W. Jiang, G. Wang, M. Z. Bhuiyan, and J. Wu, Understanding graph-based trust evaluation in online social networks: Methodologies and challenges, ACM Comput. Surv, vol.49, issue.1, p.10, 2016.

I. King, M. R. Lyu, and H. Ma, Introduction to social recommendation, WWW tutorials, pp.1355-1356, 2010.

J. Leskovec, D. P. Huttenlocher, and J. M. Kleinberg, Predicting positive and negative links in online social networks, pp.641-650, 2010.

D. Song and D. A. Meyer, Link sign prediction and ranking in signed directed social networks, Social Netw. Analys. Mining, vol.5, issue.1, pp.1-52, 2015.

J. Tang, Y. Chang, C. Aggarwal, and H. Liu, A survey of signed network mining in social media, ACM Comput. Surv, vol.49, issue.3, p.37, 2016.

T. Dubois, J. Golbeck, and A. Srinivasan, Predicting trust and distrust in social networks, pp.418-424, 2011.

Q. Dang and C. Ignat, dTrust: A simple deep learning approach for social recommendation, CIC, pp.209-218, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01578316

Q. Dang, Trust assessment in large-scale collaborative systems. (´ evaluation de la confiance dans la collaborationàcollaboration`collaborationà largé echelle), 2018.
URL : https://hal.archives-ouvertes.fr/tel-01634377

R. V. Guha, R. Kumar, P. Raghavan, and A. Tomkins, Propagation of trust and distrust, pp.403-412, 2004.

J. Kunegis, A. Lommatzsch, and C. Bauckhage, The slashdot zoo: mining a social network with negative edges, pp.741-750, 2009.

M. Burke and R. E. Kraut, Mopping up: modeling wikipedia promotion decisions, pp.27-36, 2008.

J. Wang, J. Shen, P. Li, and H. Xu, Online matrix completion for signed link prediction, WSDM, pp.475-484, 2017.

P. Rozenshtein, N. Tatti, and A. Gionis, Finding dynamic dense subgraphs, ACM Trans. Knowl. Discov. Data, vol.11, issue.3, pp.1-27, 2017.

J. He and W. W. Chu, A social network-based recommender system (SNRS)," in Data Mining for Social Network Data, ser. Annals of Information Systems, vol.12, pp.47-74, 2010.

D. Liben-nowell and J. M. Kleinberg, The link-prediction problem for social networks, JASIST, 2007.

J. Tang, H. Gao, H. Liu, and A. D. Sarma, eTrust: understanding trust evolution in an online world, KDD, pp.253-261, 2012.

C. Hsieh, K. Chiang, and I. S. Dhillon, Low rank modeling of signed networks, KDD, pp.507-515, 2012.

K. Chiang, N. Natarajan, A. Tewari, and I. S. Dhillon, Exploiting longer cycles for link prediction in signed networks, CIKM, pp.1157-1162, 2011.

Q. You, O. Wu, G. Luo, and W. Hu, A probabilistic matrix factorization method for link sign prediction in social networks, MLDM, ser, vol.9729, pp.415-420, 2016.

J. Zhou, L. Han, Y. Yao, X. Zeng, and F. Xu, A parallel approach to link sign prediction in large-scale online social networks, Comput. J, 2014.

F. Liu, B. Liu, C. Sun, M. Liu, and X. Wang, Deep learning approaches for link prediction in social network services, ICONIP, pp.425-432, 2013.

S. Deng, L. Huang, G. Xu, X. Wu, and Z. Wu, On deep learning for trust-aware recommendations in social networks, IEEE TNNLS, issue.99, pp.1-14, 2016.

X. Li, N. Du, H. Li, K. Li, J. Gao et al., A deep learning approach to link prediction in dynamic networks, SDM. SIAM, pp.289-297, 2014.

A. Khodadadi and M. Jalili, Sign prediction in social networks based on tendency rate of equivalent micro-structures, Neurocomputing, p.10, 2017.

X. Liu, A. Datta, and E. Lim, Computational Trust Models and Machine Learning, 2014.

X. Chen, C. A. Wang, and X. M. Zhang, All online friends are not created equal: Discovering influence structure in online social networks, PACIS, p.56, 2013.

H. Guo, P. Pathak, and H. K. Cheng, Estimating social influences from social networking sites-articulated friendships versus communication interactions, Decision Sciences, vol.46, issue.1, pp.135-163, 2015.

M. Cygan, M. Pilipczuk, M. Pilipczuk, and J. O. Wojtaszczyk, Sitting closer to friends than enemies, revisited, Theory Comput. Syst, vol.56, issue.2, pp.394-405, 2015.

G. A. Klein, Sources of power: How people make decisions, 1999.

L. Lu and T. Zhou, Link prediction in complex networks: A survey, Physica A: Statistical Mechanics and its Applications, 2011.

T. Yuan, J. Cheng, X. Zhang, Q. Liu, and H. Lu, How friends affect user behaviors? an exploration of social relation analysis for recommendation, Knowl.-Based Syst, vol.88, pp.70-84, 2015.

B. Perozzi, R. Al-rfou, and S. Skiena, Deepwalk: online learning of social representations, KDD, pp.701-710, 2014.

J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan et al., LINE: large-scale information network embedding, pp.1067-1077, 2015.

A. Grover and J. Leskovec, node2vec: Scalable feature learning for networks, KDD, pp.855-864, 2016.

Q. V. Le and T. Mikolov, Distributed representations of sentences and documents, ICML, ser. JMLR Workshop and Conference Proceedings, vol.32, pp.1188-1196, 2014.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, Distributed representations of words and phrases and their compositionality, NIPS, pp.3111-3119, 2013.

Q. Dang and C. Ignat, Quality assessment of wikipedia articles without feature engineering, JCDL, pp.27-30, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01351226

I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, 2016.

J. T. Connor, D. R. Martin, and L. E. Atlas, Recurrent neural networks and robust time series prediction, IEEE Trans. Neural Networks, vol.5, issue.2, pp.240-254, 1994.

J. C. Gamboa, Deep learning for time-series analysis, p.13, 2017.

Y. Gal and Z. Ghahramani, A theoretically grounded application of dropout in recurrent neural networks, NIPS, pp.1019-1027, 2016.

A. Graves, Generating sequences with recurrent neural networks, CoRR, 2013.

, Supervised Sequence Labelling with Recurrent Neural Networks, ser. Studies in Computational Intelligence, vol.385, 2012.

S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Computation, vol.9, issue.8, pp.1735-1780, 1997.

J. Chung, C. ¸. Gülçehre, K. Cho, and Y. Bengio, Empirical evaluation of gated recurrent neural networks on sequence modeling, CoRR, 2014.

S. Even, Graph algorithms, 2011.

J. Leskovec and C. Faloutsos, Sampling from large graphs, KDD, pp.631-636, 2006.

S. V. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M. Borgwardt, Graph kernels, Journal of Machine Learning Research, vol.11, pp.1201-1242, 2010.

B. F. Ribeiro and D. F. Towsley, Estimating and sampling graphs with multidimensional random walks, Internet Measurement Conference, pp.390-403, 2010.

R. Li, J. X. Yu, L. Qin, R. Mao, and T. Jin, On random walk based graph sampling," in ICDE, pp.927-938, 2015.

T. N. Kipf and M. Welling, Semi-supervised classification with graph convolutional networks, ICLR, p.14, 2017.

P. Ristoski and H. Paulheim, Rdf2vec: RDF graph embeddings for data mining, International Semantic Web Conference (1), ser, vol.9981, pp.498-514, 2016.

J. Leskovec, D. P. Huttenlocher, and J. M. Kleinberg, Signed networks in social media, CHI, pp.1361-1370, 2010.

J. Ugander, B. Karrer, L. Backstrom, and C. Marlow, The anatomy of the facebook social graph, CoRR, 2011.

P. Agrawal, V. K. Garg, and R. Narayanam, Link label prediction in signed social networks, IJCAI. IJCAI/AAAI, pp.2591-2597, 2013.

G. Wang, H. Gao, L. Chen, D. N. Mensah, and Y. Fu, Predicting positive and negative relationships in large social networks, PloS one, vol.10, issue.6, 2015.

Q. Dang and C. Ignat, Quality assessment of wikipedia articles: a deep learning approach, SIGWEB Newsletter, vol.2016, issue.Autumn, pp.1-5, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01393227

, Measuring quality of collaboratively edited documents: The case of wikipedia," in CIC, pp.266-275, 2016.

, An end-to-end learning solution for assessing the quality of wikipedia articles, vol.4, pp.1-4, 2017.

, Computational trust model for repeated trust games, pp.34-41, 2016.