M. E. Avale, P. Faure, S. Pons, P. Robledo, T. Deltheil et al., Interplay of beta2* nicotinic receptors and dopamine pathways in the control of spontaneous locomotion, Proceedings of the National Academy of Sciences, vol.105, p.18832468, 2008.

K. T. Beier, E. E. Steinberg, K. E. Deloach, S. Xie, K. Miyamichi et al., Circuit architecture of VTA dopamine neurons revealed by systematic Input-Output mapping, Cell, vol.162, p.26232228, 2015.
DOI : 10.1016/j.cell.2015.07.015

URL : https://doi.org/10.1016/j.cell.2015.07.015

J. P. Changeux, Nicotine addiction and nicotinic receptors: lessons from genetically modified mice, Nature Reviews Neuroscience, vol.11, p.20485364, 2010.
DOI : 10.1038/nrn2849

D. Dautan, A. S. Souza, I. Huerta-ocampo, M. Valencia, M. Assous et al., Segregated cholinergic transmission modulates dopamine neurons integrated in distinct functional circuits, Nature Neuroscience, vol.19, p.27348215, 2016.
DOI : 10.1038/nn.4335

URL : http://europepmc.org/articles/pmc5086413?pdf=render

D. Chiara, G. Imperato, and A. , Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats, Proceedings of the National Academy of Sciences, vol.85, p.2899326, 1988.

R. Eddine, S. Valverde, S. Tolu, D. Dautan, A. Hay et al., A concurrent excitation and inhibition of dopaminergic subpopulations in response to nicotine, Scientific Reports, vol.5, p.25640814, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01116458

P. Faure, S. Tolu, S. Valverde, and J. Naudé, Role of nicotinic acetylcholine receptors in regulating dopamine neuron activity, Neuroscience, vol.282, pp.24-881574, 2014.
DOI : 10.1016/j.neuroscience.2014.05.040

URL : https://hal.archives-ouvertes.fr/hal-01542258

S. B. Floresco, A. R. West, B. Ash, H. Moore, and A. A. Grace, Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission, Nature Neuroscience, vol.6, p.12897785, 2003.

B. M. Gaub, M. H. Berry, A. E. Holt, A. Reiner, M. A. Kienzler et al., Restoration of visual function by expression of a light-gated mammalian ion channel in retinal ganglion cells or ON-bipolar cells, PNAS, vol.111, p.25489083, 2014.

A. A. Grace and B. S. Bunney, The control of firing pattern in nigral dopamine neurons: burst firing, The Journal of Neuroscience, vol.4, p.6150071, 1984.

A. A. Grace and S. P. Onn, Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded in vitro, The Journal of Neuroscience, vol.9, p.2795134, 1989.
DOI : 10.1523/jneurosci.09-10-03463.1989

URL : http://www.jneurosci.org/content/9/10/3463.full.pdf

S. R. Grady, O. Salminen, D. C. Laverty, P. Whiteaker, J. M. Mcintosh et al., The subtypes of nicotinic acetylcholine receptors on dopaminergic terminals of mouse striatum, Biochemical Pharmacology, vol.74, p.17825262, 2007.

B. Juarez and M. H. Han, Diversity of dopaminergic neural circuits in response to drug exposure, Neuropsychopharmacology, vol.41, p.26934955, 2016.

C. K. Kim, A. Adhikari, and K. Deisseroth, Integration of optogenetics with complementary methodologies in systems neuroscience, Nature Reviews Neuroscience, vol.18, p.28303019, 2017.
DOI : 10.1038/nrn.2017.15

URL : http://europepmc.org/articles/pmc5708544?pdf=render

S. L. King, M. J. Marks, S. R. Grady, B. J. Caldarone, A. O. Koren et al., Conditional expression in corticothalamic efferents reveals a developmental role for nicotinic acetylcholine receptors in modulation of passive avoidance behavior, The Journal of Neuroscience, vol.23, p.12736354, 2003.

R. H. Kramer, A. Mourot, and H. Adesnik, Optogenetic pharmacology for control of native neuronal signaling proteins, Nature Neuroscience, vol.16, p.23799474, 2013.
DOI : 10.1038/nn.3424

URL : https://hal.archives-ouvertes.fr/hal-01542261

S. Lammel, A. Hetzel, O. Hä-ckel, I. Jones, B. Liss et al., Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system, Neuron, vol.57, p.18341995, 2008.
DOI : 10.1016/j.neuron.2008.01.022

URL : https://doi.org/10.1016/j.neuron.2008.01.022

S. Lammel, B. K. Lim, C. Ran, K. W. Huang, M. J. Betley et al., Input-specific control of reward and aversion in the ventral tegmental area, Nature, vol.491, p.23064228, 2012.

D. Lemoine, R. Durand-de-cuttoli, and A. Mourot, Optogenetic control of mammalian ion channels with chemical photoswitches, Methods in Molecular Biology, vol.1408, p.26965123, 2016.
DOI : 10.1007/978-1-4939-3512-3_12

URL : https://hal.archives-ouvertes.fr/hal-01542254

. Durand-de-cuttoli, , vol.7, 2018.

D. Lemoine, C. Habermacher, A. Martz, P. F. Mé-ry, N. Bouquier et al., Optical control of an ion channel gate, PNAS, vol.110, p.24297890, 2013.
DOI : 10.1073/pnas.1318715110

URL : https://hal.archives-ouvertes.fr/hal-01498069

J. Levitz, C. Pantoja, B. Gaub, H. Janovjak, A. Reiner et al., Optical control of metabotropic glutamate receptors, Nature Neuroscience, vol.16, p.23455609, 2013.
DOI : 10.1038/nn.3346

URL : http://europepmc.org/articles/pmc3681425?pdf=render

J. Levitz, A. T. Popescu, A. Reiner, and E. Y. Isacoff, A toolkit for orthogonal and in vivo optical manipulation of ionotropic glutamate receptors. Frontiers in Molecular Neuroscience 9, p.26869877, 2016.

J. Y. Lin, S. B. Sann, K. Zhou, S. Nabavi, C. D. Proulx et al., Optogenetic inhibition of synaptic release with chromophore-assisted light inactivation (CALI), Neuron, vol.79, p.23889931, 2013.
DOI : 10.1016/j.neuron.2013.05.022

URL : https://doi.org/10.1016/j.neuron.2013.05.022

W. C. Lin, M. C. Tsai, C. M. Davenport, C. M. Smith, J. Veit et al., A comprehensive optogenetic pharmacology toolkit for in vivo control of GABA(A) Receptors and synaptic inhibition, vol.88, p.26606997, 2015.

D. J. Lodge and A. A. Grace, The laterodorsal tegmentum is essential for burst firing of ventral tegmental area dopamine neurons, PNAS, vol.103, p.16549786, 2006.

M. Mameli-engvall, A. Evrard, S. Pons, U. Maskos, T. H. Svensson et al., Hierarchical control of dopamine neuron-firing patterns by nicotinic receptors, Neuron, vol.50, p.16772172, 2006.
DOI : 10.1016/j.neuron.2006.05.007

URL : https://hal.archives-ouvertes.fr/pasteur-00176372

H. D. Mansvelder, J. R. Keath, and D. S. Mcgehee, Synaptic mechanisms underlie nicotine-induced excitability of brain reward Areas, Neuron, vol.33, pp.119066-97, 2002.
DOI : 10.1016/s0896-6273(02)00625-6

URL : https://doi.org/10.1016/s0896-6273(02)00625-6

M. Marx, R. H. Gü-nter, W. Hucko, G. Radnikow, and D. Feldmeyer, Improved biocytin labeling and neuronal 3D reconstruction, Nature Protocols, vol.7, p.22301777, 2012.
DOI : 10.1038/nprot.2011.449

U. Maskos, B. E. Molles, S. Pons, M. Besson, B. P. Guiard et al., Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors, Nature, vol.436, p.16001069, 2005.
DOI : 10.1038/nature03694

URL : https://hal.archives-ouvertes.fr/pasteur-00162546

N. D. Mazarakis, M. Azzouz, J. B. Rohll, F. M. Ellard, F. J. Wilkes et al., Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery, Human Molecular Genetics, vol.10, p.11590128, 2001.

M. Morales and E. B. Margolis, Ventral tegmental area: cellular heterogeneity, connectivity and behaviour, Nature Reviews Neuroscience, vol.18, p.28053327, 2017.
DOI : 10.1038/nrn.2016.165

C. L. Morales-perez, C. M. Noviello, and R. E. Hibbs, X-ray structure of the human a4b2 nicotinic receptor, Nature, vol.538, p.27698419, 2016.
DOI : 10.1038/nature19785

URL : http://europepmc.org/articles/pmc5161573?pdf=render

C. Morel, L. Fattore, S. Pons, Y. A. Hay, F. Marti et al., Nicotine consumption is regulated by a human polymorphism in dopamine neurons, Molecular Psychiatry, vol.19, p.24296975, 2014.
DOI : 10.1038/mp.2013.158

URL : https://hal.archives-ouvertes.fr/hal-01541366

J. Naudé, S. Tolu, M. Dongelmans, N. Torquet, S. Valverde et al., Nicotinic receptors in the ventral tegmental area promote uncertainty-seeking, Nature Neuroscience, vol.19, p.26780509, 2016.

C. A. Paladini and J. Roeper, Generating bursts (and pauses) in the dopamine midbrain neurons, Neuroscience, vol.282, p.25073045, 2014.
DOI : 10.1016/j.neuroscience.2014.07.032

M. R. Picciotto, M. J. Higley, and Y. S. Mineur, Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior, Neuron, vol.76, p.23040810, 2012.
DOI : 10.1016/j.neuron.2012.08.036

URL : https://doi.org/10.1016/j.neuron.2012.08.036

M. R. Picciotto, M. Zoli, C. Lé-na, A. Bessis, Y. Lallemand et al., Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain, Nature, vol.374, p.7870173, 1995.

M. R. Picciotto, M. Zoli, R. Rimondini, C. Lé-na, L. M. Marubio et al., Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine, Nature, vol.391, p.9428762, 1998.

M. Pignatelli and A. Bonci, Role of dopamine neurons in reward and aversion: a synaptic plasticity perspective, Neuron, vol.86, p.26050034, 2015.

D. Pinault, A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or neurobiotin, Journal of Neuroscience Methods, vol.65, p.8740589, 1996.

M. E. Rice and S. J. Cragg, Nicotine amplifies reward-related dopamine signals in striatum, Nature Neuroscience, vol.7, p.15146188, 2004.

B. R. Rost, F. Schneider-warme, D. Schmitz, and P. Hegemann, Optogenetic tools for subcellular applications in neuroscience, Neuron, vol.96, p.29096074, 2017.

M. Sarter, V. Parikh, and W. M. Howe, Phasic acetylcholine release and the volume transmission hypothesis: time to move on, Nature Reviews Neuroscience, vol.10, pp.1-9377503, 2009.

S. Szobota, P. Gorostiza, D. Bene, F. Wyart, C. Fortin et al., Remote control of neuronal activity with a light-gated glutamate receptor, Neuron, vol.54, p.17521567, 2007.

W. Szyman´skiszyman´szyman´ski, J. M. Beierle, H. A. Kistemaker, W. A. Velema, and B. L. Feringa, Reversible photocontrol of biological systems by the incorporation of molecular photoswitches, Chemical Reviews, vol.113, p.23614556, 2013.

K. Takemoto, H. Iwanari, H. Tada, K. Suyama, A. Sano et al., Optical inactivation of synaptic AMPA receptors erases fear memory, Nature Biotechnology, vol.35, p.27918547, 2017.

A. Taly, P. J. Corringer, D. Guedin, P. Lestage, and J. P. Changeux, Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system, Nature Reviews Drug Discovery, vol.8, p.19721446, 2009.

A. R. Tapper, S. L. Mckinney, R. Nashmi, J. Schwarz, P. Deshpande et al., Nicotine activation of alpha4* receptors: sufficient for reward, tolerance, and sensitization, Science, vol.306, p.15528443, 2004.

I. Tochitsky, M. R. Banghart, A. Mourot, J. Z. Yao, B. Gaub et al., Optochemical control of genetically engineered neuronal nicotinic acetylcholine receptors, Nature Chemistry, vol.4, p.22270644, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01542264

S. Tolu, R. Eddine, F. Marti, V. David, M. Graupner et al., Co-activation of VTA DA and GABA neurons mediates nicotine reinforcement, Molecular Psychiatry, vol.18, p.22751493, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01541329

H. C. Tsai, F. Zhang, A. Adamantidis, G. D. Stuber, A. Bonci et al., Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning, Science, vol.324, p.19389999, 2009.

N. D. Volkow and M. Morales, The brain on drugs: from reward to addiction, Cell, vol.162, p.26276628, 2015.

C. L. Walters, S. Brown, J. P. Changeux, B. Martin, and M. I. Damaj, The beta2 but not alpha7 subunit of the nicotinic acetylcholine receptor is required for nicotine-conditioned place preference in mice, Psychopharmacology, vol.184, p.16416156, 2006.
URL : https://hal.archives-ouvertes.fr/pasteur-00161485

C. Xiao, J. R. Cho, C. Zhou, J. B. Treweek, K. Chan et al., Cholinergic mesopontine signals govern locomotion and reward through dissociable midbrain pathways, Neuron, vol.90, p.27100197, 2016.

C. Xiao, R. Srinivasan, R. M. Drenan, E. D. Mackey, J. M. Mcintosh et al., Characterizing functional a6b2 nicotinic acetylcholine receptors in vitro: mutant b2 subunits improve membrane expression, and fluorescent proteins reveal responsive cells, Biochemical Pharmacology, vol.82, p.21609715, 2011.

H. Yang, J. W. Jong, Y. Tak, J. Peck, H. S. Bateup et al., Nucleus accumbens subnuclei regulate motivated behavior via direct inhibition and disinhibition of VTA dopamine subpopulations, Neuron, vol.97, pp.434-449, 2018.

M. Zoli, F. Pistillo, and C. Gotti, Diversity of native nicotinic receptor subtypes in mammalian brain, Neuropharmacology, vol.96, p.25460185, 2015.