P. Brucker and S. Knust, Complexity results for scheduling problems Web document

J. K. Lenstra, D. B. Shmoys, and É. Tardos, Approximation algorithms for scheduling unrelated parallel machines. Mathematical programming, 1990.
DOI : 10.1109/sfcs.1987.8

URL : https://ir.cwi.nl/pub/18055/18055A.pdf

R. Bleuse, S. Kedad-sidhoum, F. Monna, G. Mounié, and D. Trystram, Scheduling Independent Tasks on Multi-cores with GPU Accelerators, Concurr. Comput. : Pract. Exper, vol.27, issue.6, pp.1625-1638, 2015.
DOI : 10.1002/cpe.3359

URL : https://hal.archives-ouvertes.fr/hal-01081625

C. Augonnet, S. Thibault, R. Namyst, and P. Wacrenier, StarPU: A Unified Platform for Task Scheduling on Heterogeneous Multicore Architectures. Concurrency and Computation: Practice and Experience, Special Issue: Euro-Par, vol.23, pp.187-198, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00384363

J. Planas, M. Rosa, E. Badia, J. Ayguadé, and . Labarta, Hierarchical task-based programming with StarSs, International Journal of High Performance Computing Applications, vol.23, issue.3, pp.284-299, 2009.
DOI : 10.1177/1094342009106195

E. Chan, G. Field, P. Van-zee, E. S. Bientinesi, G. Quintana-orti et al., SuperMatrix: A multithreaded runtime scheduling system for algorithms-by-blocks, 13th ACM SIGPLAN Symposium on Principles and practice of parallel programming, pp.123-132, 2008.

A. Yarkhan, J. Kurzak, and J. Dongarra, QUARK Users' Guide: QUeueing And Runtime for Kernels, vol.2011

E. Hermann, B. Raffin, F. Faure, T. Gautier, and J. Allard, Multi-GPU and Multi-CPU Parallelization for Interactive Physics Simulations, Euro-Par, issue.2, pp.235-246, 2010.
DOI : 10.1007/978-3-642-15291-7_23

URL : https://hal.archives-ouvertes.fr/inria-00502448

. Chameleon, A dense linear algebra software for heterogeneous architectures, 2014.

, Experimental repository for the present paper, 2017.