N
N

N

HAL

open science

What can Program Supervision do for Program Re-use?

Monique Thonnat, Sabine Moisan

» To cite this version:

Monique Thonnat, Sabine Moisan. What can Program Supervision do for Program Re-use?. IEE

Proceedings Software, 2000. hal-01872236

HAL Id: hal-01872236
https://inria.hal.science/hal-01872236

Submitted on 11 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-01872236
https://hal.archives-ouvertes.fr

What can Program Supervision do for Program Re-use?

M. Thonnat and S. Moisan

IN.R.ILA. - B.P. 93
F-06902 Sophia Antipolis Cedex, France

Abstract. We are interested in knowledge-based techniques (called program supervision)
for managing the re-use of a modular set of programs. The focus of this paper is to analyze
which re-use problems program supervision techniques can solve. First we propose a general
definition for program supervision, a knowledge representation model, and a reasoning model.
Then we analyze program supervision solution for re-use in terms of the structure of the
programs to re-use and in terms of the effort for building a program supervision knowledge
base. The paper concludes with what program supervision can do for program re-use from
the points of view of the code developers, the experts, and the end-users.

Keywords: Program supervision, software re-use, knowledge-based system

1 Introduction

We are interested in knowledge-based techniques (called program supervision) for managing the
re-use of a modular set of programs. The role of program supervision is to select programs in an
existing library, to run the programs for particular input data and eventually to control the quality
of their results. Various knowledge-based systems have been developed for this purpose, notably
in the domains of image processing [3], [2], signal processing [9] and automatic control [6], [7].
For a more detailed review see [13] which is a general review, [15] for software re-use in software
engineering and [10] for software re-use in signal processing and automatic control.

The focus of this paper is to analyze which re-use problems program supervision techniques
can solve. This analysis is presented in terms of the structure of the programs to re-use and
in terms of the effort for building a program supervision knowledge base. After this introduction,
section 2 explains our analysis of the re-use difficulties and proposes a general definition of program
supervision. Section 3 then presents a knowledge representation model for program supervision,
and introduces the major notions of primitive and complex operators and specialized criteria, while
section 4 presents how this knowledge is used during the reasoning of a program supervision system.
Section 5 details the conditions of use of program supervision techniques in the framework of this
model. This paper concludes with what program supervision can do for program re-use from the
points of view of the code developers, the experts, and the end-users.

2 Re-using a Set of Programs

The use of existing libraries of programs has become a critical resource in many disciplines. Nu-
merous programs have been developed in domains like signal or image processing and scientific
computing. The programs have been written by specialists in a particular domain and are intended
to be applied by non-specialists in this domain. New programs implement more and more complex

functionalities and their use is more and more subtle. One drawback is that the non-specialist user
must know how to choose programs depending on different purposes, how to run each program, and
how to chain programs in the correct order to obtain a result. If it is too demanding for an end-user
to catch the complexity of new programs, they will never be widely applied. When analyzing the
activity of re-using a number of complex programs for an applicative purpose, independently of
the problem of the application (i.e. the goal of the user and the semantics of the data), it appears
that a lot of problems come from the processing itself. An end-user must make important efforts
in order to have the data correctly processed, and to efficiently use the set of programs.

For an end-user faced to a set of data to process and a set of programs, applicable on the data,
the first point is to understand what each program does, i.e. to build a model of them. Afterwards,
since a single program is not usually sufficient to solve a complex processing request, the end-user
must figure out which programs can be combined together and how. That means to know how
to choose which program comes first, then which ones may follow, and so on to eventually build
“program combinations” that achieve an application goal. Moreover, when multiple combinations
are possible some can be preferred for example, depending on the adequacy of program features
w.r.t. the data at hand. Then, to execute a chosen combination, the user has to actually run the
programs, which implies to know their precise calling syntax, together with their usual parameter
values, the type of input they accept, and the type of output they produce (because the latter
will become inputs of following programs in a combination). Internal data-flow managing between
programs may become very difficult to handle, e.g. if data are to be dispatched among different
programs. Finally, if, at any point of execution, the current results are not as good as expected, the
user must infer which previously executed program is faulty, if it can be re-run with new parameter
values and how to compute the values, or if it must be replaced by another program and in this
case by which one.

1. Build a model of programs, i.e. for each program:
— Understand its purpose and behavior.
— Remember the number and types of its arguments, e.g. the type of data it accepts as inputs.
— Know its precise calling syntax, together with its usual parameter values.
2. Model program combinations:
— Figure out which programs can be combined together and how - e.g. what are the data
flows between programs.
— Remember useful program combinations, for typical processing goals.
— Know how to choose among multiple alternatives
3. Model repair strategies: if, at any moment during processing, the current results are not as
good as expected
— Infer which previously executed program is faulty.
— Decide whether to re-run it with new parameter values - and how to compute the values -
or to replace it by another program - and by which one.

Every end-user could not have such a deep understanding of the program semantics and syn-
taxes. One possible solution to this problem is to use a tool that transparently manages the process-
ing complexity, in order to automate the easy re-use of the programs. Among different techniques
for re-use, we propose program supervision techniques which aim at capturing the knowledge of
program use and to free the user from the processing details. The objective of program supervision
is to facilitate the automation of an existing processing activity, independently of any application.
This means to automate the planning and the control of execution of programs (e.g. existing in a

library) to accomplish a processing objective, where each program computes one step of the pro-
cessing. Using a program supervision system, the reception of a user’s request as input produces
as output the executions of the appropriate programs with their resulting data as shown in figure
1.

User request I -

Program Supervision
/ system

Programs

Data

(0]

Fig. 1. A program supervision system helps a user to re-use a set of programs for solving a request on
input data I to obtain output data O

More formally, we can define the program supervision process as follows:
Given as input:

— P ={p;/i € 1.n } a set of programs p;, (existing executable codes);

— {rp; U rc;} a set of representations rp; of the programs p; and of their use, plus a (possibly
empty) set of representations rc; of known combinations c; of the programs;

— {cr} a set of decision criteria;

— T a set of input data (real data, given by the end-user for a particular case);

— £0 a set of expected output data (only their type and number are known);

— C(£0) a set of constraints on expected output data;

it produces as output:

— IT ={px /k € 1..m, m <=n, py € P and 3 partial order on pis }, a plan i.e. a combination of
programs (where the data flow is correct and the same program may appear several times)
— O a set of actual output data such that:
e O=II(7) and
e C(O) holds.

We propose to emulate the strategy of an expert in the use of the programs by a knowledge-based
system. A program supervision knowledge-based system, according to this formal definition, helps a
non-specialist user apply the programs in different situations as shown in figure 2. It is composed of
a program supervision engine and a knowledge base. The role of the program supervision engine is
to use this knowledge for effective planning, execution and control of execution of the programs. The
knowledge base contains the representations rp; and rc; of programs p;, combinations of programs
c;, and a set of decision criteria cry. The contents of the representations rp;,, rc; and of the criteria
cri should be sufficient for the engine to select the programs, to initialize their parameters, to
manage non trivial data-flow, and to combine the programs to produce a satisfactory plan I7
depending on the input data, constraints, and request.

3 Program Supervision Knowledge Base Model

In this section we briefly present the main characteristics of a program supervision knowledge base.

request | program Supervision
User I'I—|> system
- / PSengine / Programs
Knowledge Base ()
o (rp ,rc &en) O

Fig. 2. A knowledge-based program supervision system helps a user to re-use a set of programs for solving
a request on input data Z to obtain output data O, as the results of the execution of a plan II. It is
composed of a program supervision engine and a knowledge base. The knowledge base contains the rp;
and rc; representations of programs p; and combinations of programs c;, as well as the representations of
various decision criteria cry.

As program supervision is a general problem arising in various application domains we are
interested in providing both knowledge models and software tools which are independent of any
particular application and of any library of programs. A program supervision model defines ways
of describing programs for re-use, i.e. what structure reusable program descriptions must have
and what issues play a role in the composition of a solution using the programs. It is thus a
guideline that enables to represent programs to be re-used and a guideline on how to re-use them.
A description therefore should not only describe a program but also the information that is needed
to apply it in different situations.

Different categories of knowledge may be distinguished to perform program supervision: about
the application domain, about the programs of a particular library as well as about the expertise
domain (image processing for example) or about the problem solving strategy. Most of this knowl-
edge is modeled in two major concepts in our model, which are primitive or complex operators,
and specialized criteria.

In addition to an abstract model of program supervision, we have developed a knowledge de-
scription language (named YAKL) to encode domain-specific information. YAKL is a model-theoretic
approach to knowledge modeling in program supervision and allows the knowledge engineer to en-
code domain-specific program supervision knowledge bases. YAKL descriptions can be checked
for consistency, and eventually translated into operational code. Some examples of the program
supervision concepts described below are given using the YAKL syntax.

3.1 Supervision Operator

Supervision operators represent concrete programs (Primitive operators) or abstract processing
(Complex operators). They both have input and output arguments (data or parameters). Both
kinds of operators also encapsulate various criteria cry (which may be represented by rule bases) in
order e.g. to manage their input parameter values (initialization criteria), to assess the correctness
of their results (evaluation criteria on output data), and to react in case of bad results (repair
criteria).

Primitive operators Referring to the formal definition of section 2, primitive operators are the
rp; representations of real programs p;. The execution of a primitive operator corresponds to the
execution of its associated program, provided that its execution conditions are true.

Complex operators They are the rc; representations of higher level operations. They don’t
have attached operational actions but they decompose into more and more concrete (complex or

Primitive {
name : o-muls
Functionality : thresholding
Argument descriptions:
Input Data
Image name : e_image
comment : "original image"
Input Parameters
Float name : threshold
default : 1
Output Data
Image name : s_image
comment : "thresholded image"
I-O Relations :
s_image.path := e_image.path,

Preconditions
e_image.format == inrimage
e_image.noise.kind == gaussian
Postconditions

Criteria omitted (see examples section 3.8)
Call

}

syntax : cd e_image.path ";" muls -vs seuil s_image

Fig. 3. Example of a primitive operator o-muls. It performs a thresholding and has one input data
(an image) and one numerical parameter (the threshold). Only the structural part is shown, criteria
are detailed later. YAKL keywords are in bold face. Finally, the concrete syntax will be instantiated
with the actual values of the input/output arguments for execution.

primitive) operators. Those decompositions are usually predefined by the expert in the knowledge
base. The allowed types of decompositions are specialisation (or alternative), sequence, parallel,
and iteration. In all cases the sub-operators in a decomposition may in turn be either primitives
or complexes ones. Since several operators can concretely realize one abstract functionality the
specialisation decomposition type provides a way of grouping operators into semantical groups
corresponding to the common functionality they achieve. This is a natural way of expression for
many experts because it allows levels of abstraction above specific operators. In a sequential de-
composition some sub-operators may be optional. These decompositions —at different levels of
abstraction— must end on primitive operators.

3.2 Arguments

Arguments are attributes of supervision operators. There are three sorts of arguments: input data,
input parameters, and output data. Data arguments have fixed values which are set for input
data like e.g., an input image, or computed for output data. The output data arguments can be

“assessed” during the reasoning by means of evaluation criteria. Parameter arguments are tunable,
i.e. their values can be set by means of initialization criteria or modified by means of repair criteria.

3.3 Specialized Criteria

In program supervision different types of criteria are distinguished and their representations cry,
may be attached to supervision operators.

Common criteria For each operator an expert may define three kinds of criteria. Criteria provide
a program supervision system with flexible reasoning facilities.

— Initialization criteria contain information on how to initialize values of input arguments.

— FEvaluation criteria state the information on how to assess the quality of the actual results of
the selected operator after its execution.

— Repair criteria express strategies of repair after a negative evaluation. A frequent repair strat-
egy is simply to re-execute the current operator with modified parameter values. In complex
operator they also express information propagation: e.g. the expert can express that the bad
evaluation information has to be transmitted to a sub-operator, or to the father operator, or
to any operator previously applied.

Criteria of complex operators For a complex operator an expert may define other specific
criteria:

— Choice criteria: for a complex operator with a specialization decomposition type, choice criteria
select, among all the available sub-operators, the operators which are the most pertinent,
according to the data descriptions and the characteristics of the operators. This kind of criteria
is used for planning purposes.

Here is an example of a choice rule in YAKL language:

Choice criteria
Rule name : r-choice
comment : "choice of operator constr-ch-with-filter if image is noisy"
Let 7c a Context
If
?c.noise == present,
size-filter > 0
Then
use-operator constr-ch-with-filter

— Optionality criteria: for a complex operator with a sequential decomposition type, optionality criteria
decide if an optional sub-operator has to be applied depending on the dynamic state of the current
data. Such criteria increase the flexibility of the system.

operator : complex-operator | primitive-operator
primitive-operator : common-part call
complex-operator : common-part body

common-part : identification arguments common-criteria
preconditions postconditions effects

arguments : input-data input-parameters output-data

common-criteria : initialization-criteria evaluation-criteria
repair-criteria

body : decomposition complex-criteria data-flow

complex-criteria : choice-criteria | optionality-criteria

decomposition : decomposition-type sub-operators

decomposition-type : specialization | sequence

Fig. 4. Model grammar: a BNF rule is represented by “left-part : right-part’, where left-part is a non terminal
that is expanded into all right-part components. A pipe represents a “or”; e.g. the first rule means that
an operator can be expanded either as a complez-operator or as a primitive-operator. A blank represents
a “and”; e.g. the second rule means that a primitive-operator is expanded as a common-part and a calling
interface (call).

3.4 Knowledge Base Concept Overview

In this paragraph we summarize the relationships between the main concepts of a program super-
vision knowledge base. Figure 3 shows an abstract view of knowledge base concepts in the form of
a (BNF) grammar.

The identification of an operator contains its name, functionality and possibly a comment and
a list of symbolic characteristics. The calling interface of a primitive operator describes all the
information needed for the effective execution of the code. Pre- and post-conditions are tests which
have to be checked before and after the execution of the operator. Effects are statements which
are established after the execution of the operator.

4 Program Supervision Reasoning

In this section we briefly present how we model the reasoning process for program supervision
into several phases. A program supervision task is solved by a problem-solving method adapted to
experts’ reasoning process and domain requirements.

4.1 Reasoning Phases

The reasoning of a program supervision is implemented in the supervision engine. The role of
the engine is to exploit knowledge about programs in order to produce a plan of programs, that
achieves the user’s goal. It emulates the strategy of an expert in the use of programs. The final
plan that produces satisfactory outputs is usually not straightforward, it often results from several
trials and errors. The reasoning engine explores the different possibilities and computes the best
one, with respect to expert criteria, available in the knowledge base.

The engine roughly automates a cycle of four reasoning phases to solve user’s problem (see left
part of figure 5), that can be completely or only partly automated.

— The planning phase can use a hierarchical strategy or a mechanism based on preconditions
and effects of available programs on data description.

— The execution phase runs (directly or via a communication protocol) the programs with
current data and adequate parameter values.

— The evaluation of the returned results can sometimes be fully automated thanks to measure-
ment computation, expert-defined criteria, methods to compare results with reference cases, etc.

— Finally,the repair phase offers smart backtrack possibilities to different return points, de-
pending on the type of decisions that can be reconsidered.

According to the type of reasoning process to carry out, there may exist variants of the four
phases of this general model, that can also be more or less interleaved. For instance the planning
phase may be based on a Hierarchical Task Network (HTN) or may use Partial Order Planning
(POP).

User Request

Operators
[- Choice
Planning .—' - criteria
i - -
==~ optionalit
plan griteria Y
(part of)
I S . Initialization
criteria
= (= Evaluation
criteria
——=———~r Repar
criteria
incorrect
incorrect
Reasoning phases KB

Fig. 5. A user request is solved by different reasoning phases: (1) the planning of (part of) the solution,
that selects and organizes programs into a sequence of actions, (2) the monitored execution of each action
after appropriate refinement and parameter tuning, (3) the evaluation of the results and finally (4) the
repair of the (partial) solution if results are not satisfying. Bold arrows show the main recursive loop.
Plain arrows shows the repair loops; repair is performed either by simple re-execution of the same operator
or by replanning. Dotted arrows show which type of knowledge base (KB) criteria is used for each reasoning
phase.

4.2 Role of Criteria

During the reasoning, the engine not only exploit the operator descriptions, but also criteria cry
that are described in the knowledge base. The specialized criteria play different roles and they
are involved in different phases of the program supervision reasoning. For example, choice criteria
between supervision operators are related to the planning phase, while initialization criteria are
related to the execution phase. Figure 5 (right part) sumerizes the relationships between these
specialized criteria and the different phases of the reasoning. The richer the knowledge base is in
terms of criteria, the more flexible the related reasoning phase will be.

5 Re-using a Set of Programs with Program Supervision

Program supervision aims at large scale software management and utilization. The main phases
of planning, execution, evaluation, and repair are generic tasks of program supervision, software
reuse and software engineering methodology. Specific to program supervision is the knowledge-
based approach. Different categories of knowledge must be explicited in order to adequately build
a program supervision system.

5.1 Requirements for Using Program Supervision techniques

In this section we analyze the properties the programs p; and their arguments must verify in order
to be candidates for re-use with program supervision techniques. In addition, we propose general
advices about the construction of operators (rp; and rc;) and criteria (cry).

Program properties If there is only one unique and clearly defined functionality for each program
p: the model is directly applicable. A primitive operator rp; is thus created for each p;. If it is
not the case, that is if one program achieves several distinct functionalities, the solution is either
to rewrite the program in order to split it into smallest ones, one per functionality, or to define
as many knowledge base operators rp; as there exist sub-functionalities in the program. We can
note that, as a side-effect, the building of a program supervision knowledge base may have an
influence on the methodology of code design, resulting in more modular and structured codes.
This of course implies an additional effort at first, but in the long term it is an advantage both for
code maintenance and for knowledge base evolution.

Moreover, if the programs are already managed by an “interpretor” such as a command language
or a graphical interface, additional work is necessary to solve the communication problems between
a program supervision system and the individual programs.

Argument properties Programs can only be re-used if they do not work with “magic numbers”
i.e. fixed values for important internal parameters that have been obtained by past experiments. So,
program supervision implies to make explicit for each program its internal parameters by rewriting
it and adding explicit arguments. The same problem may arise with data which may be implicit, e.
g. in the case of programs communicating via a shared memory. There are two possible solutions:
the first one is to rewrite the program p; and to create new arguments for all data. A second
solution is to keep the use of a shared memory, for efficiency reasons, but to represent explicitly
the implicit arguments in the primitive operator rp; describing p;. When parameters exist, the
operator rp; describing p; must contain the knowledge on how to tune them. This is relatively easy
for initialization criteria, but is more demanding for repair criteria expressing how to adjust their
values w.r.t. bad result evaluations.

Complex operator properties Introducing a first abstraction level is natural when there exist
several alternative primitive operators sharing the same functionality. The solution is to create
in the knowledge base one complex operator per functionality. The type of decomposition of this
complex operator is of specialization type and the sub-operators are the alternative primitive
operators. When typical program combinations c; are available (e.g. shell scripts, with sequences,
alternatives, etc.) this information can be directly described and represented in the knowledge base
by creating one complex operator (rc;) per typical combinations c;. For instance if the combination
c; is a sequence of programs, the type of decomposition of the complex operator is sequence and
the sub-operators are the ordered list of the primitive operators rp, representing the programs p;
in the sequence c¢;. The knowledge base can contain several abstraction levels when the body of
a complex operator is itself composed of other complex operators. It is thus possible to represent
taxonomies of functionalities with complex operators. If for one single functionality, there exist
several operators that achieve it, the existence of these alternatives leads to a richer and more
flexible knowledge base, with a wider range of applicability.

Criteria properties First, the criteria are specialized: if there are known criteria for choice of
sub-operators, input parameters initialization, output data evaluation, or repair strategies, even
if these criteria are only available for specific applications, they can easily be expressed in the
knowledge base using the adequate criteria type provided by the model. However, the criteria are
not mandatory: each operator must not contain all types of criteria. The repair knowledge for
instance can be located only in a few precise operators. Even if the knowledge representation of
the operators is homogeneous, their usage is very dependent on the knowledge to express.

Finally, the criteria can manage the degree of interactivity with the user. If there exist methods
for automating the computing of values (parameter initialization methods, parameters adjustment
methods, or methods for the evaluation of the results), these methods can be directly translated
into specialized criteria. If these methods do not exist, specialized criteria can nevertheless be
created to guide the interaction with the end-user. It is especially useful for results evaluation:
the role of the criteria can be limited to the automatic display of some output data and of a list
of possible assessments which are compatible with the repair knowledge. The user only selects a
particular assessment for the displayed results.

Summary It appears that depending on the set of programs to supervise the knowledge modeling
effort is more or less important. These remarks lead to a coarse methology of knowledge base
building: the easiest way is to begin by describing concrete individual programs, then to create
higher levels of abstraction using complex operators. Criteria may be added afterwards, the more
criteria the knowledge base contains the more efficient and flexible the program supervision process
will be.

5.2 Program Supervision Knowledge Bases

This section shows on three very different examples how program properties have influenced the
knowledge base building. We have developed two program supervision engines compatible with the
knowledge representation model presented in section 3. For more details on these engines see [3,
14] for the Ocapi engine and see [16] for the new Pegase one. These engines have been used for
building several knowledge bases.

Progal The first example is an application in astronomy, where the role of the program supervision
system is to automate a complete processing in order to cope with possible variations in the
input data (images of galaxies) [11,17]. There was already a modular set of 37 image processing
programs. Only one program has been split into two programs p;, to allow an easier use of the
repair knowledge. Thus, in the Progal knowledge base 38 primitive operators rpi have been created.
Progal is a rich knowledge base with 54 complex operators rc; and a lot of abstraction levels. The
criteria cry are numerous and fully automatic: there are 20 choices between operators, 16 parameter
initializations, 11 result evaluations, 21 repair criteria. Thanks to all those criteria, the complete
image processing for morphological galaxy description is fully automated and directly provides
inputs for an automatic galaxy classification system. A first version of the knowledge base has
been developed with the Ocapi engine, the current knowledge base works with the Pegase engine.

Promethee The second example is a stereo-vision-based module performing few technical func-
tionalities, as 3D computing and obstacle detection. This module is difficult to use due to the
existence of a lot of technical parameters to tune. The Promethee knowledge base [12] contains
24 primitive operators corresponding to the 24 programs and only 15 complex operators. Among
the 120 criteria there are only 15 choice criteria. Some of the 20 evaluation criteria are interactive
ones, because of the generality of this module which can be applied on very different images cor-
responding to various application domains. On the other hand, the technical knowledge on how to
initialize and adjust the parameters is important thanks to 64 initialization criteria and 21 repair
criteria. This knowledge base works with the Ocapi engine.

FAMIS The third example falls in the domain of medical imaging. The objective is to offer clini-
cians a wider access to evolving medical image processing techniques and more precisely with Factor
Analysis of Medical Image Sequences (FAMIS [5,1]). In this case, there is no need for complete
automation. There are few (8) big programs performing several functionalities, plus 7 secondary
programs. So, the knowledge base [4] contains more primitive operators (22 rp;) than there exist
actual programs (15). There are 11 complex operators with alternative or sequential arrangement
decompositions. The criteria are numerous in the current knowledge base : 120 criteria among
which 10 choice criteria, 3 optionality criteria, 30 parameter initializations, 30 results evaluations,
50 repair criteria. Most of the evaluations criteria and some of the choice and optionality criteria
work in interaction with the clinician end-user. This knowledge base works with the Pegase engine.

6 Conclusions

We can summarize what program supervision can do for program re-use from the points of view of
the code developers, the experts and the end-users. Obviously, code developers can not expect any
improvement in the quality, complexity or speed of the individual programs only by application of
program supervision techniques. A first major impact of program supervision for code developers
is that the building of a program supervision knowledge base may influence the methodology of
code design, leading to more modular and structured codes. In spite of this additional coding
effort, it contributes in the long term to better code maintenance and knowledge base evolutions.
In fact the program supervision approach provides the resulting system with extensibility, as it is
easier to add new programs in the library. The second major impact for code developers concerns
the diffusion of their code. The knowledge encapsulation of the codes using program supervision

techniques allows a wider usage of the codes because the program supervision system can adapt
dynamically its behavior to the end-user data.

For the expert we propose a model which provides a framework and a clear description of
the structure of the knowledge involved in program supervision. Yet, even if all the requirements
on programs previously mentioned in section 5.1 are met, the building of a knowledge base for
program supervision is still a big effort for the expert. A partial help can be provided by verification
techniques as outlined in [8]. However, once the program supervision knowledge base has been
written following the advices developed in section 5.1, the managing of the set of programs is
completely handled by the program supervision engine. No more effort is necessary for the expert,
because the knowledge modeling is completed. This knowledge capitalization is an important result
per se; it can cope the fact that the code developers or experts are not numerous enough or are no
longer available.

For an end-user, program supervision techniques facilitate the re-use of a set of programs.
The end-user has only to provide a request with input data, and possibly some constraints on
output data and some intermediate result evaluations. The program supervision approach provides
the resulting system with more or less autonomy, since the user is not burdened with technical
processing problems. In certain cases completely autonomous systems can even be developed.

References

1. H. Benali, I. Buvat, and al. A statistical method for the determination of the optimal metric in factor
analysis of medical image sequence (FAMIS). Physics in Medicine and Biology, 38:1065-1080, 1993.

2. British-Aerospace. "VIDIMUS Esprit Project Annual Report". Technical report, Sowerby Research
Centre, Bristol, England,, 1991.

3. V. Clément and M. Thonnat. Integration of Image Processing procedures, Ocapi: a Knowledge-Based
Approach. Computer Vision Graphics and Image Processing: Image Understanding, 57(2), March 1993.

4. M. Crubézy, F. Aubry, S. Moisan, V. Chameroy, M. Thonnat, and R. Di Paocla. Managing Complex
Processing of Medical Image Sequences by Program Supervision Techniques. In SPIE International
Symposium on Medical Imaging’97, volume 3035, February 1997.

5. F. Frouin, J.P. Bazin, M. Di Paola, O. Jolivet, and R. Di Paola. Famis : A Software Package for Func-
tional Feature Extraction from Biomedical Multidimensional Images. Computerized Medical Imaging
and Graphics, 16(2):81-91, 1992.

6. M. Haest et al. ESPION: An Expert System for System Identification. Automatica, 26(1):85-95, 1990.

7. J.E. Larsson and P. Persson. An Expert System Interface for an Identification Program. Automatica,
27(6):919-930, 1991.

8. M. Marcos, S. Moisan, and A. P. del Pobil. A Model-Based Approach to the Verification of Program
Supervision Systems. In 4th European Symposium on the Validation and Verification of Knowledge
Based Systems, pages 231-241, June 1997.

9. S.H. Nawab and V. Lesser. Integrated Processing and Understanding of Signals. In A.V.Oppenheim
and S.H.Nawab, editors, Symbolic and Knowledge-Based Signal Processing, pages 251-285. Prentice
Hall, 1992.

10. C. Shekhar, S. Moisan, and M. Thonnat. Towards an Intelligent Problem-Solving Environment for
Signal Processing. Mathematics and Computers in Simulation, 36:347-359, March 1994.

11. M. Thonnat, V. Clement, and J.C. Ossola. Automatic galaxy classification. Astrophysical Letters and
Communication, 31(1-6):65-72, 1995.

12. M. Thonnat, V. Clement, and J. van den Elst. Supervision of perception tasks for autonomous systems:
the OCAPI approach. Journal of Information Science and Technology, 3(2):140-163, Jan 1994. Also
in Rapport de Recherche 2000, 1993, INRIA Sophia Antipolis.

13.

14.

15.

16.

17.

M. Thonnat and S. Moisan. Knowledge-based systems for program supervision. In First international
workshop on Knowledge-Based systems for the (re)Use of Programs libraries KBUP’95, pages 4-8,
Sophia Antipolis, France, March 1995. INRIA.

J. van den Elst, F. van Harmelen, G. Schreiber, and M. Thonnat. A functional specification of reusing
software components. In Sizth International Conference on Software Engineering and Knowledge
Engineering, pages 374-381. Knowledge Systems Institute, June 1994.

J. van den Elst, F. van Harmelen, and M. Thonnat. Modelling Software Components for Reuse. In
Seventh International Conference on Software Engineering and Knowledge Engineering, pages 350-357.
Knowledge Systems Institute, June 1995.

R. Vincent and M. Thonnat. Planning, executing, controlling and replanning for ip program library.
In Proc. of 8th Artificial intelligence and Soft computing ASC’97, July 1997.

R. Vincent, M. Thonnat, and J.C. Ossola. Program supervision for automatic galaxy classification. In
Proc. of the International Conference on Imaging Science, Systems, and Technology CISST’97, June
1997.

