V. Acary, Projected event-capturing time-stepping schemes for nonsmooth mechanical systems with unilateral contact and Coulomb's friction, Computer Methods in Applied Mechanics and Engineering, vol.256, issue.10, pp.224-250, 2013.
DOI : 10.1016/j.cma.2012.12.012

URL : https://hal.inria.fr/hal-00758613/file/ACARY_CMAME2003_preprint%20%281%29.pdf

V. Acary and B. Brogliato, Numerical methods for nonsmooth dynamical systems-Applications in Mechanics and Electronics, Lecture Notes in Applied and Computational Mechanics, vol.35, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00423530

P. Alart and A. Curnier, A mixed formulation for frictional contact problems prone to Newton like solution methods, Computer Methods in Applied Mechanics and Engineering, vol.92, pp.353-375, 1991.
DOI : 10.1016/0045-7825(91)90022-x

M. Arnold, Numerical methods for simulation in applied dynamics, Simulation Techniques in Applied Dynamics-CISM Lecture Notes, vol.507, pp.191-246, 2008.
DOI : 10.1007/978-3-211-89548-1_5

M. Arnold and O. Brüls, Convergence of the generalized-? scheme for constrained mechanical systems, Multibody System Dynamics, vol.18, issue.2, pp.185-202, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01490825

M. Arnold, O. Brüls, and A. Cardona, Convergence analysis of generalized-? Lie group integrators for constrained systems, Proceedings of Multibody Dynamics ECCOMAS Thematic Conference, 2011.

M. Arnold, O. Brüls, and A. Cardona, Error analysis of generalized-? Lie group time integration methods for constrained mechanical systems, Numerische Mathematik, vol.129, pp.149-179, 2015.
DOI : 10.1007/s00211-014-0633-1

O. Bauchau, Flexible multibody dynamics, 2011.

J. Baumgarte, Stabilization of constraints and integrals of motion in dynamical systems, Computer Methods in Applied Mechanics and Engineering, vol.1, pp.1-16, 1972.

I. Ben-gharbia and J. Gilbert, Nonconvergence of the plain Newton-min algorithm for linear complementarity problems with a P-matrix, Mathematical Programming, Series A, vol.134, pp.349-364, 2012.
URL : https://hal.archives-ouvertes.fr/inria-00442293

C. Bottasso, O. Bauchau, and A. Cardona, Time-step-size-independent conditioning and sensitivity to perturbations in the numerical solution of index three differential algebraic equations, SIAM Journal on Scientific Computing, vol.29, issue.1, pp.397-414, 2007.

O. Brüls, V. Acary, and A. Cardona, Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-? scheme, Computer Methods in Applied Mechanics and Engineering, vol.281, pp.131-161, 2014.

O. Brüls, A. Cardona, and M. Arnold, Lie group generalized-? time integration of constrained flexible multibody systems, Mechanism and Machine Theory, vol.48, pp.121-137, 2012.

Q. Z. Chen, V. Acary, G. Virlez, and O. Brüls, A nonsmooth generalized-? scheme for flexible multibody systems with unilateral constraints, International Journal for Numerical Methods in Engineering, vol.96, pp.487-511, 2013.
DOI : 10.1002/nme.4563

URL : https://hal.archives-ouvertes.fr/hal-00858066

J. Chung and G. Hulbert, A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-? method, ASME Journal of Applied Mechanics, vol.60, pp.371-375, 1993.
DOI : 10.1115/1.2900803

D. Doyen, A. Ern, and S. Piperno, Time-integration schemes for the finite element dynamic Signorini problem, SIAM Journal on Scientific Computing, vol.33, issue.1, pp.223-249, 2011.
DOI : 10.1137/100791440

URL : https://hal.archives-ouvertes.fr/hal-00440128

P. Flores, M. Machado, E. Seabra, and M. Tavares-da-silva, A parametric study on the Baumgarte stabilization method for forward dynamics of constrained multibody systems, ASME Journal of Computational and Nonlinear Dynamics, vol.6, pp.19-28, 2010.

C. Gear, B. Leimkuhler, and G. Gupta, Automatic integration of Euler-Lagrange equations with constraints, Journal of Computational and Applied Mathematics, vol.12, pp.77-90, 1985.
DOI : 10.1016/0377-0427(85)90008-1

URL : https://doi.org/10.1016/0377-0427(85)90008-1

M. Géradin and A. Cardona, Flexible Multibody Dynamics: A Finite Element Approach, 2001.

M. Haddouni, V. Acary, S. Garreau, J. D. Beley, and B. Brogliato, Comparison of several formulations and integration methods for the resolution of daes formulations in event-driven simulation of nonsmooth frictionless multibody dynamics, Multibody System Dynamics, pp.1-31, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01562700

H. Hilber, T. Hughes, and R. Taylor, Improved numerical dissipation for time integration algorithms in structural dynamics, Earthquake Engineering and Structural Dynamics, vol.5, pp.283-292, 1977.
DOI : 10.1002/eqe.4290050306

M. Hintermüller, K. Ito, and K. Kunish, The primal-dual active set strategy as a semismooth Newton method, SIAM Journal on Optimization, vol.13, issue.3, pp.865-888, 2003.

S. Hüeber, G. Stadler, and B. I. Wohlmuth, A primal-dual active set algorithm for threedimensional contact problems with coulomb friction, SIAM J. Sci. Comput, vol.30, issue.2, pp.572-596, 2008.

S. Hüeber and B. Wohlmuth, A primaldual active set strategy for non-linear multibody contact problems, Computer Methods in Applied Mechanics and Engineering, vol.194, pp.3147-3166, 2005.

M. Jean, The non-smooth contact dynamics method, Computer Methods in Applied Mechanics and Engineering, vol.177, pp.235-257, 1999.
DOI : 10.1016/s0045-7825(98)00383-1

URL : https://hal.archives-ouvertes.fr/hal-01390459

J. Moreau, Bounded variation in time, Topics in Nonsmooth Mechanics, pp.1-74, 1988.
URL : https://hal.archives-ouvertes.fr/hal-01363799

J. J. Moreau, Unilateral contact and dry friction in finite freedom dynamics, Non-smooth mechanics and applications, vol.302, pp.1-82, 1988.
DOI : 10.1007/978-3-7091-2624-0_1

URL : https://hal.archives-ouvertes.fr/hal-01713847

N. Newmark, A method of computation for structural dynamics, ASCE Journal of the Engineering Mechanics Division, vol.85, pp.67-94, 1959.

L. Paoli and M. Schatzman, A numerical scheme for impact problems I: The one-dimensional case, SIAM Journal of Numerical Analysis, vol.40, pp.702-733, 2002.
DOI : 10.1137/s0036142900378728

L. Paoli and M. Schatzman, A numerical scheme for impact problems II: The multi-dimensional case, SIAM Journal of Numerical Analysis, vol.40, pp.734-768, 2002.
DOI : 10.1137/s003614290037873x

F. Pfeiffer, On non-smooth dynamics, Meccanica, vol.43, pp.533-554, 2008.
DOI : 10.1007/s11012-008-9139-1

F. Pfeiffer, M. Foerg, and H. Ulbrich, Numerical aspects of non-smooth multibody dynamics, Computer Methods in Applied Mechanics and Engineering, vol.195, pp.6891-6908, 2006.
DOI : 10.1016/j.cma.2005.08.012

F. Pfeiffer and C. Glocker, Multibody dynamics with unilateral contacts. Wiley Series in Nonlinear Science, 2004.

T. Schindler and V. Acary, Timestepping schemes for nonsmooth dynamics based on discontinuous Galerkin methods: Definition and outlook, vol.95, pp.180-199, 2014.
DOI : 10.1016/j.matcom.2012.04.012

URL : https://hal.archives-ouvertes.fr/inria-00595460

T. Schindler, S. Rezaei, J. Kursawe, and V. Acary, Half-explicit timestepping schemes on velocity level based on time-discontinuous Galerkin methods, vol.290, pp.250-276, 2015.
DOI : 10.1016/j.cma.2015.03.001

URL : https://hal.archives-ouvertes.fr/hal-01078398

S. Schoeder, H. Ulbrich, and T. Schindler, Discussion on the Gear-Gupta-Leimkuhler method for impacting mechanical systems, Multibody Systems Dynamics, vol.31, pp.477-495, 2013.
DOI : 10.1007/s11044-013-9370-y

URL : http://arxiv.org/pdf/1506.01849

C. Studer, R. I. Leine, and C. Glocker, Step size adjustment and extrapolation for time-stepping schemes in non-smooth dynamics, International Journal for Numerical Methods in Engineering, vol.76, issue.11, pp.1747-1781, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01352897