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Abstract

We present an efficient deep learning approach for the challenging task of
tumor segmentation in multisequence MR images. In recent years, Convolu-
tional Neural Networks (CNN) have achieved state-of-the-art performances
in a large variety of recognition tasks in medical imaging. Because of the
considerable computational cost of CNNs, large volumes such as MRI are
typically processed by subvolumes, for instance slices (axial, coronal, sagit-
tal) or small 3D patches. In this paper we introduce a CNN-based model
which efficiently combines the advantages of the short-range 3D context and
the long-range 2D context. Furthermore, we propose a network architecture
with modality-specific subnetworks in order to be more robust to the prob-
lem of missing MR sequences during the training phase. To overcome the
limitations of specific choices of neural network architectures, we describe
a hierarchical decision process to combine outputs of several segmentation
models. Finally, a simple and efficient algorithm for training large CNN mod-
els is introduced. We evaluate our method on the public benchmark of the
BRATS 2017 challenge on the task of multiclass segmentation of malignant
brain tumors. Our method achieves good performances and produces accu-
rate segmentations with median Dice scores of 0.918 (whole tumor), 0.883
(tumor core) and 0.854 (enhancing core).

Keywords: 3D Convolutional Neural Networks, brain tumor, multisequence
MRI, segmentation, ensembles of models

1. Introduction

Gliomas are the most frequent primary brain tumors and represent ap-
proximatively 80% of malignant brain tumors [1]. They originate from glial
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Figure 1: Multisequence MR scan of a patient suffering from a glioblastoma. From left to
right: T2-weighted, FLAIR, T1-weighted, post-contrast T1-weighted.

cells of the brain or the spine and can be classified according to the cell
type, the grade and the location. High grade gliomas (grades III and IV)
are associated with a particularly poor prognosis: patients diagnosed with
glioblastoma multiforme survive on average 12-14 months under therapy.
Medical images such as MRI [2] are used for diagnosis, therapy planning and
monitoring of gliomas.

Different tumor tissues (necrotic core, active rim, edema) can be imaged
using multiple MR sequences. For instance, T2-FLAIR sequence is suitable
for detecting edema while T1-weighted MR images acquired after the in-
jection of a gadolinium-based contrast product are suitable to detect active
parts of the tumor core (Fig. 1). These tumor tissues may be treated with
different therapies [3] and their analysis is important to assess the tumor
characteristics, in particular its malignity.

Manual segmentation of tumors is a challenging and time-consuming task.
Moreover, there is a significant variability between segmentations produced
by human experts. An accurate automatic segmentation method could help
in therapy planning and in monitoring of the tumor progression by providing
the exact localization of tumor subregions and by precisely quantifying their
volume.

Tumor variability in location, size and shape makes it difficult to use
probabilistic priors. Image intensities of voxels representing tumor tissues
in MR images highly overlap with intensities of other pathologies or healthy
structures. Furthermore, ranges of MR image intensities highly vary from
one imaging center to another depending on the acquisition system and the
clinical protocol. Due to these aspects, in order to determine the presence
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of a tumor at a given position, high-level contextual information has to be
analyzed.

A large variety of methods have been proposed for multiclass tumor seg-
mentation. In 2012, the Multimodal Brain Tumor Segmentation Challenge
(BRATS) [4, 5] was launched. The first group of methods corresponds to
generative models based on the registration of the patient scan to a brain
atlas providing a spatially varying probabilistic prior of different tissues. In
the method of Prastawa et al [6], tumor segmentation is guided by differences
between the patient scan and the atlas of healthy brain. One limitation of
this approach is the fact that it ignores the mass effect (deformation of neigh-
boring healthy structures) caused by the tumor, which can lead to incorrect
registration. In methods such as GLISTR [7] or [8], the authors propose to
modify a healthy atlas by using tumor growth models and to perform a joint
segmentation and registration to a modified brain atlas. These methods have
the advantage of taking into account the characterics of tumors, however the
use of tumor growth models comes with an additional complexity and the
estimation of the number of tumor seeds is non trivial. A multi-atlas method,
based on the search of similar image patches, was also proposed by Cordier
et al [9].

Promising results were obtained by discriminative models corresponding
to voxelwise classifiers such as SVM [10, 11] or Random Forests [12, 13, 14,
15, 16, 17]. For instance, Geremia et al [14] propose to classify each voxel of
a multimodal MR brain image by a random forest using features capturing
information from neighbooring voxels and from distant regions such as the
symmetric part of the brain. More recently, Le Folgoc et al proposed Lifted
Auto-Context Forests [15], an efficient method based on cascaded Random
Forests progressively segmenting tumor subclasses exploiting the semantics
of labels.

In recent years, Convolutional Neural Networks [18] achieved state-of-the-
art results in many tasks of image classification [19, 20, 21], detection [22]
and segmentation [23, 24]. In particular, the representation learning ability of
CNNs is a considerable advantage for the task of tumor segmentation, where
the design of discriminant image features is non trivial. The CNN-based
methods of Pereira et al [25] and Kamnitsas et al [26] obtained respectively
the best performance in BRATS 2015 and BRATS 2016 challenges. Fully-
convolutional neural networks [23, 27, 28, 29] were used in most state-of-the-
art segmentation methods, in particular, recently we observe a particular
interest for 3D fully-convolutional neural networks [30, 31, 32, 33, 34]. Many
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methods include postprocessing steps, often based on Conditional Random
Fields [35] or mathematical morphology [36].

Despite promising results obtained by these methods, segmentation of
tumors in large medical images is still a very challenging task. One of the
main drawbacks of CNNs is their computational cost resulting from applica-
tion of thousands of costly operations (convolutions, poolings, upsamplings)
on input images. This aspect is particularly problematic for segmentation
problems in large medical images such as MRI or CT scans. Despite the va-
riety of proposed neural network architectures, current CNN-based systems
struggle to capture a large 3D context from input images. Moreover, most
methods implicitly assume the presence of all MR sequences for all patients
and the correct registration between sequences whereas these conditions do
not necessarily hold in practice.

In this paper we propose an efficient system based on a 2D-3D model in
which features extracted by 2D CNNs (capturing a rich information from a
long-range 2D context in three orthogonal directions) are used as an addi-
tional input to a 3D CNN.

We propose a 2D model (processing axial, coronal or sagittal slices of
the input image) in which we introduce an alternative approach for treating
different MR sequences. In many CNNs, including the state-of-the-art deep
learning models mentioned before, all channels of the input MR image are
directly combined by the first convolutional layers of the network. We pro-
pose an architecture composed of modality-specific subnetworks (which can
be trained independently) and of a joint part combining all input modalities.
Such design allows to train one part of the network on images with missing
MR sequences while also extracting a rich information resulting from the
combination of all MR sequences.

We propose to use features learned by 2D CNNs as an additional input
to a 3D CNN in order to capture rich information extracted from a very
large spatial context while bypassing computational constraints. Such design
considerably increases the size of the receptive field compared to standard
3D models taking as input only the raw intensities of voxels of a subvolume.

In order to combine the strengths of different network architectures, we
introduce a voxelwise voting strategy to merge multiclass segmentations pro-
duced by several models. Finally, we designed a simple and stable training
algorithm which is particularly well adapted for training large models.

We have evaluated our method on the challenging task of multiclass tu-
mor segmentation of malignant brain tumors in multisequence MR images
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from the Validation set of BRATS 2017 challenge, using a public benchmark.
In the performed experiments, our 2D-3D approach has outperformed the
standard 3D model (where a CNN takes as input only the raw intensities of
voxels of a subvolume) and our system has obtained promising results with
median Dice scores of 0.918, 0.883 and 0.854 respectively for the three tu-
mor subregions considered in the challenge (whole tumor, tumor core and
contrast-enhancing core). Our method can be adapted to a large variety of
multiclass segmentation tasks in medical imaging.

2. Methods

Our generic 2D-3D approach is illustrated on Fig. 2.

Figure 2: Illustration of our 2D-3D model. Features extracted by 2D CNNs (processing
the image by axial, coronal and sagittal slices) are used as additional channels of the patch
processed by a 3D CNN. As these features encode a rich information extracted from a large
spatial context, their use significantly increases the size of the receptive field of the 3D
model.

The main components of our method are described in the following. First,
we introduce an efficient 2D-3D model with a long-range 3D receptive field.
Second, we present our neural network architecture with modality-specific
subnetworks. Loss functions and the optimization algorithm are presented
in the third subsection. In order to be more robust to limitations of specific
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choices of neural network architectures, we propose a simple hierarchical de-
cision process to merge multiclass segmentations produced by several models.

2.1. Spatial context and 3D models

A typical multisequence MR scan is composed of several millions of voxels.
Convolutional neural networks transform input images by applying hundreds
of convolutions and other operations whose outputs have to be stored in
memory during iterations of the training in order to compute gradients of the
loss by Backpropagation algorithm [37]. Training of CNNs requires typically
dozens of thousands of iterations. Because of high computational costs of
CNNs, large medical images are generally processed by subvolumes of limited
size.

Figure 3: Comparison of information represented by a 25x25x25 patch (left: 5 slices
shown) and a 125x125 axial 2D patch centered at the same point. While both patches
have the same number of voxels, the spatial context is considerably different. While the
first patch captures local 3D shapes, the second patch captures information from distant
points within the same plane.
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The obvious limitation of standard 2D approaches is to ignore one spatial
dimension. However networks processing images by planes (axial, coronal
or sagittal) have the ability to compare a studied voxel with distant voxels
within the same plane and to capture a relevant information while keeping
the input size reasonable. In the single-scale setting, the choice between the
2D and 3D option can therefore be seen as the choice between comparing
distant voxels within the same plane (long-range 2D context) or comparing
close voxels in three dimensions (short-range 3D context). Fig. 3 depicts
the comparison of the information represented by a 2D patch of dimensions
125x125 and a 3D patch of dimensions 25x25x25 (both having the same
number of voxels).

Another option is to process three orthogonal planes and classify the voxel
at the intersection of three planes. This approach was successfully aplied by
Ciompi et al. [38] for the problem of classification of lung nodules. The
system proposed by the authors is composed of 9 streams processing 2D
patches in three orthogonal planes centered at a givel voxel and at three dif-
ferent scales. The streams are then combined by fully-connected layers with
the last layer performing classification. However, CNN-based systems with
fully-connected layers are computationally less efficient for the segmentation
task compared to fully-convolutional networks such as U-Net, that classify
simultaneously several neighboring voxels and take advantage of shared com-
putations. On modern GPUs, fully-convolutional networks are able to clas-
sify hundreds of thousands of voxels in each iteration of the training.

A larger 3D context can be analyzed by extracting multiscale 3D patches
as in Deep Medic [26], a state-of-the-art CNN-based system which processes
two-scale 3D patches by two streams of convolutional layers. The main char-
acteristic of this design is the separate processing at two scales. A more
global information is captured by the stream processing the patch from the
image downsampled by a factor 3. However, this global information is not of
the same nature as the one extracted by U-net [27] in which it results from
a long sequence of convolutions and max-poolings starting from the origi-
nal scale of the image (from local and low-level information to global and
high-level information). A possible limitation of the model is its sequential
aspect: the only concatenation is before the two last hidden layers of the net-
work whereas skip-connections seem to improve the performance of neural
networks [19].

The idea of our 2D-3D approach is to take into account a very large
3D context by using features learned by 2D networks rather than simply
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processing downsampled versions of the input image. In fact, features learned
by 2D CNNs encode a rich information extracted from a large spatial context
and the use of these features allows to considerably increase the size of the
receptive field of the model.

In our method we use fully-convolutional neural networks [23]. A net-
work processes the input image by a sequence of spatially-invariant trans-
formations in order to output voxelwise classification scores for all classes.
The outputs of transformations at the same level of processing form a layer
which can be seen as a multi-channel image when arranged in a grid as in
commonly used deep learning libraries such as Theano [39] or TensorFlow
[40]. In 3D CNNs, each layer of the network corresponds to a multi-channel
image with three spatial coordinates. A convolutional layer whose number of
feature maps is equal to the number of classes and whose ouput is penalized
during the training is called classification layer. The channels of a layer are
called feature maps whose points represent neurons. The set of voxels in the
input layer which are taken into account in the computation of the output
of a given neuron is called the receptive field of the neuron.

Our 2D-3D model (Fig. 4) is similar to 3D U-Net [31] whose input is a 3D
patch of a multimodal image along with a set of feature maps produced by
networks trained on axial, coronal and sagittal slices (three versions of one 2D
network). The extracted feature maps are concatenated to the input patch
as additional channels. The network processes 3D patches of size 70x70x70
and has the receptive field of size 41x41x41. However, given that the network

Figure 4: Architecture of the main 2D-3D model used in our experiments (named ’2D-3D
model A’ in the remainder). The channels of the input 3D patch are all MR sequences and
feature maps extracted by 2D CNNs. The number of feature maps in the last convolutional
layer is equal to the number of classes (4 in our case).
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takes as input not only the raw intensities of voxels but also the values of
features extracted by 2D neural networks analyzing a large spatial context,
the effective receptive field of the 2D-3D model is strikingly larger. Each
feature represents a semantic information extracted from a large patch in
axial, coronal or sagittal plane. The model uses the values of these features
computed for all voxels. Therefore, classification of one voxel is performed
using not only the raw intensities of voxels within the surrounding 41x41x41
patch but also from all axial, coronal and sagittal planes passing by the
voxels of this patch (Fig. 5). To the best of our knowledge, this is a novel
way to capture a large 3D context with CNNs. The idea of using outputs
of a CNN as additional input to another CNN was recently used for tumor
segmentation in the work of Havaei et al [28], however the system proposed
in [28] is significantly different from our 2D-3D approach, in particular as
it processes the image by axial slices, considered independently from each
other.

Figure 5: Illustration of the receptive field of our 2D-3D model and the comparison with
other approaches. The use of features extracted by 2D CNNs significantly increases the size
of the receptive field compared to standard 3D approches which only use raw intensities
of voxels of a subvolume.

The steps of the training of our model are the following:

1. Train three versions of the 2D network respectively on axial, coronal
and sagittal slices. We refer to these three versions respectively as
CNN-2DAxl, CNN-2DCor and CNN-2DSag, according to the nature of
the captured 2D context.

2. For all images of the training database, extract the learned features
from final convolutional layers (without softmax normalization) of the
2D neural networks (CNN-2DAxl, CNN-2DCor and CNN-2DSag) and
save their outputs in files.
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3. Train the 3D model using the extracted 2D features as additional chan-
nels to the input image patches.

The choice of extracting features from the last convolutional layer is moti-
vated by the fact that this layer has the largest receptive field and represents
a semantic information while being composed of a small number of feature
maps.

The two-step training (2D, then 3D) significantly reduces computational
costs compared to an end-to-end training of the 2D-3D architecture. In
each iteration of the training of the 3D CNN, the 2D features are already
computed and there is therefore no need to store three 2D CNNs in the
memory of a GPU. Moreover, the 2D networks can be trained in parallel on
different GPUs.

2.2. 2D model and modality-specific processing

Our generic 2D deep learning model performs segmentation of tumors in
axial, coronal or sagittal slices of a multisequence MRI. Our model is simi-
lar to U-net [27] in which we introduce a system of co-trained subnetworks
processing different input MR sequences (Fig. 6). This design can be seen as
a hybrid approach in which one part of the network processes independently
different MR sequences and another part extracts features resulting from the
combination of all sequences. Independent processing of input channels has
the considerable advantage of being more robust to missing data. On the
other hand, models using data from all input channels can extract impor-
tant information resulting from relations between channels and therefore are
likely to obtain better segmentation performance. Our goal is to combine
these two aspects.

Given an input image with K channels, we consider K+1 subnetworks:
one subnetwork per input channel and one subnetwork directly combining
all channels. The subnetworks learn therefore features specific to each MR
sequence (except the last subnetwork which learns features related to the
direct combination of sequences) and can be trained on images with missing
MR sequences.

During the training phase we attach a classification layer to each subnet-
work: more precisely, if a subnetwork has n layers, then during the training
phase we add one convolutional layer whose number of feature maps is equal
to the number of classes and whose input is the nth layer of the subnet-
work. The outputs of these additional layers, that we call auxiliary classi-
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Figure 6: Architecture of the main 2D model used in our experiments (named ’2D model 1’
in the remainder). The numbers of feature maps are specified below rectangles representing
layers. In each subnetwork the first layer is concatenated to an upsampling layer in order
to combine local and global information. Each subnetwork learns features specific to
one image modality, except one subnetwork which directly combines all modalities. The
classification layers of subnetworks are ignored during the test phase. For clarity purposes,
we display the case with two MR sequences. The modality-specific subnetworks (top-left
and bottom-left rectangles) can be pretrained independently as they are separated and
have a different input.

fication layers, are penalized during the training in order to force the sub-
networks to extract the most pertinent information from each MR sequence.
If the training database contains images with missing MR sequences, each
modality-specific subnetwork can be pretrained independently of the others,
on images for which the given MR sequence is provided. During the test
phase, the auxiliary classification layers are ignored. The idea of using of
intermediate losses to perform deep supervision was succesfully used in the
method of Dou et al [30] for the problems of liver segmentation and vessel
segmentation in 3D medical images.

Final convolutional layers of the subnetworks are concatenated and fed
to the main part of the network similar to U-net [27]. The main network
is composed of two sections connected by concatenations of feature maps
between layers at the same scale. The downsampling section is composed
of convolutions and max-poolings. The upsampling section is composed of
bilinear upsamplings, convolutions and concatenations with feature maps
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from the downsampling part.
If the training database contains cases with missing modalities, the steps

of the training are the following:

1. Train each modality-specific subnetwork on images for which its input
modality (e.g. MRI T2-FLAIR) is provided.

2. Train the entire network on images for which all modalities provided.

During the test phase, we assume that all modalities are provided. The
segmentation is produced by the main part of the network.

2.3. Training of the model

2.3.1. Loss functions and dealing with class imbalance

To train our models, we use a weighted cross-entropy loss. In the 3D
case, given a training batch b and the estimated model parameters θ, the loss
function penalizes the output of the classification layer:

Loss3D
b (θ) = − 1

V

|b|∑
i=1

∑
(x,y,z)

C−1∑
c=0

δ(Gi,b
(x,y,z), c)Wc,b log(pci,(x,y,z)(θ)) (1)

where V is the total number of voxels, δ denotes the Kronecker delta, Wc,b

is a voxelwise weight of the class c for the batch b, pci,(x,y,z)(θ) is the classifica-
tion softmax score given by the network to the class c for the voxel at the po-
sition (x,y,z) in the ith image of the batch and Gi,b

(x,y,z) is the ground truth class
of this voxel. The purpose of using weights is to counter the problem of severe
class imbalance, tumor subclasses being considerably under-represented. In
contrast to common approaches, the voxelwise weights are set automatically
depending on the composition of the batch (number of examples of each class
greatly varies accross batches). We suppose that in each training batch there
is at least one voxel of each class. Let’s note C the number of classes and
N c
b the number of voxels of the class c in the batch b. For each class c we set

a target weight tc with 0 ≤ tc ≤ 1 and
∑C−1

c=0 tc = 1. Then all voxels of the
class c are assigned the weight Wc,b = tc/N

c
b so that the total sum of their

weights accounts for the proportion tc of the loss function. To better under-
stand the effect of this parameter, note that in the standard non-weighted
cross-entropy each voxel has a weight of 1 and the total weight of the class
c is proportional to the number of voxels labeled c. It implies that setting a
target weight tc larger than the proportion of voxels labeled c increases the
total weight of the class c (favoring its sensitivity) and conversely.
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The same strategy is applied in the 2D case, for each classification layer
of the model. The final loss of the 2D model is a convex combination of all
intermediate losses, associated respectively with the main network and all
subnetworks:

Loss2D
b (θ) = cmainLossmainb (θ) +

K+1∑
k=1

ckLosskb (θ) (2)

where K is the number of input channels, 0 ≤ cmain ≤ 1, 0 ≤ ck ≤ 1 ∀
k ∈ [1..K + 1] and cmain +

∑K+1
k=1 c

k = 1.

2.3.2. Training algorithm

Our training algorithm is a modified version of Stochastic Gradient De-
scent (SGD) with momentum [41]. In each iteration of the standard SGD
with momentum, the loss is computed on one batch b of training examples
and the vector v of updates is computed as a linear combination of the previ-
ous update and the gradient of the current loss with respect to the parameters
of the network: vt+1 = µvt− αt∇Lossb(θt) where θt are the current parame-
ters of the network, µ is the momentum and αt is the current learning rate.
The parameters of the network are then updated: θt+1 = θt+vt+1. We apply
two main modifications to this scheme.

First, in each iteration of the training, we minimize the loss over several
training batches in order to take into account a large number of training ex-
amples while bypassing hardware constraints. In fact, due to GPU memory
limits, backpropagation can only be performed on a training batch of limited
size. For large models, training batches may be too small to correctly repre-
sent the training database, which would result in large oscillations of the loss
and a difficult convergence. If we note N the number of training batches per
iteration, the loss at one iteration is given by LossN(θ) =

∑N
b=1 Lossb(θ)

where Lossb(θ) is the loss over one training batch. Given the linearity of
derivatives, the gradient of this loss with respect to the parameters of the
network is simply the sum of gradients of losses over the N training batches:
∇LossN(θ) =

∑N
b=1∇Lossb(θ). Each of the N gradients is computed by

backpropagation.
The second modification is to divide the gradient by its norm. With the

update rule of the standard SGD, strong gradients would cause too high
updates of the parameters which can even result in the divergence of the
training and numerical problems. Conversely, weak gradients would result
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in too small updates and then a very slow training. We want therefore to be
independent of the magnitude of the gradient in order to guarantee a stable
training. To summarize, our update vector v is computed as following:

vt+1 = µvt − αt
∇LossN(θt)

‖∇LossN(θt)‖
(3)

In order to converge to a local minimum, we decrease the learning rate
automatically according to the observed convergence speed. We fix the initial
value αinit and the minimal value αmin of the learning rate. After each F iter-
ations we compute the mean loss accross the last F/2 iterations (Losscurrent)
and we compare it with the mean loss accross the previous F/2 iterations
(Lossprevious) . We fix a threshold 0 < dloss < 1 on the relative decrease of
the loss: if we observe Losscurrent > dloss×Lossprevious then the learning rate
is updated as follows: αt+1 = max(αt

2
, αmin). Given that the loss is expected

to decrease slower with the progress of the training, the value of F is doubled
when we observe an insufficient decrease of the loss two times in a row. For
the training of our models we fixed αinit = 0.25, αmin = 0.001, F = 200 and
dloss = 0.98, i.e. initially we expect a 2% decrease of the loss every 200 itera-
tions. The high values of the learning rate are due to the fact that we divide
gradients by their norm. The values of these hyperparameters were chosen
by observing the convergence of performed trainings for different values of
αinit and choosing a high value for which the convergence is still observed.
Subsequently, the value of the learning rate is automatically adapted by the
algorithm following the observed relative decrease of the loss (if the loss stops
to decrease, the learning rate is halved). The parameter αmin (minimal value
of the learning rate) was introduced in order to prevent the learning rate to
decrease infinitely after convergence.

2.4. Fusion of multiclass segmentations

In order to be robust to limitations of particular choices of neural net-
work architectures (kernels, strides, connectivity between layers, numbers of
features maps, activation functions) we propose to combine multiclass seg-
mentations produced by several models. The final segmentation is obtained
by a voxelwise voting strategy exploiting the following relations between tu-
mor subclasses:

• Whole tumor region includes tumor-induced edema (class 2) and tumor
core
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• Tumor core region includes contrast-enhancing core (class 3) and non-
enhancing core (class 1)

Figure 7: Tree representing our decision process: leaves represent classes and nodes repre-
sent decisions according to aggregated votes for tumor subregions. The class of a voxel is
progressively determined by thresholding on proportions of models which voted for given
subregions.

Suppose we have n multiclass segmentations produced by different mod-
els and let’s note vc the number of models which classified voxel (x, y, z) as
belonging to the class c, with c ∈ {0, 1, 2, 3}. The main idea is to aggre-
gate the votes for classes according to their common regions and to take the
decision in the hierarchical order, progressively determining the tumor sub-
regions. The number of votes for one region is the sum of votes for all classes
belonging to the region (for example the votes for ’tumor core’ are either
votes for ’enhancing core’ or ’non-enhancing core’). We define the following
quantities:

• Ptumor = (v1 + v2 + v3)/(v0 + v1 + v2 + v3) (proportion of votes for the
whole tumor region in the total number of votes)
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• Pcore = (v1 +v3)/(v1 +v2 +v3) (proportion of votes for the ’tumor core’
region among all votes for tumor subclasses)

• Penhancing = v3/(v1+v3) (proportion of votes for the contrast-enhancing
core among all votes for the tumor core)

The decision process can be represented by a tree (Fig. 7) whose internal
nodes represent the application of thresholding on the quantities defined
above and whose leaves represent classes (final decision). The first decision
is therefore to determine if a given voxel represents a tumor tissue, given the
proportion of networks which voted for one of the tumor subclasses. If this
proportion is above a chosen threshold, we consider that the voxel represents
a tumor tissue and we apply the same strategy to progressively determine
the tumor subclass.

For each internal node R (corresponding to a tumor subregion) of the
decision tree, we therefore have to choose a threshold TR with 0 < TR ≤ 1. A
high TR implies that a large proportion of models have to vote for this tumor
subregion in order to consider its presence. The choice of this threshold there-
fore allows the user to control the trade-off between sensitivity and specificity
of the corresponding tumor subregion. A low threshold gives priority to the
sensitivity while a high threshold gives priority to the specificity.

A voting strategy was also used by the organizers of the BRATS 2015
challenge [4] to combine multiclass segmentations provided by few experts.
In the merging scheme of BRATS 2015, the tumor subregions are ordered and
the votes for different subregions are successively thresholded by the number
of total votes divided by 2. In contrast to this approach, in each step of
our decision process we only consider the votes for the ’parent’ region in the
decision tree and we consider varying thresholds.

3. Experiments

We perform a series of experiments in order to analyze the effects of the
main components of our method and to compare our results with the state
of the art. Our method is evaluated on a publicly available database of the
BRATS 2017 challenge.

3.1. Data and evaluation

The datasets of BRATS 2017 contain multisequence MR preoperative
scans of patients diagnosed with malignant brain tumors. For each patient,
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four MR sequences were acquired: T1-weighted, post-contrast (gadolinium)
T1-weighted, T2-weighted and FLAIR (Fluid Attenuated Inversion Recov-
ery). The images come from 19 imaging centers and were acquired with
different MR systems and with different clinical protocols. The images are
provided after the pre-processing performed by the organizers: skull-stripped,
registered to the same anatomical template and interpolated to 1mm3 reso-
lution.

The Training dataset contains 285 scans (210 high grade gliomas and 75
low grade gliomas) with provided ground truth segmentation. The Validation
dataset consists of 46 patients without provided segmentation and without
provided information on the tumor grade. The evaluation on this dataset is
performed via a public benchmark.

The first test dataset used in our experiments is composed of 50 randomly
chosen patients from the Training dataset and the networks are trained on
the remaining 235 patients. We refer to this dataset as ’test dataset’ in
the remainder (locally generated split training/test). We then evaluate our
method on the Validation dataset of BRATS 2017 (networks are trained on
all 285 patients of the Training dataset).

The ground truth corresponds to voxelwise annotations with 4 possible
classes: non-tumor (class 0), contrast-enhancing tumor (class 3), necrotic
and non-enhancing tumor (class 1), tumor-induced edema (class 2). The
performance is measured by the Dice score between the segmentation Ỹ
produced by the algorithm and the ground truth segmentation Y :

DSC(Ỹ , Y ) =
2|Ỹ ∩ Y |
|Ỹ |+ |Y |

(4)

We perform t-tests (paired, one-tailed) to measure statistical significance
of the observed improvements provided by the main components of our
method (2D-3D model, modality-specific subnetworks, merging strategy).
We consider the significance level of 5%.

3.2. Technical details

The ranges of image intensities highly vary between the scans due to im-
age acquisition differences. We perform therefore a simple intensity normal-
ization: for each patient and each MR sequence separately, we compute the
median value of non-zero voxels, we divide the sequence by this median and
we multiply it by a fixed constant. In fact, median is likely to be more stable
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than the mean, which can be easily impacted by the tumor zone. Experi-
mentation with other normalization approaches such as histogram-matching
methods [42] will be a part of the future work. Another potentially useful
pre-processing could be bias field correction [43].

Models are trained with our optimization algorithm described previously.
In each iteration of the training, gradients are computed on 10 batches (pa-
rameter N introduced in section 2.3.2) in the 2D case and on 5 batches in
the 2D-3D case. Batch normalization [44] was used in the 2D model but was
not required to train the 2D-3D model. In the latter case, we normalized the
input images to approximatively match the ranges of values of extracted 2D
features.

To train the 2D model, the following target weights (defined in section
2.3.1) were fixed: t0 = 0.7, t1 = 0.1, t2 = 0.1, t3 = 0.1, corresponding respec-
tively to ’non-tumor’, ’non-enhancing core’, ’edema’ and ’enhancing core’
classes. The choice of these values has an influence on the sensitivity to
different tumor subclasses, however, the final segmentation performance in
terms of Dice score was not found to be very sensitive to these hyperparam-
eters. We fixed the same target weight for all tumor subclasses and we fixed
a relatively high target weight for the non-tumor class to limit the risk of
oversegmentation. However, given that non-tumor voxels represent approxi-
mately 98% of voxels of the batch, we significantly decreased the weight of
the non-tumor class compared to a standard cross-entropy loss (0.98 vs 0.7).
In the 3D case, the following weights were fixed: t0 = 0.4, t1 = 0.2, t2 = 0.2,
t3 = 0.2. We observe a satisfying convergence of the training both for the
2D and the 2D-3D model. Fig. 8 shows the evolution of the training loss of
the 2D model along with Dice scores of tumor subclasses.

The weights of the classification layers of the 2D model (section 2.3.1)
were the following: cmain = 0.75, ck = 0.05 ∀k ∈ [1..5] (4 modality-specific

Figure 8: Evolution of the loss and of Dice scores of tumor subclasses during the training
of the 2D model.
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subnetworks, one subnetwork combining all modalities and the main part of
the network having a weight of 0.75 in the loss function). A high weight was
given for the main classification layer as it corresponds to the final output
of the 2D model. The classification layers of subnetworks were all given the
same weight.

3.3. Training with missing modalities

We test our 2D model with modality-specific subnetworks in the context
of missing MR sequences in the training database. In this setting, we suppose
that the four MR sequences are available only for 20% of patients and that
for the remaining patients, one MR sequence out of the four is missing.
More precisely, we randomly split the training set of 235 patients in five
equal subsets (47 patients in each) and we consider that only the first subset
contains all the four MR sequences whereas the four other subsets exclusively
miss one MR sequence (T1, T1c, T2 or T2-FLAIR). We previously noted that
modality-specific subnetworks can be trained independently: in this case, a
subnetwork specific to a given MR sequence can be trained on 80% of the
training database (on all training images except the ones for which the MR
sequence is missing). The goal of the experiment is to test if the training
of these subnetworks improves the segmentation performance in practice.
We first evaluate the performance obtained by 2D model 1 (version CNN-
2DAxl) trained only on the training subset containing all MR sequences (47
patients). Then we evaluate the performance obtained when the subnetworks
are pretrained, each of them using 80% of the training database.

The results are reported in Table 1. Pretraining of the modality-specific
subnetworks improved the segmentation performance on the test set for all
tumor subregions. Even if the multiclass segmentation problem is very diffi-
cult for a small network using only one MR sequence, this pretraining forces

Table 1: Mean Dice scores on the test dataset (50 patients) in the context of misssing
MR sequences in the training database. EC, TC and WT refer respectively to ’Enhancing
Core’, ’Tumor Core’ and ’Whole Tumor’ regions. The numbers in brackets denote standard
deviations.

EC TC WT

2D model 1, missing data 70.2 (22.3) 68.6 (27.9) 83.0 (14.6)

2D model 1 missing data + pretrained subnetworks 71.9 (20.9) 73.7 (23.7) 84.1 (13.6)

2D model 1 full data 73.6 (19.8) 79.4 (15.7) 86.6 (11.1)
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the subnetwork to learn the most relevant features, which will then be used
by the main part of the network, trained on the subset of training cases for
which all MR sequences are available. The improvement was found statisti-
cally significant (p-value < 0.05) for all the three tumor subregions (Table 5).

3.4. Using long-range 2D context

We perform a series of experiments to analyze the effects of using features
learned by 2D networks as an additional input to 3D networks. In the first
step, 2D model 1 is trained separately on axial, coronal and sagittal slices
and the standard 3D model is trained on 70x70x70 patches. Then we extract
the features produced by the 2D model for all images of the training database
and we train the same 3D model on 70x70x70 patches using these extracted
features (Fig. 9) as an additional input (2D-3D model A specified on Fig. 4).
The experiment is performed on two datasets: the test dataset of 50 patients
(networks trained on the remaining 235 patients) and the Validation dataset
of BRATS 2017 (networks trained on 285 patients). The results on the two
datasets are reported respectively in Table 2 and Table 3. Further experi-
ments, involving varying 2D and 3D architectures are presented in section
3.5. Qualitative analysis is performed on the first dataset, for which the
ground truth segmentation is provided. For comparison, we also display the
scores obtained by U-net processing axial slices, using our implementation
(with batch-normalization).

On the two datasets and for all tumor subregions, our 2D-3D model ob-
tained a better performance than the standard 3D CNN (without the use of
2D features) and than 2D model 1 from which the features were extracted
(Table 2 and Table 3). The qualitative analysis (Fig. 10) of outputs of 2D
networks highlights two main problems of 2D approaches. First, as expected,
the produced segmentations show discontinuities which appear as patterns
parallel to the planes of processing. The second problem are false positives

Table 2: Mean Dice scores on the test dataset (50 patients). The numbers in brackets
denote standard deviations.

EC TC WT

Unet axial slices 73.9 (19.7) 78.1 (17.9) 86.5 (11.6)

2D model 1 axial slices 73.6 (19.8) 79.4 (15.7) 86.6 (11.1)

Standard 3D model (without 2D features) 73.7 (19.9) 77.0 (18.5) 85.7 (8.3)

2D-3D model A, features from 2D model 1 77.4 (16.6) 80.9 (16.9) 87.3 (11.7)
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Figure 9: 2D features computed for three different patients from the test set. These
features correspond to unnormalized outputs of the final convolutional layers of three
versions of a 2D model (CNN-2DAxl, CNN-2DSag, CNN-2DCor). The values of these
features are used as an additional input to a 3D CNN. Each feature highlights one of the
tumor classes (columns 3-6) and encodes a rich information extracted from a long-range
2D context within an axial, sagittal or coronal plane (rows 1-3). Each row displays a
different case from the test set (unseen by the network during the training).

in the slices at the borders of the brain and containing artefacts of skull-
stripping. Segmentations produced by the standard 3D model are more spa-
tially consistent but the network suffers from a limited input information
from distant voxels. The use of learned features as an additional input to
the network gives a considerable advantage by providing rich information
extracted from distant points. The difference of performance is particulary

Table 3: Mean Dice scores on the Validation dataset of BRATS 2017 (46 patients).

EC TC WT

Unet axial slices 71.4 (27.4) 76.6 (22.4) 87.7 (10.6)

2D model 1 axial slices 71.1 (28.8) 78.4 (21.3) 88.6 (8.7)

Standard 3D model (without 2D features) 68.7 (30.0) 74.2 (23.7) 85.4 (10.9)

2D-3D model A, features from 2D model 1 76.7 (27.6) 79.5 (21.3) 89.3 (8.5)
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Figure 10: Examples of segmentations obtained with models using a different spatial
context. Each row represents a different patient from the local test dataset (images unseen
during the training). From left to right: MRI T2, ’2D model 1’ processing the image by
axial slices, standard 3D model (without 2D features), ’2D-3D model A’ using the features
produced by ’2D model 1’, ground truth segmentation. Orange, blue and green zones
represent respectively edema, contrast-enhancing core and non-enhancing core.

visible for ’tumor core’ and ’enhancing core’ subregions. The improvements
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Figure 11: Results obtained by the 2D-3D model, displayed for each available MR se-
quence. While both T2 and T2-FLAIR higlight the edema, T2-FLAIR allows for distin-
guishing it from the cerebrospinal fluid. T1 with injection of a gadolinium-based contrast
product highlights the degradation of the blood-brain barrier induced by the tumor.

of our 2D-3D approach compared to the standard 3D CNN (without the use
of 2D features) were found statistically significant (p-value < 0.05) in all
cases except the ’whole tumor’ region in the first dataset (Table 5).

3.5. Varying network architectures and combining segmentations

We perform experiments with varying architectures of 2D and 2D-3D
models. The first objective is to test if the use of 2D features provides an
improvement when different 2D and 2D-3D architectures are used. The sec-
ond objective is to test our decision process combining different multiclass
segmentations. The third goal is to compare performances obtained by differ-
ent models. The experiments are performed on the Validation set of BRATS
2017, the performance is evaluated by the public benchmark of the challenge.
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Figure 12: Architectures of complementary networks used in our experiments.

In our experiments we use two architectures of our 2D model and three
architectures of the 2D-3D model. The main difference between the two 2D
networks used in experiments is the architecture of subnetworks processing
the input MR sequences. In the first 2D model, the subnetworks correspond
to reduced versions of U-Net (Fig. 6) whereas in the second model, the sub-
networks are composed of three convolutional layers (Fig. 12, top). In the
remainder, we refer to these models as ’2D model 1’ and ’2D model 2’. The
difference between the two first 2D-3D models is the choice of the layer in
which the 2D features are imported: in the first layer of the network (Fig. 4)
or before the final sequence of convolutional layers (Fig. 12, bottom left). The
third 2D-3D model (Fig. 12, bottom right) is composed of two streams, one
processing only the 3D image patch and the other stream taking also the 2D
features as input. We refer to these models as 2D-3D model A, 2D-3D model
B and 2D-3D model C. Please note that the two first models correspond to
a standard 3D model with the only difference of taking an additional input.

Each of the 2D-3D models is trained twice using respectively features
learned by 2D model 1 or features learned by 2D model 2. We combine the
trained 2D-3D models with the voting strategy described in section 2.4. As
we observe that 2D model 1 performs better than 2D model 2, we consider
two ensembles: combination of all trained 2D-3D models and combination of
three models using features from 2D model 1. We use the following thresholds
for merging (defined in section 2.4): Ttumor = 0.4, Tcore = 0.3, Tenhancing =
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Table 4: Mean Dice scores on the Validation dataset of BRATS 2017 (46 patients).

EC TC WT

2D model 1 axial slices 71.1 78.4 88.6

2D model 2 axial slices 68.0 78.3 88.1

Standard 3D model (without 2D features) 68.7 74.2 85.4

* 2D-3D model A, features from 2D model 1 76.7 79.5 89.3

* 2D-3D model B, features from 2D model 1 76.6 79.1 89.1

* 2D-3D model C, features from 2D model 1 76.9 78.3 89.4

* 2D-3D model A, features from 2D model 2 73.4 79.5 89.7

* 2D-3D model B, features from 2D model 2 74.1 79.4 89.5

* 2D-3D model C, features from 2D model 2 74.3 79.4 89.6

Combination of models A-C features from model 1 76.7 79.6 89.4

Combination of all models * (final segmentation) 77.2 80.8 90.0

Table 5: p-values of the t-tests (in bold: statistically significant results, with p < 0.05)
of the improvement provided by the different components of our method. To lighten the
notations, ’2D’ refers to ’2D model 1 axial slices’ and ’2D-3D’ refers to ’2D-3D model
A, features from 2D model 1’. ’Combination of 2D-3D’ refers to the result obtained by
merging 6 models with our hierarchical decision process.

EC TC WT

2D vs 2D with pretrained subnetworks, missing data 0.0054 0.0003 0.0074

Standard 3D vs 2D-3D, dataset 1 0.0082 0.0016 0.0729

Standard 3D vs 2D-3D, dataset 2 0.0077 0.0005 <0.0001

2D-3D vs combination of 2D-3D 0.1058 0.0138 0.0496

0.4.
The results are reported in Table 4. In all experiments, the 2D-3D models

obtain better performances than their standard 3D counterparts and than
2D networks from which the features were extracted. The merging of seg-
mentations with our decision rule further improves the performance. For all
tumor subregions, the ensemble of 6 models (the last row of Table 4) out-
performs each of the individual models. The improvement over the main
2D-3D model (2D-3D model A with features from 2D model 1) was found
statistically significant (p-value < 0.05) for ’whole tumor’ and ’tumor core’
subregions, as reported in the last row of Table 5. While the three 2D-3D
architectures yield similar performances, 2D model 1 (subnetworks similar to
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U-net) performs better than 2D model 2 for all three tumor regions. How-
ever, the 2D-3D models trained with the features from 2D model 2 are useful
for the merging of segmentations: the ensemble of all models yields better
performances than the ensemble of three models (two last rows of Table 4).

3.6. Comparison to the state of the art

We have evaluated our segmentation performance on the public bench-
mark of the challenge to compare our results with few dozens of teams from
renowned research institutions worldwide. Our method compares favorably
with competing methods of BRATS 2017 (Table 6): among 55 teams which
evaluated their methods on all test patients of the Validation set, we obtain
top-3 performance for ’core’ and ’enhancing core’ tumor subregions. We ob-
tain mean Dice score of 0.9 for the ’whole tumor’ region, which is almost
equal to the one obtained by the best scoring team (0.905).

Table 6: Mean Dice scores of the 10 best scoring teams on the validation leaderboard of
BRATS 2017 (state of January 22, 2018)

EC TC WT Rank EC Rank TC Rank WT Average rank

UCL-TIG 78.6 83.8 90.5 1 / 55 1 1 1.0

MIC DKFZ 77.6 81.9 90.3 2 / 55 2 2 2.0

inpm (our method) 77.2 80.8 90.0 3 / 55 3 7 4.3

UCLM UBERN 74.9 79.1 90.1 9 / 55 6 3 6.0

biomedia1 73.8 79.7 90.1 12 / 55 5 5 7.3

stryker 75.5 78.3 90.1 6 / 55 10 6 7.3

xfeng 75.1 79.9 89.2 8 / 55 4 11 7.7

Zhouch 75.4 77.8 90.1 7 / 55 12 4 7.7

tkuan 76.5 78.2 88.9 4 / 55 11 13 9.3

Zhao 75.9 78.9 87.2 5 / 55 7 16 9.3

The winning method of UCL-TIG [33] proposes to sequentially use three
3D CNNs in order to progressively determine the tumor subclass. Each of the
networks performs a binary segmentation (tumor/not tumor, core/edema,
enhancing core/non-enhancing core) and was designed for one tumor subre-
gion of BRATS. A common point with our method is the hierarchical process,
however in our method all models perform multiclass segmentation. The
method of the team MIC DKFZ, according to [34], is based on an optimized
version of 3D U-net and an extensive use of data augmentation.
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Table 7: Distribution of Dice scores (final result). The numbers in brackets denote stan-
dard deviations.

EC TC WT

Mean 77.2 (24.4) 80.8 (18.9) 90.0 (8.1)

Median 85.4 88.3 91.8

Quantile 25 % 76.9 75.0 89.6

Quantile 75 % 90.0 93.5 94.5

The leaderboard of BRATS 2017 only shows mean performances obtained
by participating teams. However, the benchmark individually provides de-
tailed scores and complementary statistics, in particular quartiles and stan-
dard deviations reported in Table 7. Our method yields promising results
with median Dice score of 0.918 for the whole tumor, 0.883 for the tumor
core and 0.854 for the enhancing core. While the Dice scores for the whole
tumor region are rather stable (generally between 0.89 and 0.95), we observe
a high variability of the scores obtained for the tumor subregions. In partic-
ular the obtained median Dices are much higher than the means, due to the
sensitivity of Dice score to outliers.

4. Discussion and conclusion

In this paper we presented a deep learning system for multiclass segmen-
tation of tumors in multisequence MR scans. The goal of our work was
to propose elements to improve performance, robustness and applicability
of commonly used CNN-based systems. In particular, we proposed a new
methodology to capture a long-range 3D context with CNNs, we introduced
a network architecture with modality-specific subnetworks and we proposed
a voting strategy to merge multiclass segmentations produced by different
models.

First, we proposed to use features learned by 2D CNNs (capturing a long-
range 2D context in three orthogonal directions) as an additional input to
a 3D CNN. Our approach combines the strengths of 2D and 3D CNNs and
was designed to capture a very large spatial context while being efficient in
terms of computations and memory load. Our experiments showed that this
hybrid 2D-3D model obtains better performances than both the standard 3D
approach (considering only the intensities of voxels of a subvolume) and than
the 2D models which produced the features. Even if the use of the additional
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input implies supplementary reading operations, the simple importation of
few features to a CNN does not considerably increase the number of compu-
tations and the memory load. In fact, in typical CNNs performing hundreds
of convolutions, max-poolings and upsamplings, the data layer represents
typically a very small part of the memory load of the network. One solution
to limit the reading operations could be to read downsampled versions of fea-
tures or to design a 2D-3D architecture in which the features are imported
in a part of the network where the feature maps are relatively small.

The improvement provided by the 2D-3D approach has the cost of in-
creasing the complexity of the method compared to a pure 3D approach as it
requires a two-step processing (first 2D, then 3D). However, its implementa-
tion is rather simple as the only supplementary element to implement is the
extraction of 2D features, i.e. computation of outputs of trained 2D networks
(with a deep learning software such as TensorFlow) and saving the obtained
tensors in files. In the 3D part, the extracted features are then simply read
as additional channels of the input image.

Despite the important recent progress of GPUs, pure 3D approaches may
be easily limited by their computational requirements when the segmenta-
tion problem involves an analysis of a very large spatial 3D context. In fact,
Convolutional Neural Networks require an important amount of GPU mem-
ory and a high computational power as they perform thousands of costly
operations on images (convolutions, max-poolings, upsamplings). The main
advantage of our 2D-3D approach is to considerably increase the size of the
receptive field of the model while being efficient in terms of the computational
load. The use of our 2D-3D model may therefore be particularly relevant in
the case of very large 3D scans.

Second, we proposed a novel approach to process different MR sequences,
using an architecture with modality-specific subnetworks. Such design has
the considerable advantage of offering a possibility to train one part of the
network on databases containing images with missing MR sequences. In our
experiments, training of modality-specific subnetworks improved the segmen-
tation performance in the setting with missing MR sequences in the training
database. Moreover, the fact that our 2D model obtained promising seg-
mentation performance is particularly encouraging given that 2D networks
are easier to apply for the clinical use where images have a variable number
of acquired slices. Our approach can be easily used with any deep learning
software (e.g. Keras). In the case of databases with missing MR sequences,
the user only has to perform a training of a subnetwork (on images for which
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the given MR sequence is provided) and then read the learned parameters
for the training of the main part of the network (on images for which all MR
sequences are available).

In order to be less prone to limitations of particular choices of neural
network architectures, we proposed to merge outputs of several models by a
voxelwise voting strategy taking into account the semantics of labels.

In constrast to most methods, we do not apply any postprocessing on the
produced segmentations.

Our methodological contributions can be easily included separately or
jointly into a CNN-based system to solve specific segmentation problems.
The implementation of our method will be made publicly available on https:

//github.com/PawelMlynarski.
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