
HAL Id: hal-01875486
https://inria.hal.science/hal-01875486

Submitted on 17 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Improving C/C++ Open Source Software
Discoverability by Utilizing Rust and Node.js

Ecosystems
Kyriakos-Ioannis D. Kyriakou, Nikolaos D. Tselikas, Georgia M. Kapitsaki

To cite this version:
Kyriakos-Ioannis D. Kyriakou, Nikolaos D. Tselikas, Georgia M. Kapitsaki. Improving C/C++ Open
Source Software Discoverability by Utilizing Rust and Node.js Ecosystems. 14th IFIP International
Conference on Open Source Systems (OSS), Jun 2018, Athens, Greece. pp.181-192, �10.1007/978-3-
319-92375-8_15�. �hal-01875486�

https://inria.hal.science/hal-01875486
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Improving C/C++ Open Source Software discoverability

by utilizing Rust and Node.js ecosystems

Kyriakos-Ioannis D. Kyriakou1, Nikolaos D. Tselikas1 and Georgia M. Kapitsaki2

1 Communication Networks and Applications Laboratory, Department of Informatics and Tele-

communications, University of Peloponnese, End of Karaiskaki Street, 22 100, Tripolis, Greece
2 Department of Computer Science, University of Cyprus, 75 Kallipoleos Street, P.O. Box

20537, CY-1678 Nicosia, Cyprus

{kyriakou, ntsel}@uop.gr, gkapi@cs.ucy.ac.cy

Abstract. Discovering Open Source Software (OSS) components efficiently is

not always an easy task. Node.js is a popular JavaScript runtime environment,

whereas Rust is widely used for system programming, and both can be utilized

for OSS discovery purposes. In this work, we examine whether Rust and Node.js

can be used, along with their respective tooling and package repositories, in order

to achieve improved discoverability of existing OSS implemented in C/C++. The

paper describes how the capabilities of Rust in C/C++ interoperability can be

combined with novel compilation techniques of low-level code to asm.js and

WebAssembly, in order to harness JavaScript’s popularity as the medium to pub-

licize hard to discover C/C++ OSS. A proposed incremental methodology is pre-

sented and the main, as well as the collateral, effects of enforcing the proposed

methodology in a proof-of-concept situation are examined. Our findings indicate

potential increase in discoverability, code quality, portability, along with viable

performance degradation of portable binaries, demonstrating 8.7 times slower

execution compared to machine code, in a worst-case scenario.

Keywords: Free Open Source Software, Software Discoverability, Software Per-

formance Evaluation, Software Convergence, Software Interoperability, C/C++,

WebAssembly, Node.js, Rust.

1 Introduction

Node.js [1] is an open source JavaScript (JS) runtime built around V8 [2], the JS engine

used in Chromium, the base for Google's Web browser. It has gained massive adoption

by developers and organizations around the world, because of its ease of development,

as well as the efficient, event-driven and non-blocking input/output (I/O) model. Ac-

cording to the results of the 2017 annual survey conducted by Stack Overflow, JS has

been declared as the most popular programming language for the fifth consecutive time

[3]. The overall shifts in popularity throughout the years the survey has been conducted,

displays both JS and Node.js as technologies with the greatest gain in traction among

all popular choices; thus, representing the ubiquity of JS as a programming language of

mailto:ntsel%7d@uop.gr

2

choice, in both server and client infrastructures. JS as part of the Web standard specifi-

cations, has enabled the production of complex applications that require no installation

or upgrades, enable real-time communications, provide access to device-specific hard-

ware and foster portability and accessibility, due to the prevalence of Web browsers.

One key advantage that can be attributed to the success of JS based systems is

Node.js' package manager, npm [4], which houses the largest distribution of open

source libraries in the world, counting over 570,000 individual modules [5]. Publicly

available modules provide ease in the discovery of building blocks, that enable rapid

prototyping of systems with minimal effort, through code reuse maximization [6].

Although Node.js applications are most commonly written in pure JS, the underlying

interoperability with foreign compiled code is abstracted. According to Node.js' an-

nouncement for version 8.0.0 of the platform, 30% of all modules rely indirectly on

native modules [7]. Node.js developers can provide their own bindings to C/C++ librar-

ies, in order to extend the platform’s capabilities and optimize performance, but in do-

ing so, new challenges related to the application’s integrity arise. Furthermore, re-pur-

posing such modules to the Web platform has been largely impossible, due to the fact

that the only recognized programming language in such environments is JS. Recent

advancements have made compilation of lower-level languages to JS, or the WebAs-

sembly portable binary format, possible. Whereas these novel technologies enable com-

ponents to be written in C/C++, the long-studied challenges related to memory-safety

and language misuse, propagate towards the higher layer, where the presumed safe JS

code executes. In addition, the absence of a modules’ system and of a common mech-

anism to package, document, discover and distribute libraries written in C/C++ hinders

the discovery of existing libraries.

Rust is a systems programming language designed to prevent common C/C++ pit-

falls, while at the same time it incorporates contemporary development methods, en-

couraging collaboration in OSS. Having the above as starting points, we observed an

opportunity to study whether Rust’s capabilities of providing safe interfaces to existing

libraries, can be combined with the proliferation of the npm ecosystem, in order to en-

hance the discoverability and reuse potential of open source projects, and evaluate the

side effects of such a coupling. This work describes the process we have followed, in

order to perform the above investigation, and how this approach can positively affect

discoverability, as well as quality aspects.

The rest of the paper is structured as follows. Section 2 introduces the background

of this work describing the current state of JavaScript and C/C++ OSS, along with open

challenges. The main contribution of our work with its architecture are presented in

section 3, and evaluated and discussed in section 4. Finally, section 5 concludes the

paper outlining directions of future work.

2 Background and Motivation

Translation of programs written in C/C++ for the Web has been a recent topic of interest

in various fields of research. Compilation of audio tools has been examined by Stephane

L. et al. and Michael Z. et al. [8, 9], whereas a distributed evolutionary algorithm has

3

been investigated by Guillaume L. et al. [10]. Furthermore, the potential of using Rust

instead of other systems programming languages is another emerging recent topic. Rust

has been shown to produce efficient code for the implementation of garbage collectors

reducing at the same time the programmer error surface [11, 12]. Combination of both

is possible, and we were motivated to examine the application of these technologies in

junction with modern development trends in OSS, in order to improve the state of

C/C++ software discoverability. The rest of this section provides the background infor-

mation in order to justify our thought process, as well as the technologies chosen.

2.1 JavaScript in Open Source Projects

JS is one of the most popular programming languages intended to facilitate interac-

tion with the user in web applications [3]. More recently, it has been employed in

server-side infrastructure for distributed services, in cross-platform applications target-

ing stationary and mobile users alike, but has also been used as a compilation target for

a plethora of programming languages [13]. In our previous work, we have examined

the aforementioned aspects of JS by implementing a full-featured high-performance

cross-platform social application and distributed service, with only OSS components,

and evaluated the benefits and implications of our choices [14, 15, 16]. This endeavor

was only made possible due to the wide spectrum of focused OSS modules, easily ac-

cessible via the npm repository. The word "module" is used to describe building blocks,

usually performing a single task, leading to composable, instead of monolithic, design

patterns. According to Modulecounts [5], a service monitoring language for module

repositories, npm averages 697 new modules/day, followed by Packagist (PHP) with

136 modules/day and Maven Central (Java) with 100 modules/day. It is noteworthy,

that npm module submissions follow an exponential growth curve, clearly outpacing

all the other repositories. Furthermore, TF Bissyandé et al. have studied 100,000 OSS

projects hosted on GitHub [17]. Their findings exhibited that JS was the programming

language that appeared the most frequently in multi-language projects. The Node.js

platform is such a multi-language project, where its components are written in both JS

and C/C++.

Node.js Architecture. The "Applications/Modules" space is where all JS project files

reside. They may make either direct, or indirect use of precompiled foreign code. Ad-

ditionally, required external dependencies, which are reused in the application's logic,

belong in this space as well. Although JS has positive aspects. Node.js has to rely upon

compiled code to perform I/O operations [18]. The runtime's garbage collector (GC)

abstracts the, potentially error prone, manual dynamic memory management, but there

is no thread-safety mechanism present when performing I/O, making memory related

faults, and race conditions possible [19]. Furthermore, failure points may be present in

the underlying foreign compiled code, propagating to the higher levels, and leading to

unexpected behaviors and faults. Node.js utilizes C/C++ libraries internally, in order to

provide access to the operating system resources. Such libraries provide efficient solu-

tions to all I/O related operations included as core functionalities. For instance, the libuv

4

project provides event-loop and asynchronous I/O access [20]. Other examples of li-

braries used internally by Node.js are c-ares, zlib, and OpenSSL. The "C/C++ Bind-

ings" space is where the functionality of such libraries is exposed via the core JS Ap-

plication Programming Interface (API). Some examples in this space are the os, fs,

net and http modules.

Addons in Node.js refer to libraries and their corresponding bindings, referring to

libraries that are not included in the core modules [21]. They are usually written in

C/C++, in order to extend Node.js' functionality, or provide performance gains, when

a JS implementation is found to be lacking. For instamce, μWebSockets is a popular

WebSocket protocol implementation for Node.js, which out-performs all known pure

JS implementations [22]. Moreover, libxmljs provides bindings to the popular XML

parsing C library, libxml, fulfilling Node.js lack of XML support [23].

Although addons have capabilities to extend Node.js, they require knowledge of how

the V8 engine works and their implementations must be fine-tuned, in order to avoid

locking the main thread JS executes, duplication of memory allocations, data races,

memory faults, etc. Another method of interfacing shared objects with Node.js is via

the ffi module. It involves no elaborate setup, at the cost of highly reduced perfor-

mance on high Input/Output systems. We theorize that writing and publishing Node.js

bindings, may pose an opportunity for undiscoverable C/C++ OSS to receive exposure

and be collaboratively improved, due to the massive reuse potential in Node.js projects.

Unfortunately, their implementation is connected to a performance-productivity trade-

off.

2.2 Challenges in C/C++ OSS

OSS implemented in the popular systems programming languages C and C++ predates

the proliferation of cloud computing, which enabled OSS to flourish. There is evidence

of the inherent inflexible codebase componentization in the amount of build systems

available. Some well-known examples are CMake [24], qmake [25], SCons [26], and

GYP [27], with the latter being used by Node.js. Legacy codebases that are not using

such systems gradually degrade in maintainability, as observed by Dayani-Fard et al.

[28]. In contrast, most prevalent programming languages in OSS implement some form

of enforced conventions, as well as a queryable directory or repository, containing the

corresponding metadata for every published project, e.g. via mvn for Java [29], npm

for JS [4], gem for Ruby [30], pip for Python [31], etc. Those enforced conventions

serve as guidelines to interact with code repositories, document, license, test, build,

distribute, etc., features which may exist for C/C++ in the form of various third-party

tools, but are incapable of providing the cohesion needed across OSS. The lack of ad-

vocated methodology in C/C++ OSS is more apparent in legacy projects, with many of

them accessible only through manual pursuit via web search-engines. Downloading ar-

bitrary dependencies by-hand, extracting, copying-and-pasting, figuring out the right

compiler flags, are not uncommon practices.

Finally, inconsistent dynamic memory management is common in even mainstream

utilities. For example, the GNU tool ls, has been known to leak memory, and is con-

5

sidered as a non-issue by its maintainers [32]. Although in its intended use, the operat-

ing system would handle the leak, using the library unknowingly of that issue in a per-

sistent system, e.g. a server, would pose a threat to robustness. Moreover, lack of C/C++

programming experience may cause integer overflow/underflow leading to “undefined

behavior”. Type safety is not guaranteed by C/C++, and although programs may not

exhibit type errors, undefined behaviors are incorporated in the standard specification,

leading compilers to produce unspecified results and also to allow the program to do

practically anything. A simple example of iterator invalidation, leading to undefined

behavior is demonstrated in the following listing.

std::vector v;

v.push_back(MyObject);

for (auto x : v) {

 v.clear();

 x->whatever(); // results in undefined behavior

}

If the contents of a container that is being iterated over are destroyed, the program is

led into undefined behavior. This is an example of a perfectly valid code from a C++

compiler's perspective, capable of halting the project using it. Such cases of undefined

behavior have already been investigated in depth [33]. Memory safety is set at risk by

null-pointer dereferences (NULL in C and nullptr in C++) that cause programs to

crash, dangling pointers allowing access to heap allocated resources that have not lived

as long as they had to, and buffer overruns allowing the program to access elements

before the start or beyond the end of an array [34]. Malicious software has been taking

advantage of the way C and C++ programs handle memory and exploiting bugs in the

code. Hence, OSS discovered in the wild may propagate unwanted effects to derivative

projects.

2.3 Rust: A young contender in OSS

Rust was created in order to address the challenges presented in Section 2.2. It follows

the C++ philosophy of zero-cost abstractions and takes a step further, by incorporating

memory-safety and data-race free concurrency without the need for a GC [35]. This is

accomplished by statically tracking ownership and lifetimes of all variables and their

references. The ownership system enables Rust to automatically deallocate and run de-

structors on all values immediately, when they go out of scope and prevents values from

being accessed after they are destroyed. Rust applies some established techniques from

academia, e.g. enums as algebraic data types, common in the ML family of languages,

and traits, which enable polymorphism similar to Haskell's type classes. Similarly

to JS, both procedural and functional paradigms are used, as examined by R. Poss [36].

Rust is available on GitHub, where all parts of the compiler and tooling are accessi-

ble for contributions [37]. The integrated command line application cargo serves as a

complete project management tool. It is capable of instantiating new projects, building

6

for various architectures, managing dependencies, testing, producing documentation,

and more. Furthermore, cargo is responsible for enforcing the practices that enable

OSS to be discoverable and maintainable. Interaction with C APIs is free of overheads,

and the binaries produced can be called from C with no setup. As Rust utilizes LLVM

for machine code emission, we were triggered to examine the possibility of utilizing

this system for bridging the gap between C/C++ codebases and modern OSS develop-

ment practices.

2.4 Compilation to JavaScript and WebAssembly

A strict subset of the JS programming language was designed as a compilation target,

in order to allow for translation of programs written in other languages. It became

known as asm.js, and the Emscripten compiler was created by Alon Zakai in 2011. This

language is statically compiled and has shown near native performance [38]. One of the

key benefits to its adoption was that even if a Web browser had not implemented opti-

mizations for the subset, it could still run on every JS interpreter. That is one reason it

is still in use as a fallback from the newer WebAssembly specification [39]. WebAs-

sembly is a portable size and load-time efficient format, suitable for compilation to the

Web, implemented in all major Web browsers, but still under the process of standardi-

zation via the W3C WebAssembly Working Group. It features language and platform

independence, safe execution, and has shown promising performance gains of up to

5.89 times when replacing JS components with Rust code in real-use parsing scenarios

[40]. Currently not all features have been finalized and garbage collection, threads,

SIMD, etc. are in progress. It is relevant to both JS and C/C++/Rust OSS, because the

combination of those technologies may solve the portability issue in the dissemination

of multi-language OSS.

3 Exposing C/C++ OSS via Rust and Node.js

In this section the independent processes that realize our proposed methodology are

presented and discussed. Each process is incremental and not mandatory, but adds to a

project’s exposure. The high-level architecture of our proposal is presented in Fig. 1,

followed by a proof-of-concept example.

3.1 Using Rust to package and publish on crates.io

The processes of taking the source files of a C/C++ project and producing a package

for publishing are depicted in the upper-half part of Fig. 1. By issuing the cargo new

command, followed by the name of the package to be published, a local git repository

is initiated, and the Cargo.toml file holding the project’s metadata and dependencies is

produced. By adding the cc, and bindgen packages to the dependencies, the project

is now capable of generating bindings statically via header files, compiling the source

files and linking them automatically. By creating a build.rs file, where the build param-

eters are specified, the process is complete. The produced bindings can be included in

7

lib.rs, where a new Rust API may be written. By issuing the cargo publish com-

mand, the package is uploaded to crates.io, the main Rust packages repository, and can

be discovered by querying it. As C/C++ and Rust can all emit asm.js and WebAssembly

files, portable executables may be built for reuse by JS environments.

Fig. 1. The proposed high-level architecture

3.2 Using Node.js to package and publish on npm

The second part of the process is depicted in the lower-half part of Fig. 1. Node.js uses

a package.json file, to hold the project’s dependencies and metadata. It can be generated

by issuing the npm init command. The library can be used directly by utilizing the

ffi module, but in order to create the more efficient Addon, the nan module or the

official N-API dependencies can be used. A C/C++ bridge must be created to convert

from C types to V8 types and provide a JS API. By instructing GYP via the binding.gyp

file to use the bridge and link to the libraries produced by Rust, the Addon is created.

Finally, by creating an index.js file which exports the Addon, the asm.js and WebAs-

sembly, the process is complete. The package can be published on the npmjs.org repos-

itory by using the npm publish command.

3.3 The hypothetical Park-Miller-Carta PRNG case

For our proof of concept scenario, we hypothesize that a researcher is seeking an effi-

cient Pseudo-Random Number Generator (PRNG) for a system’s prototype. They are

instructed by their colleague to use the Park-Miller-Carta PRNG.

We searched on GitHub for “Park Miller Carta PRNG”, and at the time this paper

was written, 1 result came up and it was a package implemented in JS. By searching

the Web, we came across a page dedicated to the algorithm, including documented

8

sources in assembly, C and C++ [41]. We proceeded to perform first step of the pro-

posed process, and created a local Rust project repository with cargo, where we in-

cluded the C/C++ source files.

The process of generating bindings automatically was successful and we then created

a safe interface for the library in Rust. The first observation was that when interfacing

with foreign code, the unsafe notation is constantly used. Its purpose is to mark the

calls to foreign functions, raw pointer dereferences, access to global mutable variables,

as well as inline assembly, the parts of the code the Rust compiler cannot provide guar-

antees for. In the case of this particular PRNG library, the seed-state is held in a global

mutable variable. By writing tests to verify that the produced interface is implemented

correctly, the second observation was that the foreign code is not thread-safe. Rust runs

tests in parallel and, by adding the flag --test-threads=1, to force consecutive

execution, the tests pass. As the C/C++ implementation would serve its intended use in

16bit microcontrollers, the original code was retained in a module named ffi_un-

safe, and documentation was written along with inline tests-as-examples, to be part

of the project’s documentation. In this particular case, the library’s focus is rather nar-

row; hence, it was trivial to replace the unsafe blocks by altering the way the state is

stored and accessed. The product was an idiomatic Rust API, including a C compatible

API,that have been documented and tested. The package was then pushed on GitHub

and published on crates.io.

By utilizing the new C API, we compiled the library via emscripten to asm.js and

WebAssembly exposed from a high-level idiomatic API in the index.js file, in order to

be accessible to systems compatible with Node.js modules. The ffi module was used

to dynamically link directly to the shared object produced by Rust. At this point, we

setup a stress test to examine the potential performance degradation in each approach.

Table 1. Mean executions per second and mean divergence

 Rust ffi WebAssembly asm.js

executions/second 219,159,372 180,622 25,214,517 7,969,921

Divergence ±4.89% ±1.8% ±1.78% ±1.05%

All versions were initialized with the seed 1. A for-loop cycled through each next

random integer invocation for 10 million times, in order to warm-up Node.js and enable

all the potential of Just-In-Time-Compilation. Then the benchmark library performed

the evaluation of each version. For Rust, the included library Bencher was instructed to

measure the execution time for 10 million integer generations, and was averaged over

10 repetitions. Table 1 contains the results in mean number of executions per second,

along with the mean divergences recorded. The software and hardware specifications

were the following: macOS 10.13, MacbookPro 2.3GHz Intel Core i5, 4GB 1333MHz

DDR3, node v8.9.1, rustc 1.25.0-nightly, clang 4.0.0, emcc 1.37.29.

Thereafter, the ffi, WebAssembly and asm.js version, may be made available on npm

for direct distribution and use in all JS environments by creating a package.json file and

filling in the module’s metadata.

9

4 Results and Discussion

By following the proposed methodology on the hypothetical, albeit pragmatic scenario,

the following observations were made. The code and information related to this study

are available on [42].

4.1 Discoverability improvement

According to the popular Web metrics provider Alexa, the website hosting the exam-

ined Park-Miller-Carta PRNG implementation receives 1 page-view per day on aver-

age, with an unknown amount of those views resulting in downloads. After publishing

the investigated asm.js/WebAssembly implementations derived from the type-checked

code, as well as the Node.js ffi version, as a package on npm they received 161 down-

loads in a period of about two and a half months, which translates to about 2.15 down-

loads per day. Furthermore, the proof of concept package that was published on

crates.io averaged 0.7 additional downloads per day, during the same period. The re-

ported metrics suggest that re-packaged OSS according to our proposed methodology

can improve the state of C/C++ codebase distribution and discovery, by multiplying the

exposure to multiple repositories and providing a high-level API for easier engagement.

In addition, larger codebases can be modularized into more manageable and maintain-

able components, and by publishing each one focused component, exposure improve-

ments can be realized collectively.

4.2 Code quality control

By interfacing the foreign C/C++ code with Rust, an undocumented thread-safety

weakness was discovered. An experienced programmer may have been able to realize

this fragility by going through the code, but in more complex scenarios, and especially

in the plane of OSS collaborations, code reviews alone cannot warrant the code’s cor-

rectness. Wrapping error-prone code in Rust’s unsafe blocks and documenting them, is

a reasonable method to minimize the debugging surface. In addition, the process of

improving the quality of the code can be performed incrementally and largely unfo-

cused codebases can benefit from the concept of smaller components in the form of

modules.

4.3 Performance degradation

The scenario was deliberately chosen, in order to stress the performance of function

invocation during context-switching interoperability and determine the overhead. Rust

is able to call into C/C++ libraries without the associated overhead interpreted lan-

guages impose. Hence, calling the original PRNG library via the safe interface and

auto-generated bindings, exhibited the same performance as the corrected Rust version.

10

Node.js-C shared object interoperability was examined via the ffi module. This

choice was made in order to serve as a fair comparison against the asm.js and WebAs-

sembly versions, as the cost is about equal in terms of programming time. Our meas-

urements indicate that both asm.js and WebAssembly have superior performance, by a

factor of 44 and 140 times respectively. Due to the fact that the time the program spends

performing actual calculations, is much shorter than the time it spends switching con-

texts, the modules were operating at their weakest possible scenario. The V8 engine

does not implement full optimizations for the asm.js subset, as it would have performed

similarly to the WebAssembly otherwise. Still the minimum observed overhead by

WebAssembly, while operating in a biased scenario against it, was found to impose

about 8.7 times slower execution, compared to the standalone native library. The trade-

off in performance vs productivity ratio appears to be improved by WebAssembly vs

the more common ffi approach, as a single codebase can produce, at least, good-

enough solutions for use in the most wide-spread platform, the Web.

4.4 Code portability

The aspect of portability can be greatly improved by the proposed methodology. Asm.js

is capable of executing in all JS interpreters, and with practically every system incor-

porating a Web browser, the coverage gains are immeasurable. WebAssembly, while

still in its infancy, exhibits the same trait for current Web browsers and Node.js, but

shows more future potential, with the on-progress features and its standardization. Ei-

ther technology was found to be capable of realizing portable libraries from

C/C++/Rust codebases. Finally, the Emscripten compiler is capable of bridging the gap

of code targeting the machine and the Web standards, and is expected be even more

prominent in the future.

5 Conclusions and future work

In this paper, we proposed a methodology for converting existing C/C++ OSS to pack-

ages via Rust and Node.js, and publicizing them on the crates.io and npm repositories.

This procedure takes into account the state of Node.js and C/C++ complexities, as well

as the novel compilation to WebAssembly. Our evidence based on a realistic scenario

suggests that discoverability, code quality and portability are improved, as well as the

performance when compared to same cost time-wise existing alternative, all beneficial

aspects to OSS. We plan to conduct a larger-scale study, and produce tooling to auto-

mate the process further. WebAssembly is still in a minimum-viable-product state, once

it matures and the JS engines are optimized further, we plan to conduct research on the

planned features, such as threading, which will enable more intensive C/C++ libraries

to be converted through our proposed methodology.

References

1. Node.js, https://nodejs.org, [Last accessed: January 18th, 2018]

11

2. V8 Repository, https://chromium.googlesource.com/v8/v8.git, [Last accessed: January 18th,

2018]

3. Stack Overflow Survey 2017, https://insights.stackoverflow.com/survey/2017, [Last ac-

cessed: January 18th, 2018]

4. npm, https://www.npmjs.com/, [Last accessed: January 18th, 2018]

5. Modulecounts, http://www.modulecounts.com/, [Last accessed: January 18th, 2018]

6. Sojer, M., & Henkel, J. (2010). Code reuse in open source software development: Quantita-

tive evidence, drivers, and impediments.

7. Node.js 8: Big Improvements for the Debugging and Native Module Ecosystem, https://me-

dium.com/the-node-js-collection/node-js-8-big-improvements-for-the-debugging-and-na-

tive-module-ecosystem, [Last accessed: January 18th, 2018]

8. Letz, S., Denoux, S., Orlarey, Y., & Fober, D. (2015, April). Faust audio DSP language in

the Web. In Proceedings of the Linux Audio Conference (LAC-15), Mainz, Germany.

9. Zbyszyński, M., Grierson, M., Fedden, L., & Yee-King, M. (2017). Write once run anywhere

revisited: machine learning and audio tools in the browser with C++ and emscripten.

10. Leclerc, G., Auerbach, J. E., Iacca, G., & Floreano, D. (2016, July). The seamless peer and

cloud evolution framework. In Proceedings of the Genetic and Evolutionary Computation

Conference 2016 (pp. 821-828). ACM.

11. Lin, Y., Blackburn, S. M., Hosking, A. L., & Norrish, M. (2016, June). Rust as a language

for high performance GC implementation. In Proceedings of the 2016 ACM SIGPLAN In-

ternational Symposium on Memory Management (pp. 89-98). ACM.

12. Blanco-Cuaresma, S., & Bolmont, E. (2016). What can the programming language Rust do

for astrophysics?. Proceedings of the International Astronomical Union, 12(S325), 341-344.

13. List of Languages that compile to JS, https://github.com/jashkenas/coffeescript/wiki/list-of-

languages-that-compile-to-js, [Last accessed: January 18th, 2018]

14. Chaniotis, I. K., Kyriakou, K. I. D., Tselikas, N. D., 2013. Proximity: A real-time, location

aware social web application built with Node.js and AngularJS. In International Conference

on Mobile Web and Information Systems (pp. 292-295).

15. Chaniotis, I. K., Kyriakou, K. I. D., Tselikas, N. D., 2015. Is Node.js a viable option for

building modern web applications? A performance evaluation study. Computing Springer,

97(10), pp.1023-1044.

16. Kyriakou, K. I. D., Chaniotis, I. K., Tselikas, N. D., 2015. The GPM meta-transcompiler:

Harmonizing JavaScript-oriented Web development with the upcoming ECMAScript 6

“Harmony” specification. In 12th Annual IEEE Consumer Communications and Network-

ing Conference (CCNC), (pp. 176-181), Las Vegas, NV, USA.

17. Bissyandé, T. F., Thung, F., Lo, D., Jiang, L., & Réveillere, L. (2013, July). Popularity,

interoperability, and impact of programming languages in 100,000 open source projects. In

Computer Software and Applications Conference (COMPSAC), 2013 IEEE 37th Annual (pp.

303-312). IEEE.

18. Crockford, D., 2008. JavaScript: The Good Parts: The Good Parts. " O'Reilly Media, Inc.".

19. Daloze, B., Marr, S., Bonetta, D., Mössenböck, H., 2016. Efficient and thread-safe objects

for dynamically-typed languages. In Proceedings of the 2016 ACM SIGPLAN International

Conference on Object-Oriented Programming, Systems, Languages, and Applications (pp.

642-659).

20. libuv, http://libuv.org/, [Last accessed: January 18th, 2018]

21. Addons Node.js, https://nodejs.org/api/addons.html, [Last accessed: January 18th, 2018]

22. μWebSockets, https://github.com/uNetworking/uWebSockets, [Last accessed: January

18th, 2018]

23. libxml, https://github.com/libxmljs/libxmljs, [Last accessed: January 18th, 2018]

https://github.com/jashkenas/coffeescript/wiki/list-of-languages-that-compile-to-js
https://github.com/jashkenas/coffeescript/wiki/list-of-languages-that-compile-to-js

12

24. CMake, https://cmake.org/, https://cmake.org/, [Last accessed: January 18th, 2018]

25. Qmake, http://doc.qt.io/qt-5/qmake-manual.html, [Last accessed: January 18th, 2018]

26. SCons, http://scons.org/, [Last accessed: January 18th, 2018]

27. GYP, https://gyp.gsrc.io/, [Last accessed: January 18th, 2018]

28. Dayani-Fard, H., Yu, Y., Mylopoulos, J., & Andritsos, P. (2005, April). Improving the build

architecture of legacy C/C++ software systems. In International Conference on Fundamental

Approaches to Software Engineering (pp. 96-110). Springer, Berlin, Heidelberg.

29. Maven, https://maven.apache.org/, [Last accessed: January 18th, 2018]

30. Ruby Gems, https://rubygems.org/, [Last accessed: January 18th, 2018]

31. Pip Python, https://pypi.python.org/pypi/pip, [Last accessed: January 18th, 2018]

32. bug#8755: "ls -l" leaks memory, https://lists.gnu.org/archive/html/bug-coreutils/2011-

05/msg00062.html, [Last accessed: January 18th, 2018]

33. Dietz, W., Li, P., Regehr, J., Adve, V., 2015. Understanding integer overflow in C/C++.

ACM Transactions on Software Engineering and Methodology (TOSEM), 25(1), Article 2.

34. Tselikis, G. S., Tselikas, N. D., 2017. C: From Theory to Practice, Second Edition, CRC

Press.

35. Stroustrup, B., 2004. Abstraction and the C++ machine model. In International Conference

on Embedded Software and Systems (pp. 1-13). Springer, Berlin, Heidelberg.

36. Poss, R., 2014. Rust for functional programmers. arXiv preprint arXiv:1407.5670.

37. The Rust Programming Language, https://github.com/rust-lang, [Last accessed: January

18th, 2018]

38. Zakai, A. (2011, October). Emscripten: an LLVM-to-JavaScript compiler. In Proceedings

of the ACM international conference companion on Object oriented programming systems

languages and applications companion (pp. 301-312). ACM.

39. Rossberg, A. (2016). WebAssembly: high speed at low cost for everyone. In ML16: Pro-

ceedings of the 2016 ACM SIGPLAN Workshop on ML.

40. Oxidizing Source Maps with Rust and WebAssembly,

https://hacks.mozilla.org/2018/01/oxidizing-source-maps-with-rust-and-webassembly/,

[Last accessed: January 26th, 2018]

41. Park-Miller-Carta Pseudo-Random Number Generator,

http://www.firstpr.com.au/dsp/rand31/, [Last accessed: January 18th, 2018]

42. rust_node_wasm, https://github.com/kenOfYugen/rust_node_wasm.git, [Last accessed:

January 26th, 2018]

https://cmake.org/
https://cmake.org/
http://doc.qt.io/qt-5/qmake-manual.html
http://scons.org/
https://gyp.gsrc.io/
https://maven.apache.org/
https://rubygems.org/
https://pypi.python.org/pypi/pip
https://lists.gnu.org/archive/html/bug-coreutils/2011-05/msg00062.html
https://lists.gnu.org/archive/html/bug-coreutils/2011-05/msg00062.html
https://github.com/rust-lang
https://hacks.mozilla.org/2018/01/oxidizing-source-maps-with-rust-and-webassembly/
https://github.com/kenOfYugen/rust_node_wasm.git

