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Abstract—When designing complex cyber-physical systems,
engineers have to integrate numerical models from different
modeling environments in order to simulate the whole system
and estimate its global performances. Co-simulation refers to
such joint simulation of heterogeneous models. If some parts
of the system are physically available, it is possible to connect
these parts to the co-simulation in a Hardware-in-the-Loop (HiL)
approach. In this case, the simulation has to be performed in real-
time where models execution consists in periodically reacting to
the real (physically available) components and providing periodic
output updates. This paper deals with the parallelization and
scheduling of real-time Hardware-in-the-Loop co-simulation of
numerical models on multi-core architectures. A method for
defining real-time constraints that have to be met is proposed.
Also, an ILP formulation as well as a heuristic are proposed
to solve the problem of scheduling the co-simulation on a multi-
core architecture while satisfying the previously defined real-time
constraints. The proposed approach is evaluated for different
sizes of co-simulations and multi-core processors.

Index Terms—co-simulation, HiL, scheduling, real-time, multi-
core

I. INTRODUCTION

Systems that combine computational elements and physical
processes are referred to as Cyber-Physical Systems (CPS)
[15]. The different elements are more or less tightly coupled
and interact with each other using different communication
media. The diversity of the involved disciplines makes the pro-
cess of building CPS challenging, costly and time consuming.
Enabling the prediction of the system’s behavior before its
deployment has the potential to reduce the risks, the cost and
the needed effort. Simulation is an efficient way to achieve
these requirements as it allows imitating the functioning of
the system on a computer and assessing its design.

In co-simulation, the different subsystems are modeled in a
segregated manner and then connected together to simulate the
whole system on a computer. Integrating heterogeneous mod-
els usually results in computationally expensive co-simulation.
Increasing CPU frequency by means of silicon integration has
reached its possible limits and semiconductor manufacturers
switched to building multi-core processors, allowing parallel
processing on a single computer.

In Hardware-in-the-Loop (HiL) co-simulation, real compo-
nents, that are physically available, are connected to simulated
models. The goal here is to emulate the behavior of a part
of the system using the simulated models in order to run

the real component under realistic conditions. In HiL, two
concepts of time have to be correctly meshed: the simulated
time and the real time. Achieving a correct meshing of the
simulated time and the real time defines a set of timing
constraints imposed on the simulated models. Performing
HiL co-simulations on multi-core processors can enhance the
opportunities of satisfying these timing constraints which may
be infeasible on single-core processors.

In the present paper, we focus on the execution of HiL
co-simulation under real-time constraints on multi-core pro-
cessors. We are interested in co-simulations of CPS that are
compliant with the Functional Mock-up Interface (FMI) stan-
dard [10] that is widely adopted in industry. The Refined CO-
SIMulation (RCOSIM) [2] is a co-simulation parallelization
approach which takes advantage of the information given by
FMI about input-output relationships inside a model that is
exported as a Functional Mock-up Unit (FMU). In our recent
work [20], we extended the use of RCOSIM to multi-rate co-
simulation. In this paper, we extend the use of RCOSIM to HiL
co-simulation under real-time constraints. First, we propose
rules to propagate real-time constraints to FMI compliant
models in a HiL co-simulation. Furthermore, we propose
non preemptive multi-core scheduling algorithms to satisfy
the timing constraints. These algorithms consist in an exact
algorithm based on an Integer Linear Programming (ILP) to
find the optimal solution and a heuristic giving an approximate
solution.

The rest of the paper is organized as follows. The next
section is dedicated to related work. In Section III, we present
basic concepts and preliminaries related to FMI HiL co-
simulation under real-time constraints and give a description
of the problem. In Section IV, we define the real-time con-
straints that are imposed in a HiL co-simulation. Then, we
propose rules and algorithms to propagate these constraints
in the dependence graph in Section V. Next, we present in
Section VI an ILP formulation and a list heuristic to solve
the problem of non preemptive multi-core scheduling of HiL
co-simulation under real-time constraints. We evaluate our
solution in Section VII and conclude the paper in Section VIII.

II. RELATED WORK

Some work has been carried out in academia as well
as in industry in order to tackle the problem of real-time



HiL co-simulation. A first aspect of our contribution is to
assign HiL real-time constraints to the different operations
of the simulated part. In industry, this problem is tackled at
the model or submodel level. Engineers have to define the
different periods of the different models or submodels. Such
approach has two drawbacks. First, it often leads the user to
naively translate a model-rate (stepsize) requirement into a
real-time period requirement. This results in more stringent
period constraints than necessary. Second, to find an execution
order, it is often necessary to break some data dependencies
by adding a delay or memory function. Indeed, at the model or
submodel level, cycles may be present but disappear at lower
levels. Figures 1 and 2 give an example of such co-simulation.
In [9], a proposed set of propagation rules allows fixing the
problem of assigning an adequate period and deadline to each
model. Nevertheless, Faure et al. address the problem at the
model-level even if they distinguish between models where
no output directly depends on the inputs and models where at
least one output does. In this approach, the cycle problem is
not solved. On the opposite, our approach, by exploiting FMI
features, is able to use internal input-output relationships of
each model to propagate constraints on a set of models without
having to break any data dependency.

After propagating the real-time constraints, our approach
deals with a real-time multi-core DAG scheduling problem
that may look close to the multi-rate synchronous language
scheduling problem which is addressed in [17]. Nevertheless,
such approach implies strict periodicity which is not a con-
straint in the co-simulations that we target. In [5] and [21],
online approaches are proposed for real-time DAG scheduling,
but on mono-processor platforms. On the other hand, multi-
core real-time scheduling of independent tasks has received a
lot of attention in the literature [8]. In our work, operations
may have deadlines greater than their respective periods and
data dependencies have to be considered as constraints. In [18]
and [19], multiprocessor real-time scheduling with dependen-
cies is addressed. However, the proposed approaches are pre-
emptive. We adopt an offline non preemptive approach since
preemption seems not beneficial given that most industrial
applications exhibit fine granularity with short computation
times [13]. Also, online scheduling is likely to bring no
significant advantages due to the short computation times. We
are mainly lead by our experience in industrial co-simulation.
Most of the FMI operations that we have to schedule have
short computation times (few µs) and an industrial use case
may easily lead to a number of operations between 100 and
10000.

III. FMI HIL CO-SIMULATION

In this Section, we present basic concepts related to FMI co-
simulation with a focus on HiL co-simulation. First, we give
an overview of the FMI standard. Then, we describe briefly
our method for transforming a model graph of an FMI co-
simulation into a dependence graph. The resulting graph has a
finer granularity than the model graph. Finally, we give some
preliminaries regarding HiL co-simulation.

A. FMI Standard

The Functional Mock-up Interface (FMI) is a tool-
independent and open standard designed within the MOD-
ELISAR project1 and is currently developed and maintained
by the Modelica Association2 which promotes the Modelica
language. The FMI standard was developed in order to facil-
itate the co-simulation of dynamical systems, such as CPS. It
provides specifications in order to enable the exchange and the
co-simulation of heterogeneous dynamical models that may
be developed by different tools and originating from different
parties. A modeling tool that supports FMI can export a model
as a Functional Mock-up Unit (FMU) which can be used
in co-simulation environments. An FMU is a package that
encapsulates an XML file containing, among other data, the
definitions of the model’s variables, and a library defining the
equations of the model as C functions. FMI defines interfaces
for the involved models to allow their co-simulation.

B. Dependence Graph of an FMI Co-simulation

The method for automatic parallelization of FMU co-
simulation that we propose in this paper is based on repre-
senting the co-simulation by a dependence graph. We present
below how this graph is constructed and a set of attributes that
characterize it. The graph construction and characterization
method is done following the RCOSIM approach as presented
in [2].

The entry point for the construction of a dependence
graph of an FMU co-simulation is a user-specified set of
interconnected FMUs as depicted in Figure 1. In this Figure,
each model has a number of inputs, outputs and, even if not
displayed, one state. The execution of each FMU is seen as
computing a set of inputs, a set of outputs, and the state of
the FMU. A computation of an input, output, or the state is
performed by FMU C function calls. Thanks to FMI, it is
additionally possible to access information about the internal
structure of a model encapsulated in an FMU. In particular,
as shown in Figure 2, FMI allows the identification of Direct
Feedthrough (e.g. YB1) and Non Direct Feedthrough (e.g. YA1)
outputs of an FMU and other information depending on the
version of the standard.

FMU A
UA1

UA2

YA1

YA2

YA3

FMU B
UB3

UB2

UB1

YB2

YB1

Fig. 1: Inter-FMU dependence specified by the user

The information provided by FMI on input-output depen-
dence allows transforming the FMU graph into a graph with an
increased granularity. For each FMU, the inputs, outputs, and
the state are transformed into operations. An input, output, or a

1itea3.org/project/modelisar.html
2www.modelica.org/association/
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Fig. 2: Intra-FMU dependence provided by FMI

state operation is defined as the set of FMU function calls that
are used to compute the corresponding input, output, or state
respectively. The co-simulation is described by a dependence
graph G(V,A), called the operation graph, where each vertex
oi ∈ V : 0 ≤ i < n represents one operation, each arc
(oi, oj) ∈ A : 0 ≤ i, j < n represents a dependence between
operations oi and oj which means that oi must be executed
before oj and, possibly, produces data to be consumed by
oj . n = |V | is the size of the operation graph. The operation
graph is built by exploring the relations between the FMUs and
between the operations of the same FMU. A vertex is created
for each operation and arcs are then added between vertices
if a dependence exists between the corresponding operations.

The co-simulation of a system is run over a user-specified
time interval. More specifically, each model is simulated over
a certain number of time steps. At each step, the corresponding
FMU inputs, outputs, and state are updated. An execution of
the obtained operation graph corresponds to one simulation
step. Therefore, running the co-simulation consists in repeat-
edly executing the graph until the desired number of steps
is reached. A new execution of the graph cannot be started
unless the previous one was totally finished. The operation
graph corresponding to the FMUs of Figure 2 is shown in
Figure 3 where input and output operations are represented by
circle vertices and state operations are represented by square
vertices. Note that state operations do not have successors.
Although they do not appear in Figures 1 and 2, we recall
that every FMU has one state operation.

YA1

UB3

YB1

UA2 YA3 UB1

ẊB

ẊA

UB2

YA2UA1

YB2

Fig. 3: Operation graph obtained from the FMUs of Figure 2

At each repetition of the execution of the operation graph,
the equations of each FMU are integrated according to an
integration step assigned by the user and which, in some
cases, is driven by the dynamics of the modeled system and
the control objective. In addition, each FMU exchanges data
with the other FMUs according to a communication step also

assigned by the user and which can be equal or larger than its
integration step. In a multi-rate co-simulation, multiple FMUs
are assigned different communication steps [20].

We use the notation fm(oi) to refer to the FMU to which the
operation oi belongs. Once the operation graph is constructed,
each operation oi is characterized by a set of parameters.
The first parameter consists in the Worst Case Execution
Time (WCET) C(oi) obtained through a profiling phase.
Each operation oi is characterized by a communication step
H(oi) which is equal to the communication step of its FMU.
In addition, the following parameters are defined for each
operation oi:
• The set of successors (resp. predecessors) succ(oi) (resp.
pred(oi)).

• The earliest start time from the graph beginning
S(oi) = maxoj∈pred(oi)(E(oj)) (0 if pred(oi) = ∅).

• The earliest end time from the graph beginning
E(oi) = S(oi) + C(oi).

• The latest end time from the graph end
E(oi) = maxoj∈succ(oi)(S(oj)) (0 if succ(oi) = ∅).

• The latest start time from the graph end
S(oi) = E(oi) + C(oi).

• The flexibility F (oi) = R− S(oi)− C(oi)− E(oi).
CP = maxoi∈VI

(E(oi)) denotes the critical path of the graph.
These notations are used afterward in the proposed schedul-

ing algorithms.
In the case of multi-rate co-simulation, a multi-rate trans-

formation algorithm is applied on the the operation graph. Its
principle consists in repeating each operation oi in the opera-
tion graph a certain number of times where each repetition is
called an occurrence, assigning to it a repetition factor (number
of occurrences) denoted r(oi), and adding arcs between these
occurrences. More details can be found in our previous work
[20].

C. Preliminaries on HiL Co-simulation

A HiL setup is composed of a simulated component and
a physically available component that is interfaced with the
simulated component via inputs and outputs. It should be noted
that multiple parts may be physically available and involved
in HiL, e.g. multiple controllers interacting with multiple
parts of simulated physical processes. We regard all these
physically available parts as a single real component. Figure 4
shows a basic example of a HiL co-simulation. The simulated
component is represented by an operation graph. It consists of
two FMUs A and B. The real component has one input (resp.
output) connected to an output (resp. input) operation of the
simulated component. We refer to output and input operations
that are directly connected with the real component as gate
operations.

The main goal of HiL co-simulation is to estimate the
performance of the real component by providing a realistic
environment through the simulated component. The simulated
component has to interact with the real component at the same
rate as its real counterpart. As such, the inputs and outputs
of the real component, which we assume to be periodically
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Fig. 4: Example of co-simulation under real-time constraints.

sampled, define real-time constraints which involve that the
simulated time has to match the real time. These constraints
are imposed on the outputs and inputs of the simulated
component that are connected with the inputs (resp. outputs)
of the real component.

The ultimate goal of this work is to perform real-time multi-
core scheduling of operation graphs representing HiL co-
simulations. In order to achieve this, we deal with a problem
that is essentially composed of two parts. First, we need to
characterize all the operations of the operation graph with real-
time parameters. Starting from the constraints that are imposed
on the gate operations, we seek to propagate these constraints
to the rest of the operations. Second, we aim at proposing
a real-time scheduling algorithm that allows the execution of
the operations, characterized as described above, on a multi-
core processor in such a way that the propagated real-time
constraints are satisfied.

IV. DEFINITION OF REAL-TIME CONSTRAINTS

The propagation of real-time constraints that we propose
avoids over-constraining the co-simulation compared to clas-
sical real-time co-simulation [1] where a unique real-time
constraint inherited from the real component is imposed on
all the tasks of the simulated component. On the other hand,
in our approach, we only impose real-time constraints on
gate operations of the simulated component and we define
constraints for the rest of the operations accordingly, i.e. in
such a way that the constraints imposed on the gate operations
can be satisfied.

We assume that the sampling period of a given input
(resp. output) of the real component is a multiple of the
communication step size of the operation of the simulated
component that is connected with it.

Let the inputs and the outputs of the real component be
sampled with sampling periods Tx and Ty respectively where
x and y denote the indices of the corresponding input and
output respectively. In other words, an input (resp. output) of
the real component is periodically activated every Tx (resp.
Ty) units of time. The sampling periods of the different inputs
and outputs of the real component can be identical or different.

The periodic activation of an output of the real component
leads to the production of data that are consumed by an input
gate operation oi of the simulated component. Therefore, at the

zth sample z× Ty , the input gate operation oi consumes new
data corresponding to simulated time z × Ty . This defines a
periodic release for this input gate operation, i.e. time instants
at which the data to be consumed by oi is periodically updated
by the real component. A release constraint imposed on a gate
operation is defined by its period R(oi) = Ty .

Similarly, the periodic activation of an input of the real
component requires data produced by an output gate operation
oj of the simulated component to be available. Therefore,
before the wth sample w×Tx, the output gate operation oj has
to produce data corresponding to simulated time w×Tx. This
defines a periodic deadline for this output gate operation, i.e.
it has to periodically produce the data to be consumed by the
real component before specific periodic instants. A deadline
constraint imposed on an output gate operation is defined by
its period D(oj) = Tx.

V. PROPAGATION OF REAL-TIME CONSTRAINTS

The aforementioned definitions specify real-time constraints
for gate operations. These operations being dependent on other
operations and vice versa, it becomes necessary to define the
impact of the real-time constraints on the rest of the operations.

A. Propagation of Release Constraints

Let’s consider an operation graph representing a multi-rate
co-simulation. Let a release constraint of period Ty be applied
on an input gate operation oi ∈ V . Given that the sampling
period of this release constraint Ty is greater or equal to
the communication step size of oi, H(oi), only a subset of
the occurrences of oi, o

p
i , 0 ≤ p < r(oi) that belong to the

operation graph are subject to this release constraint. We recall
that r(oi) is the repetition factor of operation oi which is equal
to the number of its occurrences. The zth occurrence of the
release constraint z × Ty = tk is applied on the occurrence
op,tki , i.e. the occurrence p of operation oi executed at time
step tk, where 0 ≤ p < r(oi) and tk ∈ R+. This subset
of occurrences can be determined as follows. The occurrence
z × Ty of the release constraint is applied on occurrence
opi : p = z× Ty

H(oi)
where H(oi) is the communication step of

oi. Therefore opi is assigned a release R(opi ) = z × Ty . Once
opi is released and executed, the operations that depend on
opi can be released. Therefore, the release constraint R(opi ) is
propagated towards all the successors of opi . This propagation
is given by expression ∀oi′ ∈ succ(oi) : R(oi′) = R(oi).

Let’s consider, for example, the HiL co-simulation shown
in Figure 4. Let HA = 2 and HB = 4 be the communication
step sizes of FMUs A and B respectively and let the sampling
period of the output of the real component be Tout = 4.
Figure 5 shows the propagation of the release constraint in
the operation graph. Note that the multi-rate transformation
algorithm is applied before the propagation. The operations
that are assigned a release are colored. The release assigned
to each operation is shown below or above the corresponding
operation. The dashed blue arrow indicates the direction of the
propagation which is from a predecessor to a successor. The
propagation of the release constraint is performed iteratively.



Starting from the input gate operation op4, for each operation
that is assigned a release constraint, this constraint is propa-
gated towards all its successors as described above. The values
of release that are placed below or above some operations,
correspond to the first occurrence of the release constraint
z × Tout = 0 × 4 = 0. In order to find the occurrence of
the input gate operation o4 that is subject to this occurrence
of the release constraint, we use the formula given above:
p = z × Tout

H(o4)
= 0× 4

4 = 0. Therefore, in Figure 5, p = 0.

op5

op4
op8

op1 op7 op2
op11

op10

op3
op6op0
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1

op+1
5

op+1
0

op+1
7

op+1
6

op+1
10

0

0

0 0 0
0

0

0

0

0 0

0

0

Output
(TO = 4)

Input

Fig. 5: Example of release propagation.

B. Propagation of Deadline Constraints

Now let a deadline constraint of period Tx be applied on
an output gate operation oj of the operation graph. Given that
the sampling period of this deadline constraint Tx is greater
or equal to the communication step size of oj , H(oj), only a
subset of the occurrences of oj , o

q
j : 0 ≤ q < r(oj) that belong

to the operation graph are subject to this deadline constraint.
The wth occurrence of the deadline constraint w × Tx = tk
is applied on the occurrence oq,tkj , i.e. the occurrence q of
operation oj executed at time step tk, where 0 ≤ q < r(oj)
and tk ∈ R+. This subset of occurrences can be determined
as follows. The occurrence w × Tx = tk of the deadline
constraint is applied on occurrence oqj : q = w× Tx

H(oj)
where

H(oj) is the communication step of oj . Therefore, oqj that
is assigned a deadline D(oqj) = w × Tx

H(oj)
. This constraint

is, then, propagated towards all the predecessors of oqj . The
propagation of a deadline constraint is given by expression
∀oj′ ∈ pred(oj) : D(oj′) = D(oj).

Figure 6 illustrates the propagation of the deadline con-
straint in the operation graph. The sampling period of the input
of the real component is Tin = 4. We recall that the execution
of the co-simulation consists in running the operation graph
repeatedly. Therefore, each run corresponds to a pattern that
involves specific occurrences of the operations. While in
the pattern of the operation graph that is shown previously,
operation op5 does not have a predecessor, the state operation
op−110 belonging to the preceding pattern is a predecessor of
op5. The operations that are assigned a deadline are colored.
The deadline assigned to each operation is shown above the
corresponding operation. The dashed red arrow indicates the
direction of the propagation which is from a successor to
a predecessor. The propagation of the deadline constraint is
performed iteratively. Starting from the output gate operation

oq5, for each operation that is assigned a deadline constraint,
this constraint is propagated towards all its predecessors. The
values of deadline that are shown correspond to the second
occurrence of the release constraint w × Tin = 1× 4 = 4. In
order to find the occurrence of the output gate operation o5
that is subject to this occurrence of the release constraint, we
use the formula given previously: q = w× Tin

H(o5)
= 1× 4

2 = 2.
Therefore, in Figure 6, q = 2.
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0
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7

oq+1
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Fig. 6: Example of deadline propagation.

C. Propagation of real-time constraints towards unreached
operations

It can be seen that the propagation of the real-time con-
straints is based on graph traversal. The Breadth First Search
(BFS) [16] or the Depth First Search (DFS) graph traversal
algorithms [6] can be used to perform this propagation. On
the one hand, the release constraints are propagated following
the topological ordering of the graph since the constraint is
always propagated from a predecessor to a successor. We
refer to such propagation as forward propagation. On the
other hand, the deadline constraint is propagated in reverse
topological ordering of the graph because the constraint is
always propagated from a successor to a predecessor. We refer
to such propagation as backward propagation. This means
that the release (resp. deadline) constraint cannot propagate
towards the operations that come before (resp. after) the input
(resp. output) gate operation that is subject to this constraint.

Below, we propose a method to assign release and deadline
constraints to operations that are not reached in the forward
and backward propagation phases respectively due to the
nonexistence of a path starting at a gate operation (resp. these
operations) and leading to these operations (resp. a gate op-
eration). This method is based on looping the propagation. In
other words, a release (resp. deadline) constraint is propagated
in a reverse order of the forward (resp. backward) propagation
phase. Such looping is possible because the operation graph
is repeated periodically in runtime.

We define the hyperperiod as the least common mul-
tiple of the real-time sampling periods of all inputs and
outputs of the real component and the communication step
sizes of all operations of the simulated component: HP =
lcm(H(o1), H(o2), . . . ,H(on), T1, T2, . . . , Tm) where n is
the number of operations in the operation graph and m is
the number of inputs and outputs of the real component.



The hyperperiod notion resembles the notions of hyper-
period found in the real-time literature. More specifically, it
specifies a time interval for describing a periodic pattern of
the real-time constraints assigned to operations. It only differs
in that it combines real-time periods and communication
step sizes. In the context of co-simulation under real-time
constraints, we apply the multi-rate transformation algorithm
over the hyperperiod. Therefore, the repetition factor of each
operation oi ∈ V is r(oi) = HP

H(oi)
. In the example shown in

Figure 7, we have only one real time constraint of period 4 and,
therefore, the usual hyperperiod and the one proposed above
are equal (4). Now, assume that FMU A has a communication
step size of 3, the usual hyperperiod remains 4 whereas the
proposed hyperperiod becomes 12.

Given the periodic repetition of the operation graph, a
release constraint can be written as follows:

∀opi , o
p′

i : p′ = p− HP

H(oi)
, R(op

′

i ) = R(opi )−HP (1)

Equation 1 expresses how a release constraint imposed
on a given operation oi, is repeated periodically over the
occurrences of oi. In other words, if we know the value of the
release constraint imposed on occurrence opi , we can determine
the value p′ such as R(op

′

i ) = R(opi )−HP .
Similarly, a deadline constraint can be written as follows:

∀oqj , o
q′

j : q′ = q +
HP

H(oj)
, D(oq

′

j ) = D(oqj) +HP (2)

Let’s consider that a release constraint is propagated in the
operation graph G(V,A) starting from the gate operation oi.
Also, consider that the multi-rate transformation algorithm has
been applied on the operation graph over the hyperperiod
HP . Then, opi′ , the last occurrence of the state operation
oi′ : fm(opi′) = fm(oi) that is assigned a release constraint
during the forward propagation phase corresponds to the time
step that is equal to the hyperperiod, i.e. it can be written
op,HPi′ . Note that such operation has no successor in the initial
operation graph as well as the one obtained using the multi-rate
transformation. In order to propagate the release constraint to
the operations that come before oi in the graph, we loop back
to the occurrence op

′

i′ of the state operation oi′ by performing
a negative shift of the release constraint whose length is equal
to the hyperperiod. The occurrence op

′

i′ is a predecessor of
the first occurrence of the gate operation oi that appear in the
periodic pattern of the operation graph. This is done for every
FMU, for which the state operation is assigned a release. An
example is shown in Figure 7.

Afterward, starting from the operations that are newly
assigned release constraints, a new forward propagation phase
is applied.

Now consider that a deadline constraint is propagated in
the graph G(V,A) starting from the gate operation oj . Let
oq

′

j′ be the occurrence of the state operation oj′ : fm(opj′) =
fm(oj) that is a predecessor of the first occurrence of the gate
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Fig. 7: Release back loop propagation phase.

operation oj that appear in the periodic pattern of the operation
graph. Also, let oqj′ be the last occurrence of the state operation
oj′ that appear in the periodic pattern of the operation graph.
Like for the release constraint, the operations that come after
oj in the operation graph can be assigned deadline constraints
by looping forward the deadline constraint that is assigned to
oq

′

j′ towards oqj′ . In other words, a positive shift equal to the
length of the hyperperiod is applied by looping forward to the
last occurrence of the state operation oqj′ . This is performed
for every FMU whose state operation was assigned a deadline
date. Figure 8 shows an example of such looping.
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Fig. 8: Deadline forward loop propagation phase.

A backward propagation phase, starting from the operations
that are newly assigned deadline constraints, is then applied.

D. Propagation of Multiple Real-time Constraints

So far, we considered that the operation graph is subject to
real-time constraints that are equal. In industrial applications,
this is not always the case. Now, let’s consider that multiple
input and output gate operations are subject to different release
and deadline constraints respectively. This means the sampling
periods of the inputs and the outputs of the real component are
different. As before, we consider that every sampling period is
a multiple of the communication step size of the gate operation
that is applied to.

In order to propagate multiple real-time constraints, we fol-
low the propagation process described previously. The release
constraints are propagated by iteratively running forward prop-
agation and back loop propagation phases whereas deadline



constraints are propagated by iteratively running backward
propagation and forward loop propagation phases. The main
difference here is that during propagation, several constraints
may be applied to the same operation.

Gate operations are always subject to only one constraint
because they are directly assigned the constraints imposed by
the real component. Therefore, assigning constraints to gate
operations remains unchanged. On the other hand, the rest
of the operations of the operation graph may have several
predecessors and successors. In fact, if an operation oi ∈ V has
no more than one predecessor, i.e. |pred(oi)| ≤ 1, the prop-
agation of a release constraint towards this operation remains
unchanged. Similarly, if an operation oj ∈ V has no more
than one successor, i.e. |succ(oj)| ≤ 1, the propagation of a
deadline constraint towards this operation remains unchanged.
Hence, we are interested here in propagating release (resp.
deadline) constraints towards operations which have more than
one predecessor (resp. successor), i.e. |pred(oi)| > 1 (resp.
|succ(oj)| > 1).

We denote byR(oi) the set of release constraints propagated
towards the operation oi and by D(oj) the set of deadline
constraints propagated towards the operation oj . The setR(oi)
is built as the union of all the release constraints propagated
towards oi from its predecessors, i.e. R(oi) = {R(oi′) :
oi′ ∈ pred(oi)}. Each operation oi must be assigned only
one release constraint which is chosen from the set R(oi).
A release constraint specifies the earliest date the associated
operation can start its execution. As such, the most constrain-
ing release constraint has to be chosen from the set R(oi):
∀oi ∈ V,R(oi) = maxR(oi′ )∈R(oi)(R(oi′)).

In the same way, the set D(oj) is built as the union of all the
deadline constraints propagated towards oj from its successors,
i.e. D(oj′) : oj′ ∈ succ(oj). Each operation must be assigned
only one deadline constraint which is chosen from the set
D(oj). A deadline constraint specifies the latest date by which
the associated operation must finish its execution. Therefore,
the most constraining deadline constraint is selected from the
set D(oj): ∀oj ∈ V,D(oj) = minD(oj′ )∈D(oj)(D(oj′))

VI. MULTI-CORE SCHEDULING OF REAL-TIME
CO-SIMULATION

In this section, we are interested in multi-core scheduling of
FMU co-simulation under real-time constraints. We consider
that the real-time constraints that are imposed by the real
component have been propagated through the operation graph
as described in Section V. Therefore, the aim here consists
in scheduling the operations of the operations graph on a
multi-core processor, such that these constraints are satisfied.
Rather than an online scheduling algorithm, we use an offline
scheduling approache which we consider to be more suit-
able given the fine granularity of the operations, and since
information about the execution times of the operations and
the dependence between them is available before runtime. In
addition, we adopt a non preemptive scheduling approach. In
fact, most of the operations have short execution times which
limits the benefits of allowing preemption. Hereafter, we detail

two important points necessary for performing real-time multi-
core scheduling. Afterward, we propose an ILP formulation
and a heuristic for offline scheduling of operation graphs under
real-time constraints.

A. Accounting for Dependence in Real-time Scheduling

The model of computation for (co-)simulation is close
to the synchronous paradigm [3], [4]. In this paradigm, a
program evolves according to a sequence of ticks of logical
time at which computations are considered to produce their
results instantaneously. In co-simulation, the repetitions of the
operation graph correspond to the ticks of the logical time. It
means that the processor on which the graph will be executed
is not taken into consideration. The propagation of the release
and deadline constraints presented in Section V follows this
model of computation. However, when real-time constraints
are involved, they have to be taken into account since the
processor and communication channels are known. In fact,
each operation takes a certain execution time to run and,
therefore, cannot produce the result instantaneously. In order
to proceed to scheduling the operation graph, it is necessary
to account for the dependence between operations.

We adopt an approach similar to the one proposed in [5]
to modify the release and deadline dates assigned to each
operation in order to account for execution times.

Let oi and oj be two operations such that oj ∈ pred(oi).
For a given schedule of the operation graph to be valid, the
relations S(oi) ≥ R(oi) and S(oi) ≥ E(oj) must be satisfied.
Therefore, a new release date for oi can be computed as
follows: R(oi) = max(R(oi),maxoj∈pred(oi)(E(oj))).

Consider now two operations oi and oj such that oj ∈
succ(oi). For the operation graph to be schedulable, the
relations E(oi) ≤ D(oi) and E(oi) ≤ D(oj)−C(oj) must be
satisfied. In fact, D(oj)− C(oj) represents the latest time to
start the execution of the successor oj such that its deadline can
be met. Therefore, a new deadline date of oi can be computed
as follows: D(oi) = min(D(oi),minoj∈succ(oi)(D(oj) −
C(oj))).

B. Scheduling Interval

In offline scheduling, the schedule is computed over an in-
terval of time. This schedule is then executed repetitively. For
co-simulation under real-time constraints, a natural approach
is to apply techniques that are used for classical real-time sys-
tems (such co-simulation is considered a real-time system after
all). For this, we need first to represent the operation graph
with a model that involves the parameters that are usually
used for classical real-time systems. In particular, we need to
define a relative deadline and a period for each operation. Note
that so far, we have only spoken about sampling periods of
data exchange between the real and the simulated component.
Although related to the sampling periods, the periods that
we seek to define here for each operation are different and
correspond to task periods that are found in classical real-time
systems. We propose to handle this requirement as follows. We
consider that every operation that appears in the hyperperiod



pattern of the operation graph is a distinct operation. In
other words, occurrences of one operation are not regarded
as repetitions of a single operation. Therefore, we consider
that the operation graph is mono-period, i.e. all the operations
have the same period. The value of this period is equal to
the hyperperiod (see Section V-C). The relative deadline of
each operation can then be defined as the duration between its
release and deadline.

In the real-time literature, we find contributions regarding
the schedule interval targeting different kinds of real-time
tasks, schedulers, and processors [12]. To the best of our
knowledge, the existing results are either not applicable (e.g.
constrained deadlines) to our problem or propose bounds that
are intractable, i.e. as the size of the operation graph grows
and depending on the parameters of the operations, they result
in very large schedule intervals and we cannot guarantee to
compute the schedule within an acceptable time. The length
of the schedule interval for co-simulation under real-time
constraints cannot be chosen in a straightforward manner to
be equal to the hyperperiod. This is because the operation
graph features arbitrary deadlines, i.e. relative deadlines that
are greater than the periods. Indeed, some operations may
have relative deadlines that exceed the hyperperiod which we
consider to be the period of every operation. For instance, in
Figure 8, operation op+1

10 has a relative deadline of 8 while
the hyperperiod is equal to 4. Arbitrary deadlines may lead to
hyperperiod spill [7]. The latter refers to operations that are
not scheduled in their hyperperiod and spill over the next one.

We propose to handle this situation as follows. We start with
a schedule interval whose length is equal to the hyperperiod
and iteratively increase it. If no hypeperiod occurs we consider
that the operation graph is schedulable. If an operation misses
its deadline, the operation graph is not schedulable and we
stop the process. Otherwise, this process is stopped after being
repeated for a certain number of times set by the user. In
this case, we consider that the scheduling algorithm failed
to find a schedule. Note that determining a non pessimistic
schedulability interval length remains an open problem.

As shown in Section V, the propagation of the real-time
constraints in an operation graph may lead to assigning neg-
ative release dates to some operations. This means that such
operations can be considered to belong to the previous iteration
of the operation graph.

C. ILP Formulation

In order to find the optimal solution of the real-time multi-
core scheduling problem, we need to use an exact algorithm.
We have chosen to use the ILP approach. Our ILP formulation
for multi-core scheduling of co-simulation under real-time
constraints is given below.

We define the decision binary variables xik which indicates
whether the operation oi is allocated to core pk or not.
Expression 3 states the constraint that each operation has
to be allocated to one and only one core. The end time of
each operation oi is computed using the expression 4. The
start date of every operation must be at the earliest equal

to its release date. Expression 5 captures this constraint. The
deadline date of every operation is the latest time before which
the operation has to finish its execution. Expression 6 specifies
this constraint.

For operations that are allocated to the same core and that
are completely independent, i.e. no path exists between them,
we have to ensure that they are executed in non overlapping
time intervals. Expressions 7 and 8 capture this constraint
where bij is a binary variable that is set to one if oi is executed
before oj and M is a large positive constant. Therefore,
expression 7 ensures the case where oi is executed before oj
and expression 8 ensures the case where where oj is executed
before oi

For dependent operations that are allocated to different
cores, synchronization mechanism is necessary to ensure the
order of their execution. While the computed schedule defines
an order of execution for dependent operations, variations of
execution times may occur in runtime leading to changing
the start and end times of the operations. Therefore, we
use synchronization to ensure the order of execution. The
cost of synchronization is taken into account as follows. A
synchronization cost is introduced in the computation of the
start time of an operation oj , if it has a predecessor oi that is
allocated to a different core and if its start time is the earliest
among the successors of oi that are allocated to the same core
as the operation oj . Since these successors are executed on the
same core, and thus sequentially after oj , it is not necessary
to add synchronizations between them and oi. syncijk is a
binary variable which indicates whether synchronization is
needed between oi and oj if oj is allocated to pk. Therefore,
syncijk = 1 iff α(oj) = pk and α(oi) 6= pk and S(oj) =
maxoj′∈succ(oi): α(oj′ )=pk(S(oj′)) where α is the allocation
function. Expressions 9 and 10 capture this constraint. Vik is
a binary variable that is set to one only if α(oi) 6= pk. It is
used to define for which cores a synchronization is needed
between oi and its successors and therfore needed to compute
the value of variable syncijk. In other words, if a successor is
allocated to the same core as oi, no synchronization is needed.
Expressions 11 and 12 capture this constraint. Variable Qik
denotes the earliest start time among the start times of all
the successors of oi that are allocated to processor pk. It is
computed using expressions 13 and 14.

The start time of each operation oj is computed using
expression 15. The synchronization cost is introduced taking
into account the synchronizations with all the predecessors of
oj that are allocated to different cores.

∀ oi ∈ V,
∑
pk∈P

xik = 1 (3)

∀oi ∈ V,E(oi) = S(oi) + C(oi) (4)

∀ oi ∈ V, S(oi) ≥ R(oi) (5)

∀ oi ∈ V,E(oi) ≤ D(oi) (6)



∀pk ∈ P,∀ oi, oj ∈ V, (oi, oj), (oj , oi) /∈ A,
E(oi) ≤ S(oj) +M × (3− xik − xjk − bij)

(7)

∀pk ∈ P,∀ oi, oj ∈ V, (oi, oj), (oj , oi) /∈ A,
E(oj) ≤ S(oi) +M × (2− xik − xjk + bij)

(8)

∀oi ∈ V,
∑

∀p∈P,∀oj∈pred(oi)

syncijk = Qik (9)

∀oi ∈ V,∀oj ∈ succ(oi), syncijk ≤ xjk : ∀oi ∈ V (10)

∀oi ∈ V,∀oj ∈ succ(oi), Vik ≥ xjk − xik : ∀oi ∈ V (11)

∀oi ∈ V, Vik ≤
∑

∀oj∈succ(oi)

(
xjk − xik

)
(12)

∀oi ∈ V,∀oj ∈ succ(oi), Qik ≤ S(oj)+M × (1−xjk) (13)

∀oi ∈ V,∀oj ∈ succ(oi),
Qik ≥ S(oj)−M × (1− syncijk)

(14)

∀oj ∈ V,∀oi ∈ pred(oj),
S(oj) ≥[

E(oi) +
∑

∀pk∈P,∀oi′∈pred(oj)

synci′jk × synCost
] (15)

D. Multi-core Scheduling Heuristic

Multi-core scheduling problems are known to be NP-hard
resulting in exponential resolution times when exact algo-
rithms are used. Heuristics have been extensively used in
order to solve multi-core scheduling problems [14]. In most
situations they lead to results of good quality in practicle
resolution times. Greedy list heuristics are used in the context
of offline multi-core scheduling since they are very fast. In
the following, we propose a greedy list heuristic inspired by
[11] for scheduling operation graphs representing FMU co-
simulations under real-time constraints. The proposed heuris-
tic is priority based. The scheduling priority expresses the
criticality of a given operation which is measured by how
close it is to miss its deadline if scheduled on a specific core:
ρi,k = D(oi)−E(oi) where ρi,k and Ej(oi) are the scheduling
priority and the end date of operation oi respectively, computed
when the latter is scheduled on core pk.

The proposed heuristic builds the multi-core schedule it-
eratively. At each iteration, a list of candidate operations is
constructed. An operation is added to the list of candidate
operation if all its predecessors have been scheduled. The
heuristic computes the priority for each candidate operation
on every core and selects the core for the which the priority
is maximized. After that, a list of operation-best core pairs

is obtained. The heuristic selects from this list the operation
whose priority is the smallest among all the operations in
the list. Synchronization operations are added between the
scheduled operation and all its predecessors that were allocated
to different cores. The heuristic repeats this procedure and
finally stops when all the operations have been scheduled.
This heuristic is called repeatedly as long as the scheduling
interval is increased according to the proposed method given in
Section VI-B. Algorithm 1 lists the proposed real-time multi-
core scheduling heuristic.

Algorithm 1: Multi-core scheduling heuristic

Input : Operation graph G(V,A), set of cores P ;
Output: Schedule of operations oi ∈ V on cores pk ∈ P ;
Set O the set of operations without predecessors;
Set sync the cost of one synchronization operation;
Set Lk : pk ∈ P the length of schedule of core pk;
foreach pk ∈ P do

Lk ← 0;

while O 6= ∅ do
foreach oi ∈ O do

ρ←∞; // Initialize the priority
of oi

S(oi)← max(R(oi),maxoj∈pred(oi)(E(oj)));
foreach pk ∈ P do

syncCost← 0;
S(oi)← max(S(oi), Lk); // Start time

of oi if executed on pk
foreach oj ∈ pred(oi) do

if oj is scheduled on a core pk′ 6= pk then
syncCost← syncCost+ sync;

S(oi)← S(oi) + syncCost;
E(oi)← S(oi) + C(oi);
ρ′ ← D(oi)− E(oi); // priority of oi

if executed on pk
if ρ′ > ρ then

Set ρ← ρ′;
Set BestCore(oi)← pk;

Find oi′ with the smallest priority ρ in O;
Schedule oi′ on its core BestCore(oi′);
pbest ← BestCore(oi′);
Lbest ← E(oi′);
Remove oi′ from the set O;
Add to the set O all successors of oi′ for which all
predecessors are already scheduled;

The scheduling heuristic contains three nested loops. The
outermost loop is executed until all the operations are sched-
uled. At each iteration, one operation is scheduled. Therefore,
the outermost loop is executed n times where n is the number
of operation in the operation graph. In the inner loops, the
heuristic attempts to schedule all the ready operations on
all the available cores. As such, the inner loops execute in



O(nm), where m is the number of cores. From the foregoing,
the complexity of the heuristic is evaluated to O(mn2).

VII. EVALUATION

In this Section, we evaluate our proposed approach. We
implemented a random generator of operation graphs to run
tests. The random generation is not presented in this paper. We
present the evaluation of the performances of the scheduling
ILP and heuristic for different sizes of operation graphs and
multi-core processors. We consider the proposed ILP as a
reference and compare it with our heuristic performances.

A. Comparison of Resolution Times

We compared the resolution times of the real-time schedul-
ing ILP and heuristic. We tested the real-time scheduling
heuristic on operation graphs with a maximum number of
operations of 1000. Tests were performed by fixing the number
of cores and varying the number of operations. The obtained
results are shown in Figure 9a, Figure 9b, and Figure 9c
for 2, 4, and 8 cores respectively. The real-time scheduling
ILP is able to solve smaller graphs than the heuristic ILP
within acceptable times, and the resolution time increases
exponentially as the graph size increases. On the other hand,
the real-time scheduling heuristic produces results in short
times keeping the resolution times within practical bounds
even for large operation graphs. It is very important to produce
the schedule within short times even if the latter is computed
offline. In fact, in the context of co-simulation, the time needed
to compute the schedule is suffered by the user. Therefore, a
fast heuristic is needed to allow launching the co-simulation
within acceptable times even for large industrial applications.

B. Schedulability

We run tests in order to measure the quality of our proposed
heuristic. Because the execution of the ILP takes long times,
we limited these tests to operation graphs of small sizes. We
generated five sets of operation graphs containing each 10
graphs of sizes between five and 50. We ensured that all the
generated operation graphs are schedulable by applying the
ILP. Then, we apply our heuristic and save the number of
schedulable operation graphs for which the heuristic is able to
find a solution. The application of the heuristic resulted in an
interesting quality, especially when considering its very fast
resolution time compared to the ILP algorithm. The heuristic
succeeded in scheduling 54%, 80%, and 94% of the operation
graphs for 2, 4, and 8 cores respectively.

VIII. CONCLUSION

In this paper, we dealt with the problem of real-time
scheduling of operation graphs representing FMI HiL co-
simulations on multi-core processors. First, we extended the
operation graph of a co-simulation under real-time constraints
by assigning real-time parameters to the operations. We pro-
posed a method for propagating real-time constraints imposed
by inputs and outputs of the real component on gate operations
of the simulated component. Second, we proposed an ILP
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Fig. 9: Comparison of the real-time scheduling resolution time.

and an offline heuristic to perform the real-time multi-core
scheduling. We evaluated these algorithms for different sizes
of co-simulations and operation graphs. We present below
some possible research directions for future work.

In our approach, we used a schedulability analysis based
on simulation. In future work, we aim at deriving an analytic
schedulability condition or finding a non pessimistic schedu-
lability interval. Our approach relies on propagating the real-
time constraints to all the operations. An interesting alternative
to our method consists in defining latency constraints on
gate operations only. Then, scheduling algorithms suitable
for latency constraints can be applied. Finally, it is worth
investigating the use of preemptive scheduling algorithms, for
instance by only allowing the preemption of operations which
have long execution times.
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