D. Gabor, Theory of communication, Journal of the Institution of Electrical Engineers-Part III: Radio and Communication Engineering, vol.93, issue.26, pp.429-441, 1946.

D. Vakman, On the analytic signal, the Teager-Kaiser energy algorithm, and other methods for defining amplitude and frequency, IEEE Transactions on Signal Processing, vol.44, issue.4, pp.791-797, 1996.

T. A. Ell, N. Le-bihan, and S. J. Sangwine, Quaternion Fourier transforms for signal and image processing, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00987367

T. A. , Hypercomplex spectral transformations, PhD Dissertation, 1992.

T. A. Ell and S. J. Sangwine, Hypercomplex Fourier transforms of color images, IEEE Transactions on image processing, vol.16, issue.1, pp.22-35, 2007.

M. Felsberg and G. Sommer, The monogenic signal, IEEE Transactions on Signal Processing, vol.49, issue.12, pp.3136-3144, 2001.

D. Alfsmann, H. G. Göckler, S. J. Sangwine, and T. A. , Hypercomplex algebras in digital signal processing: Benefits and drawbacks, Signal Processing Conference, pp.1322-1326, 2007.

S. L. Hahn and K. M. Snopek, Complex and Hypercomplex Analytic Signals: Theory and Applications, 2016.

T. Bülow and G. Sommer, Hypercomplex signals-a novel extension of the analytic signal to the multidimensional case, IEEE Transactions on signal processing, vol.49, issue.11, pp.2844-2852, 2001.

S. J. Sangwine and N. Le-bihan, Hypercomplex analytic signals: extension of the analytic signal concept to complex signals, Signal Processing Conference, pp.621-624, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00170947

S. Hahn and K. Snopek, Quasi-analytic multidimensional signals, Bulletin of the Polish Academy of Sciences: Technical Sciences, vol.61, issue.4, pp.1017-1024, 2013.
DOI : 10.2478/bpasts-2013-0109

URL : http://www.degruyter.com/downloadpdf/j/bpasts.2013.61.issue-4/bpasts-2013-0109/bpasts-2013-0109.xml

N. , L. Bihan, and S. J. Sangwine, The hyperanalytic signal, 2010.

S. Bernstein, The fractional monogenic signal, Hypercomplex Analysis: New Perspectives and Applications, pp.75-88, 2014.
DOI : 10.1007/978-3-319-08771-9_5

C. P. Bridge, Introduction to the monogenic signal, 2017.

H. Zhang, Multidimensional analytic signals and the Bedrosian identity, Integral Equations and Operator Theory, vol.78, pp.301-321, 2014.
DOI : 10.1007/s00020-013-2120-y

URL : http://arxiv.org/pdf/1212.6602.pdf

R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler et al., Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps, Proceedings of the National Academy of Sciences of the United States of America, vol.102, issue.21, pp.7426-7431, 2005.
DOI : 10.1073/pnas.0500334102

URL : http://www.pnas.org/content/102/21/7426.full.pdf

S. T. Roweis and L. K. Saul, Nonlinear dimensionality reduction by locally linear embedding, science, vol.290, issue.5500, pp.2323-2326, 2000.
DOI : 10.1126/science.290.5500.2323

URL : http://mountains.ece.umn.edu/~guille/Uruguay/2323.pdf

D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains, IEEE Signal Processing Magazine, vol.30, issue.3, pp.83-98, 2013.

M. Aubry, U. Schlickewei, and D. Cremers, The wave kernel signature: A quantum mechanical approach to shape analysis, Computer Vision Workshops (ICCV Workshops, pp.1626-1633, 2011.
DOI : 10.1109/iccvw.2011.6130444

I. Kokkinos, M. M. Bronstein, R. Litman, and A. M. Bronstein, Intrinsic shape context descriptors for deformable shapes, Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pp.159-166, 2012.
DOI : 10.1109/cvpr.2012.6247671

URL : https://hal.archives-ouvertes.fr/hal-00857572

A. Venkitaraman, S. Chatterjee, and P. Handel, On Hilbert transform of signals on graphs, Proc. Sampling Theory Appl, 2015.

A. Venkitaraman, S. Chatterjee, and P. Händel, Hilbert transform, analytic signal, and modulation analysis for graph signal processing, 2016.

M. Tsitsvero, P. Borgnat, and P. Gonçalves, Analytic signal in many dimensions, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01877403

R. R. Coifman and S. Lafon, Applied and computational harmonic analysis, vol.21, pp.5-30, 2006.

V. S. Vladimirov and I. V. Volovich, Superanalysis. ii. Integral calculus, vol.60, issue.2, pp.743-765, 1984.

F. Brackx, N. D. Schepper, and F. Sommen, The two-dimensional Clifford-Fourier transform, Journal of mathematical Imaging and Vision, vol.26, issue.1-2, pp.5-18, 2006.

S. Hahn and K. Snopek, The unified theory of n-dimensional complex and hypercomplex analytic signals, Bulletin of the Polish Academy of Sciences: Technical Sciences, vol.59, issue.2, pp.167-181, 2011.

N. Le-bihan, S. J. Sangwine, and T. A. , Instantaneous frequency and amplitude of orthocomplex modulated signals based on quaternion Fourier transform, Signal Processing, vol.94, pp.308-318, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00939866

N. , L. Bihan, and S. Sangwine, The H-analytic signal, 16th European Signal Processing Conference, pp.8-9, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00337657

S. Bernstein, J. Bouchot, M. Reinhardt, and B. Heise, Generalized analytic signals in image processing: comparison, theory and applications, Quaternion and Clifford Fourier Transforms and Wavelets, pp.221-246, 2013.

H. De-bie, Clifford algebras, Fourier transforms, and quantum mechanics, Mathematical Methods in the Applied Sciences, vol.35, issue.18, pp.2198-2228, 2012.

H. De-bie, N. D. Schepper, and F. Sommen, The class of CliffordFourier transforms, Journal of Fourier Analysis and Applications, vol.17, issue.6, pp.1198-1231, 2011.

M. Felsberg, T. Bülow, G. Sommer, and V. M. Chernov, Fast algorithms of hypercomplex Fourier transforms, Geometric computing with Clifford algebras, pp.231-254, 2001.

P. Singh and S. D. Joshi, Some studies on multidimensional Fourier theory for Hilbert transform, analytic signal and space-time series analysis, 2015.

M. Scheffers, Sur la généralisation des fonctions analytiques, CR Acad. Sc, vol.116, p.1893

P. Ketchum, Analytic functions of hypercomplex variables, Transactions of the American Mathematical Society, vol.30, issue.4, pp.641-667, 1928.

F. A. Berezin, Introduction to superanalysis, vol.9, 2013.

P. S. Pedersen, Cauchy's integral theorem on a finitely generated, real, commutative, and associative algebra, Advances in mathematics, vol.131, issue.2, pp.344-356, 1997.

E. Bedrosian, A product theorem for Hilbert transforms, 1962.

F. R. Chung, Spectral graph theory, 1997.