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Abstract

EM and CEM algorithms which respectively implement mixture approach and clas-
sification approach of clustering problem are shown to be instances of the same varia-
tional scheme.
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1 Motivation

Model-based clustering approaches of partitioning problem have two possible forms, mixture ap-
proach and classification approach. The former leads to the Expectation-Maximisation algorithm
(EM), while the latter is implemented by the Classification EM (CEM) procedure which is an
iterative algorithm that maximizes a criterion called CML for Classification Maximum Likelihood
(see [2] and [3]).

In this paper, both EM and CEM are shown to be intances of a more general variational algorithm
scheme called AEM for (Approximated EM).

2 CML and CEM

Given a set F, we aim at partitioning a n-uplets (z1,--- ,z,) € E™ into K classes.
Celeux & Govaert [2] and Govaert & Nadif [4] quote two CML-typed criteria:

Zlog f@z xz Z Z log f@k sz (1)

k=114:z;=

Cy(,6,2) Zlog 2, fo., (1)) Z Z log (. fo, (w:)) (2)

k=114:z;=

where the following notation has been used:
e = (m, -+ ,7K) is a probability distribution on {1,---, K}

e (fo)oco is a family of densities with respect to a positive measure p on E, whose parameter
isfe®

e 0=(0, - ,0g) c OF

o z= (21, ,2,) € {1,---, K}" specifies a partition of (z1,--- ,z,) into K classes.
C1(0,z) is the log-likelihood of the parameter (8,z) when considering (z1,--- ,,) as a realisation
of a random n-uplet (X1, -, X,,) whose density with respect to u®" is

PO x & €)= T o, (€0
i=1
Cy(m, 0, 2z) is linked to C1(0,z) b

K
Cy(m,0,2) = C1(0,2) + > _ Card({i : z = j})log(;).
j=1

Now, CEM implements the following pseudo-code:
Algorithm CEM

1. Inputs: xy,---,x,
2. Initialization: 7@ 0© c ©F t =0

3. Loop: t=t+1



W Wj(-t_l)f6§t—1)($i)
(a) (E) i je{l, K} = =% =1

me1Tm fg(tq)(l‘i)’
m

i=1,---,N

(b) () 2" = argmax; £/ (j)
(¢) (M) (=@, 00 = argmax, Co(7,0,2") = argmax, o 1" IOg(WZZ@ faz(‘) (x;))
(d) Convergence test: Co(m(®, 01 z(") still increasing ?

4. Output: (E,%,g) = (z(t),fr(t),e(t))

Co(w® 0® 2(1)) increases with t. As the number of assignments z = (z1,--- , 2,) € {1,--- , K}"
of the x;,i = 1,--- ,n to the K classes is finite, CEM necessary reaches a fixed point in a finite
number of iterations.

3 Another view point

3.1 The key remark

We firstly recall a useful elementary fact.

Let (Y1,Y2) be a couple of random variables in £y x Ey with density py, y, with respect to the
product p1 ® po of two positive measures p1 on £y and po on FEs.
The following remark gives a useful expression of the log-evidence log(py, (y1))

Remark. Let f be a probability density on Es with respect to us.
For all y, € E1 we have:

log(py; (y1)) = : f(y2) log(py, v, (y1,¥2)) p2(dy2) + H(f) + K(f, Pyalvi=y,) (3)

where H(f) is the entropy of f and K(f,py,|vi=y,) the Kullback divergence of f and py,|y,—y, -

Proof

log(pv; (1)) = /E £(y2) log(pv; (y1)) a(dy)

B Py1,y2 (Y1,¥2)
- /E T2 og(P 22

=/ f(Y2)10g(pY1,Y2(Y1,Y2))M2(dY2)—/ f(y2)108(Py; v =y, (¥2)) 12(dy2)
Es Es

- /E F(32) 108(pyava (¥1. y2) ia(dy2) — / £(y2) log(f(y2))a(dys)

E>

f(y2)
+ [ Fva)tog( B sy
which gives (3) since
H(f) =~ : f(y2)log(f(y2))p2(dy2)

and

K(fmvimys) = [ 7032 log /y2) nadye).

pYz‘Y1=y1 (yQ
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O
Now let us invoke what is commonly called free energy:

Flyi, f) = : f(y2) log(pys,va (¥1,¥2)) p2(dy2) + H(f) (4)

for y; € E1 and a density f on Fs.
As an immediate consequence of (3) we deduce
Consequence : Let y; € Fq and D a set of densities on Eo which contains py,

[Yi=y1-*
Then
1 =
og(py1 (¥1)) r]{leagf (y1.f) (5)
and
Pys|vi=y; =pe—as. argmaxfepf(yl, f)- (6)

So, the important fact lies in equation (5) which reformulates the computation of the log-evidence
log(py, (y1)) as a variational problem.

3.2 Application

3.2.1 AEM algorithm scheme

We are now in a parametric estimation context:
° p?‘Yl’YQ), the density of (Y1, Y2) with respect to 1 ® g, depends on the parameter A € A
e from a realisation of (Y7,Y3), we only observe y1, its F; component.

e we want to calculate the maximum likelihood estimator X of A:
A = argmaxy log(p3, (y1))

In this context, if D is a set of density which contains pi‘@m:yl, (5) reads

log(p3, (y1)) = max F(y1, A, f).
feD

Hence

A _
maxlog(py, (y1)) = max max 7 (Y1, A, f)- (7)

This equality suggests that in order to maximise log(pf}1 (y1)) in A, F(y1, A, f) could be maximized
alternatively in A € A and in f € D. R

Moreover, if we relax the condition on D containing p¢2|Y1=y1’ A will be only approximated.

It is what the following AEM (Approximated EM) algorithm achieves.

D being any set of densities on Fjs:

Algorithm AEM

1. Input: y;
2. Initialization: A9 € A, t =0
3. Loop: t=t+1

(a) (AE) fO) = argmaxfepf(}’h)\(t*l):f)
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(b) (AM)
AD = argmaxyc 4 F(y1, A, f) = argmaxyc, /E FO(y2) log(p3, v, (y1,¥2))2(dy2)
2

(c) Convergence test': F(y;, AW, f®) — F(y, At f-Dy < ¢ 2

4. Output: (X, f) = (A®, fO),

When D contains {pi‘&‘},l:y1 : A € A} we recover EM:
Algorithm EM

1. Input: y;
2. Initialization: A® € A,t =0
3. Loop: t=t+1
(t—1)
(a) (E) f® =p¢2|y1:yl

(b) (M) XY = argmaxye [, f@ (v2) log(p3, y, (¥1,y2) 2 (dy2)

(c) Convergence Test
4. Output: (X, f) = (A®, fO),
If E5 is finite and po is the counting measure, another instance of AEM is obtained, by choosing
D = {dy, : y2 € Ea}

where dy, is a Dirac measure.
We immediatly get
f(yb A, 6}’2) = log(p()\Yl,YQ) (YI> y2)) (8)

and AEM becomes:
Algorithm dEM

1. Input: y;

2. Initialization: A®) € A,t =0

3. Loop: t=t+1
(2) (9E) y4 = argmaxy,cp, log(py; v, (y1,¥2))
(b) (6M) A® = argmaxy log(p?Y17Y2)(y1,y§t)))
(c) Convergence test

4. Output: (X,yNQ) = (A(t)ayg))-

1t e N F(yi, )\(t), f®) is an increasing function.



4 Application to clustering

4.1 Context

We now have data (z1,- - ,z,) € E™ being a set E with a positive measure u. We want to partition
these data among K classes. The data are considered as the observable part of a realisation

((‘Tlﬂzl)?'” 7(:5717271)) € (E X {17‘ e 7K})n

of a n-sample
((X17 Z1)7 Tty (Xna Zn))

of a couple of random variables (X, Z) whose density with respect? to p ® vk has the following

form:
p§ (6,0 €Ex (L, K} mefo(€) 9)

where
e (fp)oco is a family of densities on (F, u1)

e 0= (0, - ,0k) belongs to OF

e mw=(m, -+ ,Tk) is a probability measure on {1,---, K}.
Whence
e X is a mixture: p(ﬁ &) = Eszl mk.fo,, (§)

(7,0) ¢ fo. ()
[ pZ|X x(() Zk 17rkf9k(3?)

And the density of (X1, -, Xy, Z1,- -+, Zy,) with respect to (1 ® vi)™ reads

p_()?l,e) X, 21, T (51" RSN GPERE 7<n) € E" x {17 aK}n = HWleG’Cl(&) (10)

i=1

while

(7.0)

p (SITRNE) Hp o) ﬁ o, (70 (11)
. — y " kn — == .
Z1, I | X1=x1, , Xn=2Tn, Zi| X Iz P 2521 7ka9k ($z)

Thus we are precisely in the situation of section 3.1 with:
o By =FE" g = p®", Ey={1,--- | K}", s —1/%?-”
o Y] = (Xh... 7Xn)7Y2:(Z1’... 7Zn)
o y1= (21, ,zp), A= (m,0).y

From (3), the log-likelihood log(pg?l’?.).) x, (@1, w)) =200 log(E,If:l 7k fo, (z:)) takes the form:

7,0
10g(Pg(1’,..).)Xn (w1, s xn)) = F(o1, - 20, (7,0), f) + K(f, 02, . 20| X1 =21 Xn=22)

)

2yK is the counting measure on {1,--- , K}



with

F(xr, o xp, (7,0), f) = F(Crseo 5 G log(] [ e, fo, () + H(f)
(€1, Cn)E{L, K} i=1

for any probability measure f on {1,---, K}".
Fathermore, if f: (C1,--+,Ca) = f1(C1) - fa(Cn) is a tensorial product, as p,,
according to (11), we get

(7T 9)
Zn|X1:1'17"' 7Xn:$n

n K
F(ar, -, (7,0), £) =Y fi(k)log(mefo, (i) + H(f). (12)

=1 k=1

4.2 EM and dEM for clustering

In this context EM reads:
Algorithm EM (clustering)

1. Input: 2z, -, 2z,
2. Initialization: 7,0 ¢t =0

3. Loop: t=t+1

(t—1) 0(1—1)) (ﬂ.(t—l) H(t—l))
t J— 7r k) _ 9
(a) (B) /= Pz, Zn\Xlle,m,Xn =on, = i=1PZ,| X =z,
i)
h (w(t=1) g(t=1) (C) f(t b (@)
where p _ ) =
ZilXi=w; ’ Zk:l >f (t 1) (@)

A(t=1) glt=1)
(b) (M) (x®,01)) = argmax . g) Sy by Z|X () log(mfoe-n (1))

(c) Convergence test
4. Ouput: (7,0) = (x®,0®)
The assignments (21, ,2,) € {1,---, K}" of the z1,- -+, x, to the classes are obtained by
zj = argmax;e( .. 7K}7?}f9~j (z;)
where 7 = (77, , k) and 8 = (6, - - 7@;{) are the EM outputs.

And what happens to dEM in this context ?
Let us first note that if f =4, .. we have

Zn)?

]:(xlv 5y T, (71', 0)> 5(z1,~~- ,zn)) = Z log(ﬂ-zifezi ($l))

=1

which is exactly Ca(7, 0,2z) (see (2)).
As for dEM, it reads:
Algorithm dEM(clustering-C2)

1. Input: 21, --,2,



2. Initialization: W(O),G(O),t =0
3. Loop: t=t+1
(a) (OE) 2z = (=:1V,... ) = argnnaxge{lw,J{yl}j;;llog(ng“)jbg,n(a%))
i.e zgt) = argmaxceqq,... K} log(ﬂét_l)feéz_l)(xi)) Z
(b) (8M) (x®,6") = argmax g) Y1y log(m_ fo_,) (zi))

(c) Convergence test

(7,0) = (=1),0)

4. Output:
utpu {gzzw

And §EM (clustering-C2) is nothing else than CEM.

4.3 Where we refind ((0,z)

If we specialize model (9) and use

1
Py (€O EBx {1 K o (€)
for the density of (X, Z), we get this log-likelihood
6
1Og(pg(1)? Xn (xla e 7xn)) = ]:(xlv oy Tny 05 f) + ’C(f’ bz, | X1=21," ,Xn:zn)
where (12) gives
n K

Flay, 20,0, ) => Y filk)log( fek(wz‘))JrH(f)

=1 k=1

if f=fi®---® f, is a tensorial product on {1,---, K}.
If we apply 6EM in this context, we first remark that

Flxr, - ,20,0,05 ... 2,) Zlog f@z z;)) = C1(0,2z) — nlog(K)

which leads to this algorithm:
Algorithm dEM(clustering-C1)

1. Input: 2z, -, 2,
2. Initialization: 8 ¢t =0
3. Loop: t=t+1

(a) (OE) 2 = (2{", - 2) = argmaxcey . gyn S0y log(fye-u (1)

i.e zz@ = argmaxcc(y,... i} log(f (i) Z

(b) (8M) 6 = argmaxg Yo7, 10g(fezgt) (i)

(c) Convergence test l
4. Ouput: (z,0) = (zV,61).
Particularly, when £ = R¢ and fj is the normal density with mean # € R? and variance-

covariance matrix Idga, (FEM(clustering-C1)) is the K-means algorithm.
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5 Discussion

This paper shows how CEM algorithm can be seen, like EM, as solving the variational problem
which naturally results from clustering problem modelisation.

Due to restrictions on argument of this variational problem, unlike that of EM, the solution of
CEM is an approximation. However, both are instances of a general scheme, that we prefer to call
Approximated EM (AEM) instead of Variational EM as it is usually named: indeed EM is already
a variational algorithm, and the real difference between EM and AEM is that the latter calculate
an approximation.

We have taken the greatest care to recall the key argument of this type of variational technique in
its extreme and remarkable simplicity. Of course we find this argument in many authors (Bishop
[1] for example), but, as a matter of fact, many other authors obfuscate this simplicity by parasitic
considerations or simply ignore the argument itself.
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