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Abstract—Co-scheduling techniques are used to improve the
throughput of applications on chip multiprocessors (CMP), but
sharing resources often generates critical interferences. We focus
on the interferences in the last level of cache (LLC) and use the
Cache Allocation Technology (CAT) recently provided by Intel
to partition the LLC and give each co-scheduled application
their own cache area. We consider m iterative HPC applications
running concurrently and answer the following questions: (i)
how to precisely model the behavior of these applications on the
cache partitioned platform? and (ii) how many cores and cache
fractions should be assigned to each application to maximize
the platform efficiency? Here, platform efficiency is defined as
maximizing the performance either globally, or as guaranteeing a
fixed ratio of iterations per second for each application. Through
extensive experiments using CAT, we demonstrate the impact
of cache partitioning when multiple HPC application are co-
scheduled onto CMP platforms.

Keywords-Co-scheduling; cache-partitioning; multiprocessor
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I. INTRODUCTION

Co-scheduling applications on a chip multiprocessor (CMP)
has received a lot of attention recently [1], [2]. The main
motivation is to improve the efficiency of the parallel exe-
cution of each application. Consider for instance the Gyoukou
ZettaScaler supercomputer, currently ranked #4 in the TOP500
benchmark [3]: it uses PEZY-SC2, a 2048-core processor chip
sharing a 40MB last level cache (LLC) [4]: with so many cores
at disposal, few applications can efficiently be deployed on the
entire computing platform. This is because most application
speedup profiles obey Amdahl’s law, which tends to severely
limit the number of cores to be used in practice.

The remedy is simple: schedule many applications to exe-
cute concurrently; each application receives only a fraction
of the total number of cores, hence its parallel efficiency
is improved. Which fraction of computing resources should
actually be assigned to each application depends on many fac-
tors, including speedup profiles, but also external constraints
prescribed by the user such as response times or application
priorities.

Unfortunately, the remedy comes with complications: when
multiple applications run concurrently on a CMP, they com-
pete to access shared resources such as the LLC, and their
performance actually degrades. This issue turned out so se-
vere [5], [6] that the name co-run degradation has been coined.

Modeling and studying cache interferences to prevent co-run
degradation has been the object of many studies [7], [8], [9]
(see Section II on related work for more details).

Intel recently introduced a new hardware feature for cache
partitioning called Cache Allocation Technology (CAT) [10].
CAT allows the programmer to reserve cache subsections,
so that when several applications execute concurrently, each
of them has its own cache area. Using CAT, Lo et al. [2]
showed experimentally that important gains could be reached
by co-scheduling latency-sensitive applications with a strict
cache partitioning. In this paper, we also use CAT to partition
the LLC into several areas when co-scheduling applications,
but with the objective of optimizing the throughput of in-
situ or in-transit analysis for large-scale simulations. Indeed,
in such simulations, data is generated at each iteration and
periodically analyzed by parallel processes on dedicated nodes,
concurrently of the main simulation [11]. If these dedicated
nodes belong to the main simulation platform (thereby reduc-
ing the number of available cores for simulation), we speak
of in-situ processing, while if they belong to an auxiliary
platform, we speak of of in-transit processing [12]. In both
cases, several applications (various computational kernels for
data analysis) have to run concurrently to analyze the data
in parallel of the current simulation step. The constraint is to
achieve a prescribed throughput for each application, because
the outcome of the analysis drives the next steps of the
simulation. In the simplest case, each application will have
to complete within the time of a simulation step, hence we
need to achieve the same throughput for each application, and
maximize that value. In other situations, some applications
may be needed only every k simulation steps, with a different
value of k per application [13]. This calls for achieving a
weighted throughput per application, and for maximizing the
minimum value of these weighted throughputs, which dictates
the global rate at which the data analysis can progress.

The first major contribution of this paper is to introduce
a model that characterizes application performance. Next, we
provide strategies to decide how many cores and which cache
fraction should be assigned to each application, in order to
maximize the weighted throughput. A dynamic programming
algorithm provides an optimal strategy, according to the model.
The last major contribution is to provide an extensive set of
experiments conducted on the Intel Xeon, which assesses the



gains achieved by our optimal resource allocation strategy.
We therefore demonstrate that cache-partitioning strategies can
lead to gains in performance for in-situ analysis for large-scale
simulations.

The rest of the paper is organized as follows. Section II
provides an overview of related work. Section III details the
main framework and all application/platform parameters, as
well as the optimization problem. Section IV presents five
co-scheduling strategies, including a dynamic programming
approach that provides an optimal resource assignment (ac-
cording to the model). Section V describes the real cache
partitioned platform used to perform the experiments. Sec-
tion VI assesses the accuracy of the model. Section VII reports
extensive experiments. Finally, Section VIII summarizes our
main contributions and discusses directions for future work.

II. RELATED WORK

Recent multi-core processors show dozens of cores and a
shared cache always larger. In this context, co-scheduling has
been extensively studied [1], [2]. The main idea behind co-
scheduling is to execute applications concurrently rather than
in sequence in order to improve the global throughput of the
platform. Indeed, many HPC applications are not perfectly
parallel, and it is not beneficial to deploy them on the entire
platform: the application speedup becomes too low beyond
a given core count. A new trend in large-scale simulations
is in-situ and in-transit approaches, to visualize and analyze
the data during the simulation [14]. Basically, the idea behind
these approaches is that a new dataset is generated periodically,
and we need to run different applications on different parts
of this dataset before the next period. In the in-situ approach,
simulation and analyzes are co-located in the same node, while
in the in-transit approach, the data analyzes are outsourced
onto dedicated nodes [12]. Several studies have shown that
large-scale simulations with in-situ could benefit from co-
scheduling approaches [11], [15]. The difficulty consists in
ensuring that the in-situ part processes the data fast enough
to avoid slowing down the main simulation, which is directly
related to co-scheduling issues: how to partition the resources
across the concurrent analysis applications sharing the CMP?

Shared resources include cache, memory, I/O channels
and network links, but among potential degradation factors,
cache accesses are prominent [16]. Modeling application
interferences is challenging, and one way to address this
problem is to partition the cache to avoid these potential
interferences. Multiple cache partitioning schemes have been
designed, through hardware techniques [17], [18], [19] and
software techniques [20], [21], [22], [23]. Most of the hard-
ware approaches are efficient with a very low overhead at the
execution time, but they suffer from an extra cost in terms
of hardware components. In addition, hardware solutions are
difficult to implement and often only tested through simulated
architectures. On the side of software-based solutions, the
most popular is page coloring, where physical pages are
selected for application allocations so that they end up in
specific sections of the cache. Tam et al. [21], showed that

important gains can be achieved through a static partitioning
of the L2 cache using page coloring. Besides static strategies,
dynamic cache partitioning strategies using page coloring have
also been studied. In [22], the cache partitioning is refined
and adjusted periodically at runtime, with the objective to
maximize platform efficiency.

Modeling application interference is a challenging task, and
Hartstein et al. [24] showed, with the Power Law of cache
misses (or the

√
2 rule), how the cache size affects the cache

miss ratio. The Power Law states that, if for a baseline cache
of size C0, the cache miss ratio is equal to m0, then for a
cache of size C, the cache miss ratio m = m0

(
C0

C

)α
, where

α is usually set to 0.5.
In a previous work [25] using this Power law, we focused on

a static allocation of LLC cache fractions, and core numbers,
to concurrent applications, as a function of several parameters
(cache-miss ratio, access frequency, operation count) in order
to minimize the total execution time. The problem was shown
to be NP-complete and heuristics were provided. We used
simulations to assess the performance of these heuristics,
because at that time no cache partitioning technologies were
available. Intel recently released a new software technique
to internally partition the last level cache (LLC), called the
Cache Allocation Technology (CAT) [10], [2]. In this paper,
we use CAT to experiment with a real cache partitioned
platform. The main differences with our previous work are
as follows. In this work: (i) we use an application model that
renders the problem tractable and is still sufficiently precise;
(ii) we target a real-life optimization objective that corresponds
to weighted throughput in steady-state processing; (iii) we
provide an optimal polynomial algorithm for this objective
function; (iv) finally, we perform actual implementations and
experiments to verify our model and algorithms. To the best of
our knowledge, this work is the first co-scheduling study for
a cache partitioned system (using CAT) with HPC workloads.

III. MODEL AND OPTIMIZATION PROBLEM

The objective is to execute m iterative applications
A1, . . . , Am on P identical cores. The applications are sharing
a cache of size C, which can be divided into X different
fractions. For instance, if X = 20, we can give several
fractions of 5% of the cache to each application.

Let pi be the number of cores on which application Ai
is executed, and let xi be the number of fractions of cache
assigned to Ai, for 1 ≤ i ≤ m. Hence, Ai uses a cache of
size xi

XC. We must have
∑m
i=1 pi = P and

∑m
i=1 xi = X ,

i.e., all the cores and the cache fractions are partitioned across
the applications.

Given pi and xi, an application Ai executes one iteration in
time T reali (pi, xi). On a given platform, all these values can be
measured, and we aim at providing a model that characterizes
these values. In the model, we use the following formula:

Ti(pi, xi) = ti(pi) (1 + hi(xi)) , (1)

where ti(pi) represents the computation cost and hi(xi) the
slowdown induced by cache misses in the LLC. Intuitively,



the computation cost decreases when pi increases, and simi-
larly, the slowdown decreases when xi increases, i.e., ti(pi)
and hi(xi) are non-increasing functions. In this formula, we
assume that the slowdown incurred by cache misses does not
depend on the number of cores assigned to the application.
While this assumption may not be true in practice, we will
discuss the model accuracy in Section VI, where we measure
cache misses and refine the model.

We now detail the model for ti(pi) and hi(xi).

A. Computations ti(pi)

We assume that all applications obey Amdahl’s law [26]:
ti(pi) = siT

seq
i + (1− si)

T seq
i

pi
, where T seqi is the sequential

time of the application executed with 100% of the cache, and
si is the sequential fraction of the application.

B. Cache misses effect hi(xi)

The most challenging part is to model the slowdown fac-
tor hi(xi). In chip multiprocessors (CMP), many studies have
observed that cache miss ratio follows the Power Law, also
called the

√
2 rule [24], [27], [28]. The Power Law of cache

misses states that for a cache of size Cact, the cache miss
ratio r can be expressed as

r = r0

(
C0

Cact

)α
, (2)

where r0 represents the cache miss ratio for a baseline cache
of size C0, and α is a parameter ranging from 0.3 to 0.7, with
an average at 0.5. We consider α = 0.5 in the following.

We slightly generalize the Power Law formula (with α =
0.5) to avoid side effects, and define the slowdown as follows:

hi(xi) = ai +
bi√
xi
, (3)

where ai and bi are constants depending on the application Ai.
From Equation (2) with α = 0.5, we have bi = r0

√
C0X
C

(since Cact = xi

XC), and ai is a constant added to avoid side
effects. In Section VI, we determine ai and bi by interpolation,
from experimentally measured cache misses, see Table II.

Overall, when assigning pi cores and a fraction xi of the
cache, and letting ci = 1 + ai, an application Ai executes one
iteration in time:

Ti(pi, xi) = ti(pi)

(
ci +

bi√
xi

)
. (4)

C. Optimization problem

As stated in Section I, the goal is to maximize a weighted
throughput, since analysis applications may be required at
different rates, from every simulation step to every tenth (or
more) step [13]. We let βi denote the weight of application Ai
for 1 ≤ i ≤ m. Intuitively, βi represents the number of
times that we should execute application Ai at each iteration
step. These priority values are not absolute but relative: for
m = 2 applications, having β1 = 1

4 and β2 = 1 means
we execute four times A2 (at each step) while executing A1

only once (every fourth step). This is equivalent to having
β1 = 1 and β2 = 4 if we change the granularity of the
simulation steps. In fact, what matters is the relative number
of executions of each Ai that is required, hence we aim at
maximizing the weighted throughput. The throughput achieved
when executing βi instances of application Ai is 1

βiTi(pi,xi)
,

and the objective is to partition the shared cache and assign
cores such that the total time taken by the slowest application
is minimal, i.e., the lowest weighted throughput is maximal.
The weighted throughput allows us to ensure some fairness
between applications, and to enforce a better analysis rate of
the simulation results whenever the bottleneck is the slowest
application. Note that letting βi = 1 leads to maximizing
the rate of the analysis when all applications are needed at
the same frequency. The optimization problem is formally
expressed below:

Definition 1 (COSCHED-CACHEPART). Given m iterative
applications with priorities (A1, β1), . . . , (Am, βm) and
a platform with P identical cores sharing a memory
of size C with X fractions of cache, the COSCHED-
CACHEPART problem consists in finding a schedule
{(p1, x1), . . . , (pm, xm)} such that

MAXIMIZE min
1≤i≤m

{
1

βiTi(pi,xi)

}

SUBJECT TO

{ ∑m
i=1 pi = P,∑m
i=1 xi = X.

IV. SCHEDULING STRATEGIES

In this section, we introduce several co-scheduling strategies
that we will compare via experiments on the Intel Xeon. We
start with a (theoretically) optimal schedule, and then present
simple heuristics that we use for comparison.

A. Optimal solution to COSCHED-CACHEPART

Given the time to execute one iteration of application Ai
with pi cores and a fraction xi of the cache Ti(pi, xi), we can
solve the COSCHED-CACHEPART problem optimally, with a
dynamic programming algorithm.

Theorem 1. COSCHED-CACHEPART can be solved in time
O(mPX), where m is the number of applications, P is
the number of processors, and X is the number of different
possible cache fractions.

Proof: Let T (i, q, c) be the maximum weighted
throughput that can be obtained with applications A1, . . . , Ai,
using q cores and c fractions of cache. The goal is to find
T (m,P,X). We compute T (i, q, c) as follows:



T (i, q, c) =



max
1≤q1≤q
1≤c1≤c

1
β1T1(q1,c1)

if i = 1,

max
1≤qi<q
1≤ci<c

{
min

{
T (i− 1, q − qi, c− ci),

1
βiTi(qi,ci)

}}
otherwise.

The base case i = 1, for one application, takes the best out
of all possible allocations (in terms of number of processors
and number of cache fractions). Note that for most execution
time profile, the execution time in this case is obtained by
T (1, q, c) = 1

β1T1(q,c)
, since using less processors or less

fractions of cache would only increase the execution time, but
we write the general expression to encompass any execution
time profile, and not only the one given by Equation (4).

In the recurrence, we try all possible number of processors
and number of cache fractions for application i, and re-use
the optimal solution for the i − 1 other applications. If we
did not use the optimal solution, we would be able to create
a better solution, hence it is easy to see that the problem has
an optimal substructure property and can be solved with a
dynamic programming algorithm.

There are mPX values to compute, and they can each
be obtained in constant time, except for the generalized base
case, where we need to perform a maximum over PX values.
Overall, with the execution profile of our model, we can
compute all values in time O(mPX), and the complexity
becomes O(mP 2X2) in the general case. In practice on
the Intel Xeon, we have m ≤ P = 14, and X = 20,
hence the dynamic programming algorithm executes almost
instantaneously in all the experiments.

This optimal algorithm provides us with our first strategy
to schedule applications, and it is called DP-CP (Dynamic
Programming with Cache Partitioning). Checking the behavior
of this strategy in practice will assess the accuracy of the per-
formance model, when using the values of Ti(pi, xi) obtained
with the model of Section III.

B. Equal-resource assignment

To evaluate the global efficiency of the optimal solution
for DP-CP, we compare it to EQ-CP, a simple strategy that
allocates the same number of cores and the same number
of cache fractions to each application. The algorithm is the
following: we start to give xi =

⌊
X
m

⌋
and pi =

⌊
P
m

⌋
for all i,

then, we give the P mod m extra cores one by one to the first
P mod m applications, and we give the X mod m extra
cache fractions one by one to the last X mod m applications.
Doing this, we forbid the case where an application receives
an extra core plus an extra fraction of cache, thereby avoiding
a totally unbalanced equal assignment.

C. Impact of cache allocation

In order to isolate the impact of cache partitioning on
performance, we introduce some variants where only the cache
allocation is modified. DP-EQUAL uses the number of cores

returned by the dynamic programming algorithm, hence the
same as for DP-CP, but shares the cache equally across
applications, as done by EQ-CP. We also consider strategies
that do not enforce any cache partitioning, but only decide
on the number of cores for each application. DP-NOCP uses
the same number of cores as DP-CP, and EQ-NOCP uses an
equal-resource assignment as in EQ-CP. However, for these
two strategies, all applications share the whole cache, i.e., CAT
is disabled.

V. EXPERIMENTAL SETUP

In this section, we first describe the platform and the
benchmark applications in Section V-A. Then in Section V-B,
we explain in details the Cache Allocation Technology CAT.

A. Platform and applications

The experimental platform is composed of a Dell Pow-
erEdge R730 server with two Intel Xeon E5-2650L v4 proces-
sors (Broadwell microarchitecture). Each processor contains
P = 14 cores (with Hyper-Threading disabled) sharing a
35MB last-level cache (Cluster-on-Die disabled), divided into
X = 20 slices (or fractions). Nodes run a vanilla 4.11.0 Linux
kernel with cache partitioning enabled.

Only one processor (with 14 cores) is used for the ex-
periments, since the LLC is not shared across processors.
It matches standard practice because users who co-schedule
real-applications often place each application inside a single
processor to benefit from the shared cache. Batch schedulers
also allocate cores of the same processor whenever possible.
Hence our work focuses on co-scheduling the subset of
applications that are assigned to a single processor by the user
or by the batch scheduler.

Cache experiments are very sensitive to perturbations, so
we take great care to ensure that all experiments are fully
reproducible. To avoid perturbations: (i) we average values
obtained (like cache misses) over 20 (in Section VI) or 5 (in
Section VII) identical runs; (ii) we flush the last-level cache
entirely between runs; and (iii) experiments run on a dedicated
processor while the program launching and monitoring them
runs on the other processor. All the data presented in this paper
(cache misses, number of floating operations, etc), is obtained
with PAPI 5.5.1 [29]. Each benchmark is compiled using the
Intel Fortran Compiler 17.0.1 with the optimization level -O2
and the flag -mcmodel=medium.

For validation and performance evaluation, we use HPC
workloads from class A NAS benchmarks [30]. Due to lack of
space, we focus on three applications CG, MG and FT, which
exhibit the most interesting behaviors (see Table I). Three
additional NAS benchmarks are considered in the extended
version [31], and lead to similar conclusions.

B. Cache Allocation Technology

The Cache Allocation Technology (CAT) [10] is part of a
larger set of Intel technologies that are called the Resource
Director Technology (RDT) and supported since the Haswell
architecture. RDT lets the operating system group applications



App Description

CG Uses conjugate gradients method to solve a large sparse
symmetric positive definite system of linear equations

MG Performs a multi-grid solve on a sequence of meshes

FT Performs discrete 3D fast Fourier Transform

Table I: Description of the NAS parallel benchmarks.

into classes of service (COS). Each class of service describes
the amount of resources, in particular cache, that assigned
applications can use. The CAT divides the LLC into X
slices of cache (see Figure 1). Each COS has a set of slices
that applications can use: When reading or writing memory
requires to fetch a cache line in the LLC, that cache line
must be allocated in the slices available to the class of the
current application. The set of slices available to a class is
a capacity bit-mask (CBM) of length X . Note that CAT has
some technical restrictions:
• The number of slices (CBM length) and classes are

architecture dependent (20 and 16 on our platform);
• A CBM cannot be empty (each class of applications must

have at least one fraction of cache);
• Bits set in a CBM must be contiguous;
• Slices are not distributed geographically in the LLC, and

address hashing ensures spreading of slices over the entire
LLC; In other words, 0x10000 and 0x00001 CBM
should behave exactly the same with respect to locality;
there are no NUCA effects (Non Uniform Cache Access).

Also, we consider a strict cache partitioning, hence each COS
contains only one application (and each cache slice is available
to a single application).

LLC

CBM1 = 1110 CBM2 = 0001

p1 p2

COS1

p3

COS2

Figure 1: CAT example with 2 classes of service, 3 cores and
a 4-bit capacity mask (CBM). First COS has 2 cores and 75%
of the LLC, the second class of service has the remaining
resources.

VI. ACCURACY OF THE MODEL

In this section, we assess the precision of the model
introduced in Section III. First, we detail the experimental
protocol and explain how to obtain the model parameters for
each application in Section VI-A. Then in Section VI-B, we
study the behavior of cache misses on the platform described
in Section V-A. Finally, we study in Section VI-C the accuracy
of the model by comparing the expected execution time from
Equation (4) to the measured one T real.

A. Experimental protocol

To instantiate the model and check its accuracy, we need to
find for each application the value of three parameters used
in Equation (4): si (sequential fraction), ai (or equivalently
ci = ai + 1), and bi (cache slowdown). To this purpose, we
monitor each application with PAPI [29] and use multiple in-
terpolations on the produced data to find the desired constants.
More precisely, we proceed as follows. Each application Ai
executes alone on a dedicated processor. First, we give 100%
of the cache to the application Ai and vary the number of cores
from 1 to 14 to derive the sequential fraction si. Then, for
each cache fraction xi ranging from 15% to 85%, we record
the number of cache misses when pi ranges from 1 to 14
and derive values for ci and bi. Finally, we put the pieces
together, keeping the value of si while scaling ci and bi by a
constant factor, thereby deriving the final values for Ti(pi, xi)
in Equation (4).

As a side note, we point out that this complicated (and
definitely not scalable) approach was necessary because the
least-square interpolation program would not converge when
fed directly with 80% of the 280 experimental values for each
application (14 processors, and 16 values of x out of 20).
We expect it will be even more challenging to instantiate the
model for future platforms where the number of cores will be
higher.

Note that the Power Law with α = 0.5 suits well the behav-
ior of compute-intensive benchmarks such as CG, but struggles
to model memory/communication-intensive applications such
as MG and FT. The results for each application are displayed
in Table II (more detailed results are available in [31]).

Appi ai bi si

CG −0.0379 0.0474 0

MG 0.0460 0.0073 0.065

FT 0.0092 0.0129 0.016

Table II: Parameters ai, bi, and si, obtained by interpolation
from the data produced by measurements.

B. Cache miss behavior

Figure 2 shows the evolution of cache miss ratios for the
three applications depending on the number of cores and cache
fraction. We observe that for most applications, the cache
miss ratio increases with the number of cores for small cache
fractions, while it does not vary significantly with the number
of cores for higher cache fractions. Hence, most of the time,
the assumption taken in the model that the slowdown incurred
by cache misses does not depend on the number of cores is
acceptable, even though there might be some differences, in
particular for the MG application.

C. Accuracy of the execution time

Finally, we aim at verifying the accuracy of the execution
time predicted by the model. Figure 3 shows, for each applica-
tion, the comparison between the measured execution time and
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the model, when the application runs alone on the platform (no
co-scheduling here). In Figure 3, the number of cores varies
from 1 to 14 while the cache fraction is fixed at x = 3 (or
15%).

Figure 4 shows the relative error between predictions and
the real data. The relative error is defined as

Ei(pi, xi) =

∣∣Ti(pi, xi)− T reali (pi, xi)
∣∣

T reali (pi, xi)
,

where T reali (pi, xi) is the measured execution time on the
cache partitioned platform for application Ai with pi cores
and xi fractions of cache. We observe that our model predicts
execution times rather well for CG and MG, with less than
25% of error for worst cases. For FT, the model is accurate
for xi ≥ 6 (30%) and pi ≤ 10, with a relative error below
15%, but the model loses accuracy for small cache fractions
and high number of cores. This is due to a specific behavior
of FT: its execution time tends to become constant after a
certain core threshold (see Figure 3), while the model expects
a strictly decreasing execution time. This constant plateau is
not due to Amdahl’s law (FT is parallel enough to scale up
to 14 cores), hence a contention effect (either from the cache
or the memory bandwidth) is probably behind this constant
level in performance. Another reason to explain these mis-
predictions when the number of cores increases, is that the
model assumes that the number of cores does not impact LLC
cache misses, which is not always true in practice, as seen in
Figure 2.

D. Summary

We have checked that the model is relatively accurate, even
though it takes some simplifying assumptions that are not
completely true in practice (cache misses independent of the
number of cores, execution time decreasing with higher core
counts). The next section assesses the performance of the
scheduling strategies, in particular when using the model.

VII. RESULTS

To assess the performance of the scheduling strategies of
Section IV and to evaluate the impact of cache partitioning on
co-scheduling performance, we conduct an extensive campaign
of experiments using a real cache partitioned system.

A. Experimental protocol

The platform and the applications used for all the exper-
iments are described in Section V. Recall that we consider
iterative applications, hence we have modified their main loop
such that each of them computes for a duration T . We choose
a value for T = 3 minutes, which is large enough to ensure
that each application reaches the steady state with enough
iterations. In addition, for all the following experiments, we
use 12 cores out of the 14 available, to avoid rounding effects
when we co-schedule a number of applications that is not
divisible by the number of cores. Similar results were obtained
when co-scheduling applications on all 14 cores, in particular
with two applications that could use seven cores each.
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Figure 5: CG and MG (six cores each).

To study the performance of the different algorithms in
terms of weighted throughput, we measure the time for one
iteration of Ai: Ti = T

#iteri
, where #iteri is the number

of iterations of application Ai during T . Then, we compute
mini

1
βiTi

. We are then interested by the relative speed of each
application with respect to the others. Indeed, recall that for all
i, j, the goal is to have βiTi = βjTj , by definition of the β’s.
Hence, we further study the following fairness criterion, rep-
resenting the distance to the optimal fairness, ∆fairness:

∆fairness =
∑
i 6=j

∣∣∣∣ βiTiβjTj
− 1

∣∣∣∣ . (5)

In addition to studying the maximum weighted throughput
that can be obtained with the applications, we also report the
value of ∆fairness in the experiments, so as to assess whether
the heuristics are ensuring that the correct number of iterations
of each application is performed during a given amount of
time. The goal is to have ∆fairness as close to 0 as possible.

B. Impact of cache partitioning

The first step is to assess the impact of cache partitioning
(CP) on performance. To this purpose, we co-schedule two ap-
plications, so we have three combinations (CG+MG, CG+FT,
FT+MG). For all i, j, we set the number of cores for Ai and
Aj to six, and we vary the fraction of cache allocated to Ai
from 5% to 95% while, conversely, the cache fraction of Aj is
varying from 95% to 5%. The y-axis represents the aggregated
number of iterations executed by all applications. We run the
applications both with cache partitioning enabled or not.

Figure 5 shows the impact of CP for CG+MG: we see that
when CG has more than 35% of the cache, CP outperforms the
version without CP. The impact of CP lies in the behavior of
each application, more specifically their data access pattern.
CG is a compute intensive application with an irregular
memory access pattern, while MG is a memory intensive
application. More specifically, MG does not take a great
benefit for more cache beyond 35%, while the performance
of CG greatly depends on the cache size (for more details
on application behaviors, see Figure 2). Without a cache
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Figure 6: CG and FT (six cores each).
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Figure 7: FT and MG (six cores each).

partitioning scheme, by reading/writing a lot of different cache
lines, MG will often evict CG cache lines, hence significantly
decreasing its performance.

For the other combinations CG+FT or FT+MG (see
Figures 6 and 7), we see little improvement, since FT is
more communication intensive (all-to-all communication) than
strictly memory intensive, hence the gain obtained by cache
partitioning is less important than for CG+MG. The worst case
for cache partitioning is when combining FT with MG, since
both applications are memory and communication intensive,
and hence none of them needs a strict cache partitioning, since
their use of the cache varies during iterations.

Overall, the cache partitioning is very interesting when
compute-intensive and memory-intensive application are co-
scheduled (important gain, up to 25%, for CG+MG, small gain
for CG+FT). On the contrary, FT and MG together perform
badly with the cache partitioning enabled, these applications
do not benefit from the cache to improve their execution time
by iteration. Hence, the behavior of applications has a strong
impact on the global performance of cache partitioning, and
in general, co-scheduling applications with the same behavior
results in degraded global performance when using cache
partitioning.

C. Co-scheduling results with two applications

Now that we have demonstrated the interest of cache parti-
tioning, we study the performance of the scheduling strategies
of Section IV. Recall that the COSCHED-CACHEPART opti-
mization problem aims at maximizing the minimum weighted
throughput among co-scheduled applications. Considering two
applications (Ai, Aj), for every βi iterations of Ai, we aim at
performing βj iterations of Aj . To avoid some side effects
that appear when the cache area is too small, we set the
minimum cache fraction allocated to each application to three
(each application has at least 15% of the cache and we
slightly modify the dynamic algorithm accordingly), while the
minimum number of cores per application is set to one.

We focus again on CG+MG, since this combination turned
out to be the most interesting in terms of cache partitioning.
On Figure 8 (top), we see what is the minimum throughput
achieved by each method for CG+MG. The weight βMG

of MG varies from 0.25 to 4. The algorithms based on
dynamic programming DP-CP, DP-EQUAL and DP-NOCP
outperform both equal-resource assignment heuristics EQ-
CP and EQ-NOCP. In this scenario, the cache partitioning
provides a good performance improvement, since on average
DP-CP outperforms DP-NOCP. On the same figure, we also
depict the model prediction, which reports the (analytical)
minimum throughput computed from Ti(pi, xi) values with
pi and xi derived from the optimal algorithm DP-CP. We
observe that the model is accurate enough to satisfactorily
fit the performance of DP-CP obtained on the experimental
platform. Figure 8 (bottom) presents ∆fairness, as defined in
Equation (5). We observe that DP-CP, DP-NOCP and DP-
EQUAL exhibit the same ∆fairness, near to zero, while EQ-CP
and EQ-NOCP are far from the optimal fairness.

For the other combinations (CG+FT and MG+FT,
see [31]), we observe similar results, where the DP-based
algorithms almost systematically outperform EQ-CP and EQ-
NOCP. Also, in most cases, the variants using cache partition-
ing perform better than those without cache partitioning, even
though FT benefits less from cache partitioning than when
we combine CG with MG. In terms of fairness, the DP-based
algorithms are always very close to zero.

We also consider a special case where all applications have
the same number of cores (six in our case), so only the cache
is available to increase performance, see Figure 9. In this case,
DP-CP is the only method that can choose how to partition the
cache, and it succeeds to obtain up to 25% improvement when
βMG is smaller than 1 (compute more CG than MG). Also, even
though ∆fairness is high for all methods in this setting (since
they cannot modify the number of cores), the error of DP-CP
is the smallest. We also observe that the model prediction is
pretty close to the experimental results.

Summary: Overall, the model is accurate enough to
enforce that the corresponding optimal DP algorithm performs
well: in most cases, DP-CP, DP-EQUAL and DP-NOCP
outperform EQ-CP and EQ-NOCP. On the cache partitioning
side, when co-scheduling CG and MG, the cache partitioning
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Figure 8: Minimum throughput and ∆fairness for CG
and MG.

is really interesting to isolate applications that pollute the
cache, such as MG. Figure 9 clearly shows the impact of
cache on performance when the number of cores is set for
each application. In the worst cases, for instance with FT and
MG, the cache partitioning does not improve performance, but
does not degrade it either.

D. Co-scheduling results with three applications

Similarly to the case with two applications, with three
applications (A1, A2, A3), β3 is ranging from 0.25 to 4, while
β1 = β2 = 1. We present only two examples of co-schedules;
more combinations are available in [31], with no significantly
different conclusions. Experiments with different values of β1
and β2 also provide similar results.

Figure 10 shows the minimum throughput obtained when
we co-schedule 2CG+MG, while the weight βMG associated
to MG is ranging from 0.25 to 4. Note that it is interesting
to co-schedule multiple copies of the same application (two
CGs in this scenario) in order to improve the global effi-
ciency, when this application exhibits a speedup profile with
limited gain from adding extra cores and/or extra fractions of
caches. We observe that the scheduling strategies building on
the dynamic programming algorithm, namely DP-CP, DP-
EQUAL and DP-NOCP, outperform EQ-CP and EQ-NOCP.
In addition, cache partitioning shows a great interest here: DP-
CP exhibits a gain around 15% on average over DP-NOCP
and DP-EQUAL. The model prediction is also very accurate
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Figure 9: Minimum throughput and ∆fairness for CG and
MG, where both applications have six cores.

with three applications, even more accurate than with two
applications. This difference of accuracy mainly lies in the
fact that our model is more accurate when pi and xi are not
extreme (close to the minimum or the maximum possible),
which happens when the number of applications increases.
The fairness criterion ∆fairness is also depicted. Recall that
ideally, we would like to have βiTi = βjTj for all i, j (see
Equation (5)). We observe that the method that is the closest
to zero is DP-CP, confirming the strong interest of cache
partitioning.

Figure 11 shows the minimum throughput obtained when
co-scheduling the three different applications, while varying
only the weight βFT of FT. We observe that the performance
of the three DP-based algorithms is close to the performance
obtained with the equal-resource assignment for βFT smaller
than 0.5, but for the other cases, DP-CP and all its variants
outperform EQ-CP and EQ-NOCP. The fairness criterion
∆fairness leads to the same conclusion: DP-CP, DP-NOCP
and DP-EQUAL are much closer to zero than EQ-CP and EQ-
NOCP, especially when βFT is larger than 0.5.

Summary: Overall, we showed that we can obtain impor-
tant gains using cache partitioning (CP) when co-scheduling
three applications, but it is not always the case. The difficulty
of obtaining some gain with CP increases with the number
of applications involved. The first reason lies in the cache
size, often too small to be efficiently partitioned between the



1

2

3

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βMG

m
in
i

1
β
i
T
i

DP-CP
DP-Equal

DP-NoCP
Eq-CP

Eq-NoCP
Model Prediction

0

1

2

3

4

5

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βmg

∆
f
a
ir
n
e
s
s

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

Figure 10: Minimum throughput and ∆fairness for 2CG+MG.

applications. The second reason is related to the behavior
of the co-scheduled applications. The results show that co-
scheduling one or two compute-intensive applications, such
as CG, plus one memory-intensive application, such as MG,
is a good way to achieve significant improvements with cache
partitioning. CG is a compute-intensive kernel that performs
a lot of irregular memory accesses, while MG is a memory-
intensive kernel, hence if we co-schedule one CG and one
MG, MG will often evict cache lines belonging to CG, which
will slow down its execution.

VIII. CONCLUSION

We have investigated the problem of co-scheduling iterative
HPC applications, using the CAT technology provided by
Intel to partition the cache. We have proposed a model for
the execution time of each application, given a number of
cores and a fraction of cache, and we have shown how to
instantiate the model on applications coming from the NAS
benchmarks. The model turns out to be accurate, as shown
in the experiments where we compare the execution time
predicted by the model to the real execution time. Several
scheduling strategies have been designed, with the goal to
maximize the minimum weighted throughput of each appli-
cation. In particular, we have introduced an optimal strategy
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Figure 11: Minimum throughput and ∆fairness for CG, MG
and FT.

for the model, based upon a dynamic programming algorithm.
The results demonstrate that in practice, the optimal strategy
often leads to better results than a naive strategy sharing
equally the resources between applications. Also, we have
determined which combinations of applications benefit most
from cache partitioning, and demonstrated the usefulness of
cache partitioning.

Future work will be devoted to extending this experimen-
tal study. We hope to get access to platforms with larger
shared caches, so that we could scale up the experiments
and confirm the usefulness of cache partitioning techniques.
The first research direction is to design a better interpolation
strategy, capable of retro-fitting a subset of the experimental
data (execution times for each application, with each processor
number and cache fraction) into a simple formula like Equa-
tion (4), and with good precision. We will also generalize the
experiments to multiprocessors and see if there is a benefit in
moving applications from one processor to another, in order
to avoid co-locating several cache-intensive applications on
the same processor. Another interesting direction would be
to consider the Universal Scalability Law [32] instead of
Amdahl’s law, thereby generalizing the model in order to
account for contentions.
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