P. W. Adriaans, Language Learning from a Categorial Perspective, 1992.

P. W. Adriaans and M. Vervoort, The EMILE 4.1 grammar induction toolbox, ICGI, vol.2484, pp.293-295, 2002.

L. Boasson and G. Sénizergues, NTS languages are deterministic and congruential, J. Comput. Syst. Sci, vol.31, issue.3, pp.332-342, 1985.

J. Calera, -. , and J. Oncina, Identifying left-right deterministic linear languages, ICGI, vol.3264, pp.283-284, 2004.

A. Clark, Distributional learning of some context-free languages with a minimally adequate teacher, ICGI, vol.6339, pp.24-37, 2010.

A. Clark, A language theoretic approach to syntactic structure, MOL, vol.6878, pp.39-56, 2011.

A. Clark, Learning trees from strings: a strong learning algorithm for some contextfree grammars, Journal of Machine Learning Research, vol.14, issue.1, pp.3537-3559, 2013.

A. Clark and R. Eyraud, Polynomial identification in the limit of substitutable context-free languages, Journal of Machine Learning Research, vol.8, pp.1725-1745, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00186889

A. Clark and R. Yoshinaka, Distributional learning of parallel multiple contextfree grammars, Machine Learning, vol.96, pp.5-31, 2014.

F. Coste, G. Garet, and J. Nicolas, Locally substitutable languages for enhanced inductive leaps, ICGI, vol.21, pp.97-111, 2012.

F. Coste, G. Garet, and J. Nicolas, Learning context free grammars on proteins by local substitutability. unpublished first submission of ReGLiS, 2012.

F. Coste, G. Garet, and J. Nicolas, A bottom-up efficient algorithm learning substitutable languages from positive examples, ICGI, vol.34, pp.49-63, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01080249

C. De and L. Higuera, Characteristic sets for polynomial grammatical inference, Machine Learning, vol.27, pp.125-138, 1997.

C. De, L. Higuera, and J. Oncina, Inferring deterministic linear languages, COLT, vol.2375, pp.185-200, 2002.

R. Eyraud, J. Heinz, and R. Yoshinaka, Efficiency in the identification in the limit learning paradigm, Topics in Grammatical Inference, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01399418

, Zellig Harris. Distributional structure. Word, vol.10, issue.23, pp.146-162, 1954.

J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to automata theory, languages, and computation-international edition (2. ed), 2003.

M. Franco, . Luque, and G. Gabriel, Infante López. Pac-learning unambiguous k,l-NTS <= languages, ICGI, vol.6339, pp.122-134, 2010.

J. Scicluna, Grammatical inference of probalistic context-free grammars, 2014.

M. José, P. Sempere, and . García, A characterization of even linear languages and its application to the learning problem, ICGI, vol.862, pp.38-44, 1994.

Z. Solan, D. Horn, E. Ruppin, and S. Edelman, Unsupervised learning of natural languages, Proceedings of the National Academy of Sciences of the United States of America, vol.102, pp.11629-11634, 2005.

Y. Takada, Grammatical interface for even linear languages based on control sets, Inf. Process. Lett, vol.28, issue.4, pp.193-199, 1988.

Y. Takada, A hierarchy of language families learnable by regular language learners, ICGI, vol.862, pp.16-24, 1994.

. Menno-van-zaanen, ABL: alignment-based learning, COLING, pp.961-967, 2000.

R. Yoshinaka, Learning efficiency of very simple grammars from positive data, ALT, vol.4754, pp.227-241, 2007.

R. Yoshinaka, Identification in the limit of k, l-substitutable context-free languages, ICGI, vol.5278, pp.266-279, 2008.

R. Yoshinaka, Learning mildly context-sensitive languages with multidimensional substitutability from positive data, ALT, vol.5809, pp.278-292, 2009.

R. Yoshinaka, Efficient learning of multiple context-free languages with multidimensional substitutability from positive data, Theor. Comput. Sci, vol.412, pp.1821-1831, 2011.