, They may focus on the whole graph or a part of it. Summaries have been used to support indexing and query processing, that is, allow a query to be partially or fully evaluated on the smaller summary instead of G. They can also be used as a static analysis tool, e.g., to detect empty-answer queries without actually consulting G. In this work, we study structural quotient summaries, which are complete and representative as discussed in Section 2.2. Quotient summaries most widely studied in the literature are based on bisimulation, They may rely on graph structure, graph values or graph statistics

, Other types of summaries, such as Dataguides [19] are not quotients, as a graph node may be represented by more than one node. A Dataguide may be larger than the original graph, and its construction has worst-case exponential time complexity in the size of G. With a focus farther from our work, [11] introduces an aggregation framework for OLAP on labeled graphs, while we focus on representing complete graph structure and semantics. [10] builds a set of randomized summaries to be mined instead of the original graph for better performance, with guaranteed bounds on the information loss. Focusing on RDF graphs, Bisimulation-and clique-based summaries each have distinct advantages, and can be used side-by-side for different purposes. With respect to distributed way of computing the summaries

, Summaries based on clustering [21], user-defined aggregation rules [35], mining [10], and identification of frequent subtrees [40] are not complete and/or require user input. [33] introduces a simulation RDF quotient based on triple (not node) equivalence. [3] studies simple methods for summarizing D G , i.e. the data triples only. We had demonstrated [6] and (informally) presented G W and G TW in a short, However, these summaries ignore RDF saturation, and thus its interaction with summarization

, we propose a type-first summarization technique which exploits subclass hierarchies; beyond the quotient summary framework which it shares

S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases, 1995.

C. Bizer and A. Schultz, The Berlin SPARQL Benchmark, Int. J. Semantic Web Inf. Syst, vol.5, issue.2, pp.1-24, 2009.

S. Campinas, R. Delbru, and G. Tummarello, Efficiency and precision trade-offs in graph summary algorithms, IDEAS, 2013.

?. S. Cebiri´ccebiri´c, F. Goasdoué, P. Guzewicz, and I. Manolescu, Compact Summaries of Rich Heterogeneous Graphs, INRIA Saclay

?. S. Cebiri´ccebiri´c, F. Goasdoué, and I. Manolescu, Query-oriented summarization of RDF graphs, BICOD, 2015.

?. S. Cebiri´ccebiri´c, F. Goasdoué, and I. Manolescu, Query-oriented summarization of RDF graphs (demonstration), vol.8, 2015.

?. S. Cebiri´ccebiri´c, F. Goasdoué, and I. Manolescu, Query-Oriented Summarization of RDF Graphs, BDA (Bases de Données Avancées, 2016.

?. S. Cebiri´ccebiri´c, F. Goasdoué, and I. Manolescu, A framework for efficient representative summarization of RDF graphs, ISWC (poster, 2017.

?. S. Cebiri´ccebiri´c, F. Goasdoué, and I. Manolescu, Query-Oriented Summarization of RDF Graphs, INRIA Saclay

C. Chen, C. X. Lin, M. Fredrikson, M. Christodorescu, X. Yan et al., Mining graph patterns efficiently via randomized summaries, vol.2, 2009.

C. Chen, X. Yan, F. Zhu, J. Han, and P. S. Yu, Graph OLAP: towards online analytical processing on graphs, ICDM, 2008.

Q. Chen, A. Lim, and K. W. Ong, D(K)-index: An adaptive structural summary for graphstructured data, SIGMOD, 2003.

M. P. Consens, V. Fionda, S. Khatchadourian, and G. Pirrò, S+EPPs: Construct and explore bisimulation summaries + optimize navigational queries; all on existing SPARQL systems (demonstration), vol.8, 2015.

M. P. Consens, R. J. Miller, F. Rizzolo, and A. A. Vaisman, Exploring XML web collections with DescribeX. TWEB, vol.4, issue.3, 2010.

M. P. Consens, R. J. Miller, F. Rizzolo, and A. A. Vaisman, Exploring XML web collections with DescribeX, ACM TWeb, vol.4, issue.3, 2010.

J. Damji, A Tale of Three Apache Spark APIs: RDDs, DataFrames, and Datasets

W. Fan, J. Li, X. Wang, and Y. Wu, Query preserving graph compression, SIGMOD, 2012.

F. Goasdoué, I. Manolescu, A. Roatis¸, and . Roatis¸, Efficient query answering against dynamic RDF databases, EDBT, 2013.

R. Goldman and J. Widom, Dataguides: Enabling query formulation and optimization in semistructured databases, VLDB, 1997.

Y. Guo, Z. Pan, and J. Heflin, LUBM: A benchmark for OWL knowledge base systems, J. Web Sem, vol.3, issue.2-3, 2005.

S. Gurajada, S. Seufert, I. Miliaraki, and M. Theobald, Using graph summarization for join-ahead pruning in a distributed RDF engine, SWIM, 2014.

P. Guzewicz and I. Manolescu, Quotient RDF Summaries Based on Type Hierarchies, DESWeb (Data Engineering meets the Semantic Web) Workshop, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01721163

M. R. Henzinger, T. A. Henzinger, and P. W. Kopke, Computing simulations on finite and infinite graphs, FOCS, 1995.

D. Hovland, R. Kontchakov, M. G. Skjaeveland, A. Waaler, and M. Zakharyaschev, Ontology-based data access to slegge, 2017.

R. Kaushik, P. Bohannon, J. F. Naughton, and H. F. Korth, Covering indexes for branching path queries, SIGMOD, 2002.

R. Kaushik, P. Bohannon, J. F. Naughton, and H. F. Korth, Covering indexes for branching path queries, SIGMOD, 2002.

R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes, Exploiting local similarity for indexing paths in graph-structured data, ICDE, 2002.

S. Khatchadourian and M. P. Consens, ExpLOD: Summary-based exploration of interlinking and RDF usage in the linked open data cloud, ESWC, 2010.

S. Khatchadourian and M. P. Consens, Constructing bisimulation summaries on a multi-core graph processing framework, GRADES, 2015.

Y. Liu, T. Safavi, A. Dighe, and D. Koutra, Graph summarization methods and applications: A survey, ACM Comput. Surv, vol.51, issue.3, 2018.

A. Magkanaraki, S. Alexaki, V. Christophides, and D. Plexousakis, Benchmarking RDF schemas for the semantic web, ISWC, 2002.

T. Milo and D. Suciu, Index structures for path expressions, ICDT, 1999.

F. Picalausa, Y. Luo, G. H. Fletcher, J. Hidders, and S. Vansummeren, A structural approach to indexing triples, ESWC, 2012.

E. Pietriga, H. Gözükan, C. Appert, M. Destandau, F. Sejla?ebiri´csejla?sejla?ebiri´sejla?ebiri´c et al., Browsing linked data catalogs with LODAtlas, Int'l. Semantic Web Conference (ISWC), 2018.
URL : https://hal.archives-ouvertes.fr/hal-01827766

M. Rudolf, M. Paradies, C. Bornhövd, and W. Lehner, SynopSys: large graph analytics in the SAP HANA database through summarization, GRADES, 2013.

A. Schätzle, A. Neu, G. Lausen, and M. Przyjaciel-zablocki, Large-scale bisimulation of RDF graphs, SWIM, 2013.

Y. Tian, R. A. Hankins, and J. M. Patel, Efficient aggregation for graph summarization, SIGMOD, 2008.
DOI : 10.1145/1376616.1376675

URL : http://www.cs.wisc.edu/~jignesh/publ/summarization.pdf

T. Tran, G. Ladwig, and S. Rudolph, Managing structured and semistructured RDF data using structure indexes, IEEE TKDE, vol.25, issue.9, 2013.
DOI : 10.1109/tkde.2012.134

, W3C. Resource description framework

P. Zhao, J. X. Yu, and P. S. Yu, Graph indexing: Tree + delta >= graph, VLDB, 2007.