Y. Abbasi-yadkori, P. Bartlett, V. Gabillon, A. Malek, and M. Valko, Best of both worlds: Stochastic & adversarial best-arm identification, Conference on Learning Theory, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01808948

A. Al-dujaili and S. Suresh, Multi-objective simultaneous optimistic optimization, Information Sciences, vol.424, pp.159-174, 2018.

J. Audibert, S. Bubeck, and R. Munos, Best arm identification in multi-armed bandits, Conference on Learning Theory, pp.41-53, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00654404

P. Auer, R. Ortner, and C. Szepesvári, Improved rates for the stochastic continuumarmed bandit problem, Conference on Computational Learning Theory, pp.454-468, 2007.

A. Mohammad-gheshlaghi-azar, E. Lazaric, and . Brunskill, Online stochastic optimization under correlated bandit feedback, International Conference on Machine Learning, 2014.

S. Bubeck and A. Slivkins, The best of both worlds: stochastic and adversarial bandits, Conference on Learning Theory, pp.42-43, 2012.

S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvári, X-armed bandits, Journal of Machine Learning Research, vol.12, pp.1587-1627, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00450235

S. Bubeck, G. Stoltz, and J. Yu, Lipschitz Bandits without the Lipschitz Constant, Algorithmic Learning Theory, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00595692

L. Bus¸oniubus¸oniu and . Irinel-constantin, Consensus for black-box nonlinear agents using optimistic optimization, Automatica, vol.50, issue.4, pp.1201-1208, 2014.

L. Bus¸oniubus¸oniu, A. Daniels, R. Munos, and R. Babuska, Optimistic planning for continuous-action deterministic systems, Adaptive Dynamic Programming And Reinforcement Learning (ADPRL), 2013 IEEE Symposium on, pp.69-76, 2013.

R. Pierre-arnaud-coquelin and . Munos, Bandit algorithms for tree search, Uncertainty in Artificial Intelligence, 2007.

A. Nando-de-freitas, M. Smola, and . Zoghi, Exponential regret bounds for Gaussian process bandits with deterministic observations, International Conference on Machine Learning, 2012.

T. Steven-de-rooij, . Van-erven, . Peter-d-grünwald, and . Wouter-m-koolen, Follow the leader if you can, hedge if you must, The Journal of Machine Learning Research, vol.15, issue.1, pp.1281-1316, 2014.

B. Derbel and P. Preux, Simultaneous optimistic optimization on the noiseless BBOB testbed, IEEE Congress on Evolutionary Computation, CEC 2015, pp.2010-2017, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01246420

J. Grill, M. Valko, and R. Munos, Black-box optimization of noisy functions with unknown smoothness, Advances in Neural Information Processing Systems, pp.667-675, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01222915

E. Hansen and G. Walster, Global optimization using interval analysis: revised and expanded, vol.264, 2003.

A. Hoorfar and M. Hassani, Inequalities on the lambert w function and hyperpower function, Journal of Inequalities in Pure and Applied Mathematics (JIPAM), vol.9, issue.2, pp.5-9, 2008.

J. , F. Hren, and R. Munos, Optimistic Planning of Deterministic Systems, European Workshop on Reinforcement Learning, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00830182

D. Jones, C. Perttunen, and B. Stuckman, Lipschitzian optimization without the Lipschitz constant, Journal of Optimization Theory and Applications, vol.79, issue.1, pp.157-181, 1993.

F. Muhammad, . Kasim, . Peter, and . Norreys, Infinite dimensional optimistic optimisation with applications on physical systems, 2016.

K. Kawaguchi, L. Pack-kaelbling, and T. Lozano-pérez, Bayesian optimization with exponential convergence, Advances in neural information processing systems, pp.2809-2817, 2015.

K. Kawaguchi, Y. Maruyama, and X. Zheng, Global continuous optimization with error bound and fast convergence, Journal of Artificial Intelligence Research, vol.56, pp.153-195, 2016.

. Baker-kearfott, Rigorous global search: continuous problems, vol.13, 2013.

R. Kleinberg, A. Slivkins, and E. Upfal, Multi-armed bandits in metric spaces, ACM Symposium on Theory of Computing (STOC), pp.681-690, 2008.

L. Kocsis and C. Szepesvári, Bandit-based Monte-Carlo planning, European Conference on Machine Learning, 2006.

E. Dmitri, Y. Kvasov, and . Sergeyev, Lipschitz gradients for global optimization in a onepoint-based partitioning scheme, Journal of Computational and Applied Mathematics, vol.236, issue.16, pp.4042-4054, 2012.

E. Dmitri, Y. Kvasov, and . Sergeyev, Deterministic approaches for solving practical blackbox global optimization problems, Advances in Engineering Software, vol.80, pp.58-66, 2015.

D. Lera, . Yaroslav, and . Sergeyev, An information global minimization algorithm using the local improvement technique, Journal of Global Optimization, vol.48, issue.1, pp.99-112, 2010.

D. Lera, . Yaroslav, and . Sergeyev, Deterministic global optimization using space-filling curves and multiple estimates of lipschitz and hölder constants, Communications in Nonlinear Science and Numerical Simulation, vol.23, issue.1-3, pp.328-342, 2015.

A. Locatelli and A. Carpentier, Adaptivity to Smoothness in X-armed bandits, Conference on Learning Theory, 2018.

C. Malherbe and N. Vayatis, Global optimization of lipschitz functions, Proceedings of the 34th International Conference on Machine Learning, pp.2314-2323, 2017.

A. Maurer and M. Pontil, Empirical bernstein bounds and sample variance penalization, Conference on Learning Theory, 2009.

R. Munos, Optimistic optimization of a deterministic function without the knowledge of its smoothness, Advances in Neural Information Processing Systems, pp.783-791, 2011.

R. Munos, From bandits to Monte-Carlo tree search: The optimistic principle applied to optimization and planning. Foundations and Trends in Machine Learning, vol.7, pp.1-130, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00747575

. János-d-pintér, Global optimization in action. continous and lipschitz optimization: Algorithms, implementations and applications, 1996.