i) = 0,∀i ∈ IN \I (t,x)}. (41)

5



We have then

F̃ (t,x) = Conv{ f (t,x)+ g(t,x)vi : i ∈ I (t,x)}

=

{

f (t,x)+ g(t,x)
N

∑
i=1

β(i)vi : β ∈ ∆(t,x)

}

.
(42)

Consequently, since ∆(t,x) is compact, we obtain

sup
ς∈F (t,x)

{

∂V

∂ t
+

∂V

∂x
ς

}

≤ sup
ς∈F̃ (t,x)

{

∂V

∂ t
+

∂V

∂x
ς

}

= sup
β∈∆(t,x)

{

∂V

∂ t
+

∂V

∂x

(

f (t,x)+ g(t,x)
N

∑
i=1

β(i)vi

)}

= max
β∈∆(t,x)

{

∂V

∂ t
+

∂V

∂x

(

f (t,x)+ g(t,x)
N

∑
i=1

β(i)vi

)}

.

(43)
Therefore, to prove (29) it is sufficient to show that

max
β∈∆(t,x)

{

∂V

∂ t
+

∂V

∂x

(

f (t,x)+g(t,x)
N

∑
i=1

β(i)vi

)}

≤−W3(x),

(44)
for all t ≥ 0 and for all x ∈ D .

Let β ∈ ∆(t,x). Since β(i) = 0 for all i ∈ IN \I (t,x), from
(33), (34) (which is verified at least for one i ∈IN , and then
for all i ∈ I (t,x)), and (36), we can deduce that

∂V

∂ t
+

∂V

∂x

(

f (t,x)+ g(t,x)
N

∑
i=1

β(i)vi

)

=
N

∑
i=1

β(i)

{

∂V

∂ t
+

∂V

∂x
( f (t,x)+ g(t,x)vi)

}

≤−W3(x).

(45)

Therefore, (44) (and thus (29)) is satisfied, and the origin
of system (22) with the controller (25) is locally uniformly
asymptotically stable.

In addition, the level set LV (η) = {x∈R
n : V (t,x)≤ η ,∀t ∈

R+} of the Lyapunov function V can be considered as an
inner estimation of the domain of attraction if η is such that
LV (η)⊆ D .

The control principle given in Theorem 1 can be used to
provide constructive methods of relay feedback controllers
for linear systems. Using a non-quadratic Lyapunov func-
tion, a tractable LMI approach providing an estimation of
the domain of attraction and stabilizing nonlinear switching
surfaces is given in the following.

3.2 Relay feedback control design for LTI systems using
nonlinear switching surfaces

As follows we particularise the result of Theorem 1 to the
case of linear systems. Our objective is to enlarge the do-

main of attraction with respect to the result provided in [25]
by using non-quadratic Lyapunov functions. We provide nu-
merical tools for nonlinear switching surfaces design using
Lur’e Lyapunov functions of the form

V (x) = xT Px− 2
m

∑
j=1

∫ H( j)x

0
φ( j)(s)Ω( j, j)ds, (46)

with P ∈ R
n×n a symmetric positive definite function, Ω

a diagonal positive definite matrix, and φ : Rm −→ R
m

a nonlinear function defined for all y ∈ R
m as φ(y) =

[

φ(1)(y(1)), . . . , φ(m)(y(m))
]T

∈ R
m, with

φ(i)(σ) =















c(i)−σ if σ > c(i),

0 if −c(i) ≤ σ ≤ c(i), ∀σ ∈R.

−c(i)−σ if σ <−c(i).

(47)

This Lyapunov class of functions has been used for various
nonlinearity types (see for instance [10], [32], [45] and ref-
erences therein). They have the following properties.

Lemma 1 [46] Consider w1 ∈ R
m and w2 ∈ R

m. If (w1 −
w2) ∈ P(c), with P(c) defined in (7), then

φ(w1)
T M(φ(w1)+w2)≤ 0, (48)

for any diagonal positive definite matrix M ∈R
m×m.

Lemma 2 [27] The Lur’e function (46) satisfies the in-
equality

xT Px ≤V (x)≤ xT (P+HT ΩH)x,∀x ∈ R
n
. (49)

Lemma 3 For any y ∈ R
m, y+ φ(y) ∈ P(c), with P(c)

defined in (7).

Proof. See the Appendix.

The Lur’e type Lyapunov function (46) is a particular class
of the general Lyapunov function provided in Theorem 1.
In this section we are interested in providing a constructive
method based on LMIs allowing the design of the control
law, along with an estimation of the domain of attraction for
LTI systems.

Considering the properties provided above we are now able
to develop the following result.

Theorem 2 Consider system (4) and assume that A-1’ (or
equivalently A-1) and A-2 hold. If there exists a symmetric
positive definite matrix P∈R

n×n, two diagonal positive defi-
nite matrices Ω∈R

m×m and M ∈R
m×m, a matrix ϒ∈R

m×n,
and a strictly positive vector τ ∈ R

m such that

[

AT
clP+PAcl PB−ϒT −AT

clH
T Ω

∗ −2M−ΩHB− (ΩHB)T

]

≺ 0 (50)
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and





P M(i,i)H
T
(i)−ϒT

(i)

M(i,i)H(i)−ϒ(i) τ(i)c
2
(i)



� 0,∀i ∈ Im, (51)

where H =− χ
2 BT Q−1 and Acl = A+BH, then the origin of

system (4) with the switching law

u ∈ argmin
v∈V

(xT P−φ(Hx)T ΩH)Bv (52)

is locally asymptotically stable.

An estimation of the domain of attraction is given by

LV (r
−1) = {x ∈ R

n : V (x)≤ r−1}, (53)

with V a Lur’e candidate Lyapunov function given by

V (x) = xT Px− 2
m

∑
j=1

∫ H( j)x

0
φ( j)(σ)Ω( j, j)dσ , (54)

and r ≥ max
i∈Im

{

τ(i)

M2
(i,i)

}

> 0.

Proof. The idea of the proof is to show that if A-1’ and
A-2 hold and the LMIs (50) and (51) are feasible then the
decay of the function V in the domain LV (r

−1) is ensured
by switching among the elements of the set V . This will be
shown in three steps. In the first step, we associate a differ-
ential inclusion to system (4), (8) and provide some suffi-
cient conditions for local asymptotic stability of the origin.
In the second step, we show that the feasibility of LMI (50)
ensures the decay of the Lyapunov function in a domain D̃

around the origin. Finally, we will show that if the LMI (51)
is feasible then the Lyapunov function decreases in the pos-
itive invariant domain LV (r

−1) ⊆ D̃ which constitutes an
inner estimation of the domain of attraction.

From Lemma 2, one can see that the Lur’e candidate Lya-
punov function V is positive definite.

In order to prove the local asymptotic stability of system (4),
(52) in the domain LV (r

−1), it is sufficient to demonstrate
that

sup
ς∈F [X ](x)

∂V

∂x
ς < 0,∀x ∈ LV (r

−1)\ {0}, (55)

where F [X ](x) is defined in (12) and LV (r
−1) in (53). We

follow here the same steps of the proof of Theorem 1.

Let us define for all x ∈ R
n the set of indexes I (x) corre-

sponding to the set of minimizers in which the controller
(52) takes values:

I (x) = {i ∈ IN : (xT P−φ(Hx)T ΩH)B(v j −vi)≥ 0,∀ j ∈ IN}.
(56)

We associate to this set of indexes the set ∆(x) of vectors
defined for all x ∈ R

n as

∆(x) = {β ∈ ∆N : β(i) = 0,∀i ∈ IN \I (x)}. (57)

Using (56) and (57) the set valued map F [X ](x) in (12)
satisfies

F [X ](x)⊆ F̃ [X ](x), (58)

with
F̃ [X ](x) = Conv

i∈I (x)
{Ax+Bvi}

= {Ax+Bv(β ) : β ∈ ∆(x)},
(59)

where v(β ) = ∑N
i=1 β(i)vi.

From (58) and (59), and using the fact that ∆(x) is compact,
we have

sup
ς∈F [X ](x)

∂V

∂x
ς ≤ sup

ς∈F̃ [X ](x)

∂V

∂x
ς

= sup
β∈∆(x)

{

∂V

∂x
{Ax+Bv(β )}

}

= max
β∈∆(x)

{

∂V

∂x
{Ax+Bv(β )}

}

.

(60)

Thus, in order to show (55), it is sufficient to prove that we
have

max
β∈∆(x)

{

∂V

∂x
{Ax+Bv(β )}

}

< 0,∀x∈LV (r
−1)\{0}. (61)

The LMI (50) is equivalent to

zT

[

AT
clP+PAcl PB−ϒT −AT

clH
T Ω

BT P−ϒ−ΩHAcl −2M−ΩHB− (ΩHB)T

]

z < 0,

(62)
for all z ∈ R

n+m \ {0}.

Considering the vector zT =
[

xT φ(Hx)T
]

and G = M−1ϒ ,

inequality (62) leads to

xT
(

(A+BH)T P+P(A+BH)
)

x

+φ(Hx)T
(

BT P−MG−ΩH(A+BH)
)

x

+ xT
(

PB−GT MT − (A+BH)T HT Ω
)

φ(Hx)

+φ(Hx)T
(

−2M−ΩHB−BTHT Ω
)

φ(Hx)

< 0,∀x ∈ R
n \ {0}.

(63)

Let us consider the notation k(x) = Hx+ φ(Hx). Accord-
ing to Lemma 3, for any x ∈ R

n, we have k(x) ∈ P(c) ⊆
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Conv{V }. Therefore, there exist N positive scalars ρ j(x),

∑N
j=1 ρ j(x) = 1 such that

k(x) = Hx+φ(Hx) =
N

∑
j=1

ρ j(x)v j . (64)

Using this property in (63), we obtain

2xT P(Ax+B
N

∑
j=1

ρ j(x)v j)

− 2φ(Hx)T ΩH(Ax+B
N

∑
j=1

ρ j(x)v j)

− 2φ(Hx)T M (φ(Hx)+Gx)< 0,∀x ∈R
n \ {0}.

(65)

From (56), for any x ∈ R
n and i ∈ I (x) we have

(xT P−φ(Hx)T ΩH)B(v j − vi)≥ 0,∀ j ∈ IN . (66)

Then, for any β ∈ ∆(x) we get

(xT P−φ(Hx)T ΩH)B(v j − v(β ))≥ 0,∀ j ∈ IN . (67)

By adding and subtracting the term 2∑N
j=1 ρ j(x)(x

T P −
φ(Hx)T ΩH)B(v j − v(β )) to (65), we obtain

2xT P(Ax+Bv(β ))

− 2φ(Hx)T ΩH(Ax+Bv(β ))

− 2φ(Hx)T M(φ(Hx)+Gx)

+ 2
N

∑
j=1

ρ j(x)(x
T P−φ(Hx)T ΩH)B(v j − v(β ))

< 0,∀x ∈ R
n \ {0}.

(68)

Applying Lemma 1, with w1 = Hx and w2 = Gx, and using
the definition of P(c) in (7), we have

φ(Hx)T M(φ(Hx)+Gx)≤ 0,∀x ∈ A , (69)

with

A = {x ∈ R
n :
∣

∣(H(i)−G(i))x
∣

∣≤ c(i),∀i ∈ Im}. (70)

Note that ∂V
∂x

= 2xT P−2φ(Hx)T ΩH. Therefore, taking this
into account, as well as (67) and (68), we deduce that

max
β∈∆(x)

{

∂V

∂x
(Ax+Bv(β ))

}

≤ max
β∈∆(x)

{

∂V

∂x
(Ax+Bv(β ))

}

− 2φ(Hx)T M(φ(Hx)+Gx)

+ 2
N

∑
j=1

ρ j(x)(x
T P−φ(Hx)T ΩH)B(v j − v(β ))

< 0,∀x ∈ A \ {0}.
(71)

In order to show (61) (and thus (55)), we will now prove
that LV (r

−1)⊆ A .

By multiplying (51) from both sides by

[

I 0

0 (M(i,i))
−1

]

and

considering again G = M−1ϒ, we obtain





P HT
(i)−GT

(i)

H(i)−G(i)
τ(i)

M2
(i,i)

c2
(i)



� 0,∀i ∈ Im. (72)

Considering a scalar r ≥ max
i∈Im

{ τ(i)

M2
(i,i)

} > 0, from (72), we

obtain





P HT
(i)−GT

(i)

H(i)−G(i) rc2
(i)



� 0,∀i ∈ Im. (73)

This last inequality leads to

xT (H(i)−G(i))
T (c2

(i))
−1(H(i)−G(i))x ≤ xT P

r−1
x, (74)

for all x ∈R
n and for all i ∈ Im.

This means in particular that for any x ∈ E (P,r−1), one has

xT (H(i)−G(i))
T (c2

(i))
−1(H(i)−G(i))x ≤ 1,∀i ∈ Im, (75)

which is equivalent to

|(H(i)−G(i))x| ≤ c(i),∀i ∈ Im, (76)

and thus x ∈ A according to (70).

Therefore, equation (74) leads to the inclusion

E (P,r−1)⊆ A . (77)

Applying Lemma 2, we also have

xT Px ≤V (x)≤ xT (P+HT ΩH)x, (78)

which leads to the double inclusion

E (P+HT ΩH,r−1)⊆ LV (r
−1)⊆ E (P,r−1). (79)

Thus, from (79) and (77) we obtain

LV (r
−1)⊆ A . (80)

Therefore, using (80) and (71), we have shown that (61)
holds, and thus (55) is verified, which ends the proof.
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Remark 1 Note that inequalities (50) and (51) are affine in
the matrix A. Then, the approach can be directly extended to
the case of LTV systems with A varying in a convex polytope.
In this case the condition should only be checked on the
vertices of the polytope.

3.3 Illustrative example

In order to illustrate the performance of the proposed control
method, we consider the linear system (4) with matrices

A =

[

0 1

1 0

]

and B =

[

0 1

−1 0.5

]

, and the controller u which

takes values in the set

V =











25

25



 ,





25

−25



 ,





−25

25



 ,





−25

−25











. One can verify that

the open-loop linear system is unstable (the eigenvalues of
the matrix A are −1 and 1). Choosing a decay rate α = 2.5,
we design the linear switching law proposed in [25] in order
to stabilize the system to the origin. We obtain the following
solutions of (20)

Q =

[

0.101 0.073

0.073 0.172

]

(81)

and χ = 1.6. We deduce then

H =

[

−4.5 6.2

−8.4 1.4

]

(82)

with an estimation of the ellipsoidal domain of attraction
E (P,γ) where γ = 109.2 and P = Q−1. Based on Theorem
2, we design a nonlinear switching law by solving LMIs
(50) and (51) for P = Q−1 and H as given in (81)-(82) and a
vector c satisfying (7) such that c(1) = c(2) = 25. We obtain

Ω =

[

0.9 0

0 4.34

]

and r−1 = 2.05×103. As we can see from

Figure 1, the obtained trajectories starting in the domain
of attraction LV (r

−1) converge to the origin. We can also

note that, the domain of attraction LV (r
−1) is larger than

the ellipsoidal domain of attraction E (P,γ) obtained by the
method proposed in [25]. The nonlinear switching surfaces
and the convex hull Cv(H) defined in (21), which limits the
domain of attraction in the approach in [25], are equally
represented.

The evolution of the system’s state starting from initial con-
dition x(0) = [6, 6.2]T (corresponding to the top right red
star point in Figure 1) is presented in Figure 2, along with
the evolution of the switching law’s mode. This figure high-
lights both simple mode switching (at t ≃ 0.06) and sliding

−6 −4 −2 0 2 4 6 8

−10

−5

0

5

10

PSfrag replacements

Cv(H)

E (P,γ)

LV(r
−1)

Switching surfaces

x(1)

x
(2
)

Fig. 1. Phase plot
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s
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c
h
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g
 m

o
d
e

Fig. 2. Evolution of the system’s state (top), and evolution
of the switching law’s mode (bottom), for initial condition
x(0) = [6, 6.2]T

mode (starting at t ≃ 0.26), which can also be seen in Figure
1.

Assume now that the state matrix is affected by polytopic
uncertainties :

A(t) ∈ Conv{A1,A2}, ∀t ≥ 0, (83)

with A1 =

[

0 1.5

1 0

]

and A2 =

[

0 1

1 0.5

]

.

First, considering α = 1.5 and the method in [25], we solve
the LMI (20) to obtain a common quadratic Lyapunov func-
tion for both subsystems 1 and 2. We obtain the following

parameters of the linear switching law : Q =

[

8.66 0.22

0.22 10.8

]

,

9



χ = 54.25, and H =

[

−0.064 2.52

−3.1 −1.194

]

. An estimation of

the ellipsoidal domain of attraction is given by E (Q−1
,γ)

with γ = 6.23.

Next we solve the LMIs (50) and (51) for the same matrices
P = Q−1, H and c(1) = c(2) = 25. Then, we compute a Lur’e
Lyapunov function for the subsystems 1 and 2 (A1 and A2).
We design the nonlinear switching law (52) with

Ω =

[

0.11 0

0 0.18

]

.

An estimation of the domain of attraction (53) is obtained
with r−1 = 42.72. For our simulations we consider

A(t) =

(

sin(x(1)(t)+ x(2)(t))+ 1

2

)

A1

+

(

1−
sin(x(1)(t)+ x(2)(t))+ 1

2

)

A2.

Figure 3 shows the trajectories of the closed-loop system in
the phase plot for different initial conditions together with
the non-ellipsoidal domain of attraction LV (r

−1) including
the domain E (P,γ) obtained with the method proposed in
[25].

−10 −5 0 5 10 15

−15
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10

15

PSfrag replacements
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x
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Fig. 3. Phase plot

We have proposed a constructive LMI-based method to de-
sign nonlinear state-dependent switching laws stabilizing the
LTI system to the origin when the state variables are fully
available to measurements. A larger non-ellipsoidal estima-
tion of the domain of attraction has also been provided.

The following will now focus on the case where the system’s
state is not fully available to measurements.

4 Observer-based relay feedback control design for LTI
systems

In this section, we consider the case where only a part of
the state is measured. The output is defined as

y =Cx. (84)

For linear systems with continuous controller, it has been
proved in the literature that the separation principle holds
[43]. This result can not be applied to relay systems due to
the discontinuous nature of the control. In this section, we
provide a separation principle to relay systems. We also pro-
vide a constructive method based on LMIs for the design
of an observer-based relay controller. Both linear and non-
linear switching surfaces dependent on the estimated state
are designed. Using quadratic and non-quadratic Lyapunov
functions, we also provide estimations of the domain of at-
traction.

We assume that A-1 and A-2 hold and also

A-3 The pair (A,C) is detectable. This means that there
exists a matrix L such that Ao = A+LC is Hurwitz.

In this case we provide a method for the stabilization of
system (4) by an observer based relay feedback controller
given by

u(x̂) ∈ argmin
v∈V

Γ(x̂,v). (85)

The estimated state x̂ ∈ R
n is computed by the full-order

Luenberger state observer [36], [37]

{

˙̂x = Ax̂+Bu+L(ŷ− y),

ŷ =Cx̂.
(86)

Our objective is to provide conditions which guarantee the
existence of a mapping Γ(x̂,v) (which characterizes the
switching surfaces of the control law) and a matrix L (the
observer gain) as well as a constructive method to design an
observer-based controller such that the closed-loop system

[

ẋ

˙̂x

]

=

[

A 0

LC A+LC

][

x

x̂

]

+

[

B

B

]

u (87)

with the control law (85) is locally asymptotically stable.

Using the augmented state

ξ =

[

x̂

e

]

=

[

0 I

−I I

][

x

x̂

]

, (88)

where e = x̂− x is the estimation error, the interconnection
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(4), (86) can be written as the augmented closed-loop system















ξ̇ =

[

A LC

0 A+LC

]

ξ +

[

B

0

]

u(x̂),

y =
[

C −C

]

ξ ,

(89)

which leads to







ξ̇ = Ãξ + B̃ū(ξ ) = X̃ (ξ ),

y =
[

C −C

]

ξ ,
(90)

where Ã =

[

A LC

0 A+LC

]

, B̃ =

[

B

0

]

, and

ū(ξ ) = u

([

I 0

]

ξ
)

= u(x̂) ∈ argmin
v∈V

Γ
([

I 0

]

ξ ,v
)

. (91)

In a similar way as in the full state feedback case we asso-
ciate a differential inclusion

ξ̇ ∈ F [X̃ ](ξ ), (92)

to the system (90), (91) with the set valued map F [X̃ ](ξ )
designed as

F [X̃ ](ξ ) =
⋂

δ>0

⋂

µ(S )=0

Conv{X̃ (B̃(ξ ,δ ))\ S },∀ξ ∈ R
2n
,

(93)
where B̃(ξ ,δ )) is the open ball centred on ξ with radius√

δ , and S is a set of measure (in the sense of Lebesgue)
µ(S ) = 0.

The problem considered in the previous section becomes:

Problem 2. Considering system (4), (84) and given a set V ,
Assumptions A-1, A-2 and A-3, design an observer-based
relay feedback controller such that the origin of the closed-
loop system is asymptotically stable.

In [30] we studied the existence of a mapping Γ (character-
izing the switching surface) and of an observer gain L such
that system (90), (91) (or equivalently (4), (84), (85), (86))
is locally exponentially stable. The result is reported in the
following.

Theorem 3 [30] Assume that A.1, A.2, and A.3 hold. Then
there exists a mapping Γ(x̂,v) = x̂T Ψv (characterizing the
switching hyperplanes) and a matrix L (the observer gain)
such that the origin of system (90), (91) (or equivalently
of the closed-loop system (4), (84), (85), (86)) is locally
exponentially stable.

This result has a qualitative nature. Here we are interested
in finding a constructive procedure providing a mapping Γ
and an observer gain L such that the origin of the closed-
loop system (90), (91) (or equivalently (4),(84), (85), (86)) is
locally exponentially stable. We would also like to provide
an estimation of the domain of attraction. In what follows,
a numerical approach to deal with the design problem is
given. An LMI solution is proposed hereafter.

For H ∈ R
m×2n, let us define the set Cv(H ) as follows

Cv(H ) = {ξ ∈ R
2n : liH ξ ≤ 1,∀i ∈ Inl

}, (94)

where li is given in (5).

Theorem 4 Assume that A.1, A.2, and A.3 hold. Consider
a tuning parameter α > 0.

(1) If there exist positive definite matrices Q1 ∈ R
n×n and

P2 ∈ R
n×n, and scalars θ1 > 0 and θ2 > 0 such that

Q1AT +AQ1 −θ1BBT �−2αQ1, (95)

AT P2 +P2A−θ2CTC �−2αP2, (96)

then, the origin of system (4), (84), (86) with the switch-
ing law

u(x̂) ∈ argmin
v∈V

x̂T Ψv, (97)

is locally α-stable with Ψ=Q−1
1 B and L=− θ2

2
P−1

2 CT .
(2) If in addition we consider λ > 0 such that

[

AT
clP1 +P1Acl + 2αP1 P1LC

∗ λ (AT
o P2 +P2Ao + 2αP2)

]

� 0,

(98)

with Acl =A− θ1
2

BBT Q−1
1 and Ao =A+LC, then an es-

timation of the domain of attraction is given by E (P, γ̄)

with P =

[

Q−1
1 0

0 λ P2

]

,

γ̄ ≤ min
i∈Inl

(liH P−1
H

T lT
i )

−1
, (99)

and H =
[

H 0

]

with H =− θ1
2 BT Q−1

1 .

(3) If there exist positive definite matrices P1 ∈R
n×n, Q2 ∈

R
n×n, and positive scalars θ1 and θ2 such that the LMIs

(95), (96) are feasible for some α > 0, and if there exist
two symmetric positive definite matrices P̃1 ∈R

n×n and
P̃2 ∈R

n×n, two diagonal positive definite matrices Ω̃ ∈
R

m×m and M̃ ∈R
m×m, a matrix ϒ̃∈R

m×n and a strictly
positive vector τ̃ ∈ R

m such that









AT
clP̃1 + P̃1Acl P̃1LC P̃1B− ϒ̃T −AT

clH
T Ω̃

∗ AT
o P̃2 + P̃2Ao −CT LT HT Ω̃

∗ ∗ −2M̃− Ω̃HB− (Ω̃HB)T









≺ 0

(100)
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and





P̃1 M̃(i,i)H
T
(i)− ϒ̃T

(i)

∗ τ̃(i)c
2
(i)



� 0,∀i ∈ Im, (101)

with L = − θ2
2

P−1
2 CT , Acl = A − θ1

2
BBT Q−1

1 , H =

− θ1
2

BT Q−1
1 , and Ao = A + LC, then the origin of

system (4), (84), (86) with the switching law

u(x̂) ∈ argmin
v∈V

(x̂T P̃1 −φ(Hx̂)T Ω̃H)Bv (102)

is locally asymptotically stable.
An estimation of the domain of attraction is given by

LV (η
−1) = {ξ ∈R

2n : V (ξ )≤ η−1}, (103)

with

V (ξ ) = ξ T P̃ξ − 2
m

∑
j=1

∫

H( j)ξ

0
φ( j)(σ)Ω̃( j, j)dσ , (104)

ξ =

[

x̂

e

]

, P̃ =

[

P̃1 0

0 P̃2

]

, and η ≥ max
i∈Im

{

τ̃(i)

M̃2
(i,i)

}

.

Proof. 1. Consider positive definite matrices Q1, P2, and
positive scalars θ1,θ2 such that (95), (96) hold. Then, we
want to prove that the origin of the closed-loop system (90),

(97), with Ψ=Q−1
1 B and L=− θ2

2 P−1
2 CT , is locally α-stable

in some domain D ⊂ R
2n.

We can remark that the feasibility of (95) implies that the
inequality

AT
clP1 +P1Acl �−2αP1 (105)

is verified with P1 = Q−1
1 , and Acl = A− θ1

2
BBT Q−1

1 (see for
instance [10]).

Similarly, the feasibility of LMI (96) implies that the in-
equality

AT
o P2 +P2Ao �−2αP2 (106)

is verified with L = − θ2
2

P−1
2 CT and Ao = A+ LC. Let us

consider the quadratic Lyapunov function V (ξ ) = ξ T Pξ ,

with P =

[

Q−1
1 0

0 λ P2

]

and λ > 0.

Recall the differential inclusion (92) associated to the closed-
loop system (90), (91). In order to show the local α-stability
of the closed-loop system at the origin, it is sufficient to
prove that

sup
ς∈F [X̃ ](ξ )

∂V

∂ξ
ς ≤−2αV (ξ ), (107)

in some domain D around the origin.

First let us define for each x̂ ∈ R
n the set of minimizers in

which the controller (97) takes values. Since we have

x̂T Ψv = x̂T P1Bv = ξ T

[

I

0

]

[

I 0

]

PB̃v, (108)

and since

ξ T

[

I

0

]

[

I 0

]

PB̃v = ξ T PB̃v (109)

is satisfied thanks to the particular structure of B̃ and P, this
set of minimizers can be defined for all z ∈ R

2n as follows

I (z) = {i ∈ IN : zT PB̃(v j − vi)≥ 0,∀ j ∈ IN}. (110)

To this set of indexes, we associate the set ∆(z) of vectors

defined for all z ∈ R
2n by

∆(z) = {β ∈ ∆N : β(i) = 0,∀i ∈ IN \I (z)}. (111)

Using (110) and (111), the set valued map F [X̃ ](ξ ) in (92)
satisfies

F [X̃ ](ξ )⊆ F̃ [X̃ ](ξ ) (112)

with

F̃ [X̃ ](ξ ) = Conv{Ãξ + B̃vi : i ∈ I (ξ )}
= {Ãξ + B̃v(β ) : β ∈ ∆(ξ )},

(113)

where v(β ) = ∑N
i=1 β(i)vi.

From (112) and (113) and using the fact that ∆(ξ ) is com-
pact, we have

sup
ς∈F [X̃ ](ξ )

∂V

∂ξ
ς ≤ sup

ς∈F̃ [X̃ ](ξ )

∂V

∂ξ
ς

= sup
β∈∆(ξ )

{

∂V

∂ξ

{

Ãξ + B̃v(β )
}

}

= max
β∈∆(ξ )

{

∂V

∂ξ

{

Ãξ + B̃v(β )
}

}

.

(114)

Thus, in order to show (107), it is sufficient to prove that we
have

max
β∈∆(ξ )

{

∂V

∂ξ

{

Ãξ + B̃v(β )
}

}

≤−2αV(ξ ), (115)

in some domain D around the origin.

Note that, since A-2 holds, then there exists a neighbourhood
of the origin E (P,γ) ⊂ R

2n, with γ > 0 such that for all
ξ ∈ E (P,γ), we have

H ξ ∈ Conv{V }, (116)
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with H =
[

H 0

]

.

Therefore, for all ξ ∈ E (P,γ) there exist scalars ρ j(ξ ), j ∈
IN such that ∑N

j=1 ρ j(ξ ) = 1 and

H ξ =
N

∑
j=1

ρ j(ξ )v j. (117)

From (110), for all i ∈ I (ξ ) we have

ξ T PB̃(v j − vi)≥ 0,∀ j ∈ IN . (118)

Then, for any β ∈ ∆(ξ ), we have

ξ T PB̃(v j − v(β ))≥ 0,∀ j ∈ IN . (119)

Then, considering (117), and multiplying the last inequalities
by ρ j(ξ ) and summing the N elements we obtain

ξ T PB̃(H ξ − v(β ))≥ 0. (120)

Adding this to the left part of (115), it comes

max
β∈∆(ξ )

{

∂V

∂ξ

{

Ãξ + B̃v(β )
}

}

≤ max
β∈∆(ξ )

{

2ξ T P
(

Ãξ + B̃v(β )
)

+ 2ξ T PB̃(H ξ − v(β ))
}

= 2ξ T P(Ãξ + B̃H ξ ) = 2ξ T P

[

Acl LC

0 Ao

]

ξ := 2ξ T PÃclξ ,

(121)
for all ξ ∈ E (P,γ), with Acl = A+BH and Ao = A+LC.

Thus, in order to show (107), it is sufficient to prove that

2ξ T PÃclξ ≤−2αV(ξ ) =−2αξ T Pξ ,∀ξ ∈ E (P,γ). (122)

This last inequality holds if

ÃT
clP+PÃcl �−2αP (123)

is satisfied.

Note that

ÃT
clP+PÃcl + 2αP =
[

AT
clP1 +P1Acl + 2αP1 P1LC

(LC)T P1 λ (AT
o P2 +P2Ao + 2αP2)

]

.
(124)

Applying the Schur complement, the matrix (124) is negative
if and only if

AT
o P2 +P2Ao + 2αP2 � 0 (125)

and

(AT
clP1 +P1Acl + 2αP1)

− 1

λ
P1LC[2αP2 +AT

o P2 +P2Ao]
−1(LC)T P1 � 0.

(126)

Since (105) and (106) are satisfied, it is clear that if we
take λ large enough both inequalities (125) and (126) are
verified. Therefore, we have shown that there exist a Lya-
punov function V such that (107) holds for any ξ in a
positive invariant set E (P,γ), and thus there exist a linear

mapping Γ(x̂,v) = x̂T Ψv = x̂T Q−1
1 Bv and an observer gain

L = −θ2
2

P−1
2 CT such that the origin of system (90), (97) (and

equivalently (4), (84), (97), (86)) is locally α-stable in some
domain of attraction E (P,γ).

2. It is now required to estimate the domain of attraction
for system (90) with the switching law (97). Thus, we want
to determine a scalar γ̄ characterizing the ellipsoid E (P, γ̄)
such that

sup
ς∈F [X̃ ](ξ )

∂V

∂ξ
ς ≤−2αV(ξ ),∀ξ ∈ E (P, γ̄). (127)

For a given decay rate α and if LMIs (95) and (96) are
feasible, then from the result above, there exist at least one
scalar λ satisfying the inequality (98).

Considering such a scalar λ , our objective here is to provide
an estimation E (P, γ̄) of the domain of attraction such that

E (P, γ̄)⊆ Cv(H ), (128)

with Cv(H ) defined in (94). Note that, if the set E (P, γ̄)
satisfies (128), then according to (5), one will have that for
all ξ ∈ E (P, γ̄), H ξ ∈ Conv{V }, and the set will satisfy
the condition (117) assumed in the first part of the proof.

For this inclusion to hold it is both necessary and sufficient
that none of the hyperplanes liH ξ = 1, i ∈ Inl

crosses the
level set E (P, γ̄). Note that for any i ∈ Inl

, the minimum of

V along the hyperplane {ξ ∈ R
2n : liH ξ = 1} is given as

(see [10])

min
liH ξ=1

ξ T Pξ = min
i∈Inl

(liH P−1
H

T lT
i )

−1
. (129)

We can remark that by taking γ̄ as

γ̄ ≤ min
liH ξ=1

ξ T Pξ = (liH P−1
H

T lT
i )

−1
, (130)

the inclusion (128) is verified and E (P, γ̄) is thus an estima-
tion of the domain of attraction.

3. The aim here is to show that if there exist positive definite
matrices Q1, P2, and positive scalars θ1 and θ2 satisfying

13



(95) and (96) and the LMIs (100) and (101) are feasible

with H = − θ1
2

BT Q−1
1 and L = − θ2

2
P−1

2 CT , then the origin
of the closed-loop system (4), (84), (86), (102) is locally
asymptotically stable in the domain of attraction LV (η

−1).

Recall that we associate to the closed-loop system (90), (102)
the differential inclusion (92), which is locally asymptoti-
cally stable at the origin in the domain LV (η

−1) if

sup
ς∈F [X̃ ](ξ )

∂V

∂ξ
ς < 0,∀ξ ∈ LV (η

−1)\ {0}. (131)

Thanks to the particular structure of the matrices P̃ =
[

P̃1 0

0 P̃2

]

, H =
[

H 0

]

, and B̃ =

[

B

0

]

, we can show that

(x̂T P̃1 −φ(Hx̂)T Ω̃H)Bv = (ξ T P̃−φ(H ξ )T Ω̃H )B̃v.
(132)

Let us first define for all ζ ∈ R
2n the set of minimizers in

which the controller (102) takes values:

I (ζ ) = {i ∈ IN :

(ζ T P̃−φ(H ζ )T Ω̃H )B̃(v j − vi)≥ 0,∀ j ∈ IN

}

.
(133)

To this set of indexes, we associate the set of vectors ∆(ζ )
defined for all ζ ∈R

2n as

∆(ζ ) = {β ∈ ∆N : β(i) = 0,∀i ∈ IN \I (ζ )}. (134)

Using (133) and (134) we obtain that the set valued map
F [X̃ ](ξ ) satisfies the following relation

F [X̃ ](ξ )⊆ F̃ [X̃ ](ξ ), (135)

with

F̃ [X̃ ](ξ ) = Conv{Ãξ + B̃vi : i ∈ I (ξ )}
=
{

Ãξ + B̃v(β ) : β ∈ ∆(ξ )
}

,
(136)

where v(β ) = ∑N
i=1 β(i)vi. Thus, using the same argument as

in the first part of proof we can show that to prove (131) it
is sufficient to show that

max
β∈∆(ζ )

{

∂V

∂ξ

(

Ãξ + B̃v(β )
)

}

< 0,∀ξ ∈ LV (η
−1)\ {0}.

(137)
Considering the particular structure of matrices H =
[

H 0

]

, P̃ =

[

P̃1 0

0 P̃2

]

, B̃ =

[

B

0

]

, and Ỹ =
[

ϒ̃ 0

]

, we can

show that (100) is equivalent to

[

ÃT
clP̃+ P̃Ãcl P̃B̃− Ỹ T − ÃT

clH
T Ω̃

∗ −2M̃− Ω̃H B̃− (Ω̃H B̃)T

]

≺ 0. (138)

From (138) we have for all Ξ ∈ R
2n+m \ {0}

ΞT

[

ÃT
clP̃+ P̃Ãcl P̃B̃− Ỹ T − ÃT

clH
T Ω̃

∗ −2M̃− Ω̃H B̃− (Ω̃H B̃)T

]

Ξ < 0.

(139)

Considering Ξ =

[

ξ

φ(H ξ )

]

with ξ ∈ R
2n \ {0} and G =

M̃−1Ỹ , (139) leads to

(2ξ T P̃− 2φ(Hξ )T Ω̃H )((Ã+ B̃H )ξ + B̃φ(H ξ ))

− 2φ(H ξ )T M̃(φ(H ξ )+G ξ )

< 0,∀ξ ∈ R
2n \ {0}.

(140)

Let us consider the notation k(ξ ) =H ξ +φ(H ξ ). Accord-
ing to Lemma 3, for any ξ ∈ R

n, we have k(ξ ) ∈ P(c) ⊆
Conv{V }. Therefore, there exist N positive scalars ρ j(ξ ),

∑N
j=1 ρ j(ξ ) = 1 such that

k(ξ ) = H ξ +φ(H ξ ) =
N

∑
j=1

ρ j(ξ )v j. (141)

Using this property in (140), we get

(2ξ T P̃− 2φ(H ξ )T Ω̃H )(Ãξ + B̃
N

∑
j=1

ρ j(ξ )v j)

− 2φ(H ξ )T M̃(φ(H ξ )+G ξ )

< 0,∀ξ ∈ R
2n \ {0}.

(142)

From (133), for all i ∈ I (ξ ) we have

(ξ T P̃−φ(H ξ )T Ω̃H )B̃(v j − vi)≥ 0,∀ j ∈ IN . (143)

Thus, for all β ∈ ∆(ξ ) we obtain

(ξ T P̃−φ(H ξ )T Ω̃H )B̃(v j − v(β ))≥ 0,∀ j ∈ IN . (144)

Therefore, by adding and subtracting the term

2∑N
j=1 ρ j(ξ )(ξ

T P̃− φ(H ξ )T Ω̃H )B̃(v j − v(β )) to (142),

we obtain

(2ξ T P̃− 2φ(H ξ )T Ω̃H )(Ãξ + B̃v(β ))

− 2φ(H ξ )T M̃(φ(H ξ )+G ξ )

+
N

∑
j=1

ρ j(ξ )(ξ P̃−φ(H ξ )T Ω̃H )(v j − v(β ))

< 0,∀ξ ∈R
2n \ {0}.

(145)

Applying Lemma 1 with w1 =H ξ , w2 = G ξ and using the
definition of P(c) in (7), we have

φ(H ξ )T M̃(φ(H ξ )+G ξ )≤ 0,∀ξ ∈ ˜A , (146)
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with

˜A = {ξ ∈ R
2n :
∣

∣(H(i)−G(i))ξ
∣

∣≤ c(i),∀i ∈ Im}. (147)

Note that ∂V
∂ξ

= 2ξ T P̃− 2φ(H ξ )T Ω̃H . Therefore, taking

this into account, as well as (145) and (146), we obtain

max
β∈∆(ξ )

{

∂V

∂ξ

(

Ãξ + B̃v(β )
)

}

≤ max
β∈∆(ξ )

{

∂V

∂ξ

(

Ãξ + B̃v(β )
)

}

− 2φ(H ξ )T M̃(φ(H ξ )+G ξ )

+
N

∑
j=1

ρ j(ξ )(ξ P̃−φ(H ξ )T Ω̃H )(v j − v(β ))

< 0,∀ξ ∈ ˜A .

(148)

In order to show (137) (and thus (131)), we will now prove
that LV (η

−1)⊆ ˜A .

Considering the same arguments as in Theorem 2 we can
show that (101) is equivalent to





P̃1 HT
(i)− G̃T

(i)

H(i)−G(i) ηc2
(i)



� 0,∀i ∈ Im. (149)

Applying the Schur complement to (149), we obtain

P̃1

η−1
− (H(i)− G̃(i))

T (c2
(i))

−1(H(i)−G(i))� 0,∀i ∈ Im.

(150)
Since P̃2 ≻ 0 and η > 0 then (150) leads to





P̃1

η−1 − (H(i)− G̃(i))
T (c2

(i))
−1(H(i)−G(i)) 0

0 P̃2

η−1



� 0,∀i ∈ Im,

(151)

which is equivalent to









P̃1

η−1
0

0
P̃2

η−1









−





(H(i)− G̃(i))
T

0



 (c2
(i))

−1
[

H(i)− G̃(i) 0

]

� 0,

(152)
for all i ∈ Im.

For all ξ ∈R
2n and G = M̃−1Ỹ =

[

G̃ 0

]

, (152) leads to

ξ T P̃

η−1
ξ −ξ T (H(i)−G(i))

T (c2
(i))

−1(H(i)−G(i))ξ ≥ 0,∀i ∈ Im.

(153)

From this we obtain the inclusion

E (P̃,η−1)⊆ ˜A . (154)

In addition, according to Lemma 2, we have

ξ T P̃ξ ≤V (ξ )≤ ξ T P̄ξ , (155)

where P̄ =

[

P̃1 +HT ΩH 0

0 P̃2

]

.

This leads to

E (P̄,η−1)⊆ LV (η
−1)⊆ E (P̃,η−1). (156)

Thus, from (156) and (154), we have

LV (η
−1)⊆ ˜A . (157)

From this and using (148) we have shown that (137) holds
and we get

sup
ς∈F [X̃ ](ξ )

∂V

∂ξ
ς ≤ max

β∈∆(ξ )

{

∂V

∂ξ

(

Ãξ + B̃v(β )
)

}

< 0,∀ξ ∈ LV (η
−1)\ {0},

(158)

which ends the proof.

Remark 2 We can observe that (95), (96) do not share cross
variables, thus they can be solved separately. Therefore, the
control law matrix Ψ and the observer gain L can be de-
signed independently, which shows that the separation prin-
ciple holds in the case of relay systems.

Remark 3 The feasibility of the set of conditions (95)-(96)
allows the design of the matrix Ψ for the switching law and
the observer gain L separately, and equations (98) and (99)
provide an estimation E (P, γ̄) of the domain of attraction
such that any solution of the closed-loop system (90), (91)
starting in the domain of attraction E (P, γ̄) converges to the
origin exponentially with a decay rate α .

The numerical implementation can be done in two steps.
First, LMIs (95)-(96) are solved to find the matrices P1, θ1,
P2, θ2, L, and Ψ. In the second step, λ is computed from
(98) and then the estimation of the domain of attraction can
be computed using the equation (99). An optimization of the
domain of attraction can be done by using recursive LMI
algorithms.

In addition the feasibility of LMIs (100), (101) allows the
design of nonlinear switching laws dependent on the esti-
mated states ensuring the local asymptotic stability of the
origin in a larger non-ellipsoidal domain of attraction.
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Remark 4 The feasibility of the LMIs (95)-(96) is guaran-
teed for a sufficiently small α since Assumptions A.1 and
A.3 hold. Thus, for a sufficiently small decay rate α , since
system (4) is stabilizable, there exist a gain H such that
A+BH is Hurwitz and a symmetric positive definite matrix
P = Q−1 satisfying (95). Likewise, since system (4) is de-
tectable then there exist a gain L such that A+LC is Hurwitz
and a symmetric positive definite matrix P2 verifying (96)
for a sufficiently small decay rate α .

4.1 Numerical example: Buck converter

Let us consider the buck converter [6] shown in Figure 4.

The state-space model for the state vector x̄ =
[

iL vc

]T

(iL

the inductor current and vc the capacitor voltage) is described
by :

˙̄x = Āx̄+ B̄ū (159)

with

Ā =

[

0 1
L

1
Cc

−1
RCc

]

, B̄ =

[

1
L

0

]

, and ū ∈ V̄ = {0,E}.

Here we consider the numerical values L = 2mH, Cc =
470µF, E = 15V, and R = 10Ω. One can note that the eigen-
values of the open loop system are purely imaginary (±103×
1.03i). Here we want to stabilize the system to the equi-
librium point x̄eq = −Ā−1B̄βeq which correspond to iL =
0.16µA and vc = 7.5V . Using the transformation from [24]
and the change of coordinates x = x̄− x̄eq, system (159) be-
comes

ẋ = Ax+Bu,

y =Cx,
(160)

with A = Ā, u ∈= {− 1
2
,

1
2
}, C =

[

0 1

]

, and B =

[

E
L

0

]

. We

can remark that system (160) satisfies Assumptions A-1, A-
2 and A-3. Therefore, we can design an observer based re-
lay feedback controller. Considering a decay rate α = 2.55,

LMIs (95)-(96) are feasible with Q1 =

[

1.33 −7.79

−7.79 55.81

]

,
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îL iL

Fig. 5. Evolution of the state variables and their estimates

P2 =

[

0.005 −0.002

−0.002 0.0015

]

, θ1 = 20.1, θ2 = 4.6× 106, Ψ =

103×
[

2.05

0.3

]

, L = 103×
[

−3.378

−7

]

, and H =
[

−0.6 0.98

]

.

Considering the obtained matrices H and L and c= 1
2 , we can

design a nonlinear switching law depending in the estimated

states (102). We obtain : P̃1 =

[

1.47 0.21

0.21 0.037

]

, P̃2 = 108 ×
[

5.41 −2.07

−2.07 5.27

]

, Ω̃ = 0.35, ϒ̃= 102×
[

−0.72 1.075

]

, M̃ =

1.11× 102, τ̃ = 1.24 with an estimation of the domain of
attraction (103) given by η−1 = 9.94× 103. Simulations

are performed for the initial conditions x̂ =
[

0 0

]T

and

x =
[

1 15

]T

. The results are reported in Figure 5, which

shows that the estimated state converges to the real state and
they both converge to the equilibrium point.

5 Conclusion

This article presents a new approach for the design of re-
lay feedback controllers. In the case of linear systems, non-
quadratic Lyapunov functions are used to develop a method
allowing the computation of nonlinear switching surfaces
and the enlargement of the domain of attraction. LMI cri-
teria are given in order to design the controller and provide
an estimation of a non-ellipsoidal domain of attraction. The
problem of observer-based relay feedback controllers design
is also considered to ensure local asymptotic stability of the
origin of LTI systems. A Luenberger observer is used to de-
sign both linear and nonlinear switching surfaces dependent
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on the estimated state. LMI conditions are proposed in order
to allow a numerical implementation of the results. The pro-
posed approaches are also extended to the case of stabiliza-
tion of nonlinear input-affine systems by a relay feedback
controller.
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Limit cycles with chattering in relay feedback systems.
IEEE Transactions on Automatic Control, 47(9):1414–
1423, 2002.

[29] K. H. Johansson, A. Rantzer, et al. Fast switches in
relay feedback systems. Automatica, 35(4):539–552,
1999.

[30] Z. Kader, C. Fiter, L. Hetel, and L. Belkoura. Observer-
based relay feedback controller design for LTI systems.
In European Control Conference, pages 1667–1672,
2016.

[31] Z. Kader, C. Fiter, L. Hetel, and L. Belkoura. Stabiliza-
tion of switched affine systems with disturbed state-
dependent switching. International Journal of Robust
and Nonlinear Control, 28(2):582–595, 2018.

[32] H. K. Khalil. Nonlinear systems, volume 3. Prentice
hall New Jersey, 1996.

[33] D. Liberzon. Switching in systems and control.
Springer Science & Business Media, 2003.

[34] T. Liu and F. Gao. Industrial process identification and
control design: step-test and relay-experiment-based
methods. Springer Science & Business Media, 2011.

17



[35] J.-A. Lopez-Renteria, B. Aguirre-Hernandez, and
F. Verduzco. The boundary crossing theorem and the
maximal stability interval. Mathematical Problems in
Engineering, 2011.

[36] D. G. Luenberger. Observers for multivariable systems.
IEEE Transactions on Automatic Control, 11(2):190–
197, 1966.

[37] D.G. Luenberger. Observing the state of a linear
system. IEEE Transactions on Military Electronics,
8(2):74–80, April 1964.

[38] B. Paden and S. Sastry. A calculus for computing
Filippov’s differential inclusion with application to
the variable structure control of robot manipulators.
IEEE transactions on circuits and systems, 34(1):73–
82, 1987.

[39] S. R. Parker and S. F. Hess. Limit-cycle oscillations
in digital filters. IEEE Transactions on Circuit Theory,
18(6):687–697, 1971.

[40] A. Polyakov. Practical stabilization via relay delayed
control. In 47th IEEE Conference on Decision and
Control, pages 5306–5311, 2008.

[41] A.E. Polyakov. On practical stabilization of systems
with delayed relay control. Automation and Remote
Control, 71(11):2331–2344, 2010.

[42] A. Poznyak, A. Polyakov, and V. Azhmyakov. Attrac-
tive Ellipsoids in Robust Control. Springer, 2014.

[43] B. Ross Barmish and A. R. Galimidi. Robustness of
Luenberger observers: Linear systems stabilized via
non-linear control. Automatica, 22(4):413–423, 1986.

[44] R. Schreier, G. C. Temes, and S. R. Norsworthy. Delta-
Sigma Data Converters: Theory, Design, and Simula-
tion. IEEE, 1997.

[45] S. Tarbouriech, G. Garcia, J. M. G. da Silva Jr, and
I. Queinnec. Stability and stabilization of linear sys-
tems with saturating actuators. Springer Science &
Business Media, 2011.

[46] S. Tarbouriech, C. Prieur, and J. M. G. da Silva. Sta-
bility analysis and stabilization of systems presenting
nested saturations. IEEE Transactions on Automatic
Control, 51(8):1364–1371, 2006.

[47] I. Z. Tsypkin. Relay control systems. CUP Archive,
1984.

[48] V. Utkin, J. Guldner, and J. Shi. Sliding mode control
in electro-mechanical systems, volume 34. CRC press,
2009.

[49] Q.-G. Wang, Tong H. Lee, and L. Chong. Relay feed-
back: analysis, identification and control. Springer
Science & Business Media, 2012.

[50] C.-C. Yu. Autotuning of PID controllers: A relay feed-
back approach. Springer Science & Business Media,
2006.

A Appendix

Proof of Lemma 3. Let y ∈ R
m and i ∈ Im. Three cases

arise:

(1) If y(i) > c(i), then y(i)+φ(i)(y(i)) = c(i).

(2) If −c(i) ≤ y(i) ≤ c(i), then y(i)+φ(i)(y(i)) = y(i).

(3) If y(i) <−c(i), then y(i)+φ(i)(y(i)) =−c(i).

Therefore, for any i ∈ Im, |y(i)+φ(i)(y(i))| ≤ c(i), and thus

y+φ(y) ∈ P(c).
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