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Abstract: Existing filtering based structural health monitoring (SHM) algorithms assume
constant noise environment which does not always conform to the reality as noise is hardly
stationary. Thus to ensure optimal solution even with non-stationary noise processes, the
assumed statistical noise models have to be updated periodically. This work incorporates a
modification in the existing Interacting Particle-Kalman Filter (IPKF) to enhance its detection
capability in presence of non-stationary noise processes. To achieve noise adaptability, the
proposed algorithm recursively estimates and updates the current noise statistics using the
post-IPKF residual uncertainty in prediction as a measurement which in turn enhances the
optimality in the solution as well.
Further, this algorithm also attempts to mitigate the ill effects of abrupt change in noise statistics
which most often deteriorates/ diverges the estimation. For this, the Kalman filters (KF) within
the IPKF have been replaced with a maximum Correntropy criterion (MCC) based KF that,
unlike regular KF, takes moments beyond second order into consideration. A Gaussian kernel for
MCC criterion is employed to define a correntropy index that controls the update in state and
noise estimates in each recursive steps. Numerical experiments on an eight degrees-of-freedom
system establish the potential of this algorithm in real field applications.

Keywords: Particle filter, Noise estimation, Correntropy filter, Parameter change detection,
Interacting Particle Kalman filter.

1. INTRODUCTION

Filtering based structural health monitoring (SHM) algo-
rithms typically models noise processes as non-stationary
Gaussian white noises with their statistics known a priori.
However, in reality, statistical properties of noise processes
can seldom be known in advance Zhang et al. (2012). For
systems with unknown noise statistics, employing filtering
based SHM techniques thus more often than not results
in a solution that might not be optimal. To ensure an
optimal solution, these noise statistics are thus required to
be estimated before even the SHM algorithm is put into
operation. Nevertheless, this also does not ensure that the
operational noise processes will follow the pre-estimated
noise models throughout the service life of the structural
system. The problem may further intensify in presence
of non-stationary noise processes undergoing an abrupt
change in magnitude.
A solution can, however, be attempted by estimating the
noise processes in parallel to the core SHM algorithm
Alsuwaidan et al. (2008). This helps to provide the SHM
algorithm the required information about the current noise
statistics to enhance the optimal property of the solution.
This article incorporates a noise estimation module within

Interacting Particle-Kalman filter (IPKF) (Zghal et al.,
2014) to enable it to estimate the noise statistics in
parallel to damage detection and quantification. This noise
estimation module considers the residual uncertainty in
IPKF prediction as an observation which is further used to
update the current noise statistics. This recursive update
strategy for noise statistics makes the algorithm noise
adaptive and also ensures optimal damage detection.
This article also attempts to mitigate the ill effects of
unusually large noise in the measurement which should
be considered as an outlier. However, in common filtering
based algorithms, these outliers are consumed in the state
estimates which might cause a divergence in the estima-
tion procedure. To avoid this undesired situation, the KF
nested within IPKF filter is replaced with maximum cor-
rentropy criterion based Kalman filter (MCC-KF). With
MCC-KF, a correntropy index measures the similarity be-
tween the actual measurement and the predicted measure-
ment based on current estimates of states and parameters
(Cinar and Pŕıncipe, 2012). Eventually, while a small noise
contamination causes small deviation of the measurement
from the actual response, an outlier causes a huge innova-
tion. The correntropy index thus becomes important since
it can effectively regulate the impact of each innovation in



the updated estimates. As a result, a large innovation due
to an outlier in the measurement yields significantly low
correntropy index which in turn leads to a small impact
on the state update.
Section 3 discusses the problem under consideration and
Section 4 describes the proposed methodology. Under Sec-
tion 4, IPKF algorithm has been demonstrated in Subsec-
tion 4.1 followed by a brief description of the MCC-KF
filter in Subsection 4.2. The augmented noise estimation
module is described in detail in Subsection 4.3. Finally, the
proposed algorithm is tested on a typical SHM problem
in which the system undergoes damage in presence of
varying noise processes (Section 5). An appendix is also
included at the end of this article (Appendix A) detailing
the derivation of the MCC-KF algorithm. However, prior
to everything else, Section 2 briefly discusses the concept
of correntropy criterion.

2. CORRENTROPY CRITERION

In information theory, correntropy is used as a measure
of similarity in statistics between two different random
variables. Over the years, this measure has drawn sig-
nificant attention in the fields of signal processing, ma-
chine learning, and pattern recognition. The major quality
of this criterion involves its excellent performance with
the data containing large outliers. Correntropy, or cross-
correntropy (for scalar random variables) between two
random variables include information about higher order
moments beyond the traditional first and second order
moment information. The selection of the moment order,
however, depends on the kernel selected for the correntropy
calculation. For two scalar random variable x and y, the
cross-correntropy information can be obtained as:

Cσ(x,y) =
∫

Ωx

∫
Ωy

kσ(x,y)fxy(x,y)dxdy (1)

where kσ is the selected kernel for this correntropy calcu-
lation and fxy is the joint density function for the random
variables x and y. Analytical integration over the entire
domain of x and y is, however, not possible and the
correntropy information can, therefore, be approximated
as a summation over finite numbers of data points as:

Ĉσ(x,y) = 1
N

N∑
i=1

kσ(xi,yi) (2)

With a Gaussian kernel, the explicit description of corren-
tropy can be presented as:

Ĉσ(x,y) = 1
N

N∑
i=1

e
−
(
||xi−yi||

2

2σ2

)
= 1
N

N∑
i=1

Gσ(||εi||) (3)

where, ||εi||= ||xi−yi|| defines the norm of error between
the two dataset in consideration. Gσ(||εi||) = e(−εiε

T
i /2σ2)

is the Gaussian kernel. Here, σ is the bandwidth of the
kernel that defines how new data is adapted. In order
to be counted as a compatible kernel for the correntropy
measure, it has to be positive and bounded achieving its
limiting maximum value when its argument is zero. For a
Gaussian kernel, a Taylor series expansion demonstrates
that information about all the even order moments is
stored in the correntropy measure.

Ĉσ(x,y) = 1√
2πσ

∞∑
n=0

(−1)n

2nσ2nn!E[(εiεTi )n] (4)

3. PROBLEM DEFINITION

The governing differential equation for the dynamics of
mechanical systems with mass, damping and stiffness
being M, C and K respectively can be described as:

Mq̈(t) +Cq̇(t) +Kq(t) = v(t) (5)
where q(t), q̇(t) and q̈(t) are displacement, velocity and
acceleration responses respectively. v(t) is the ambient
forcing acting on the structure. The state space representa-
tion of this dynamics can be constructed with the ambient
forcing v(t) modeled as non-stationary process noise and
w(t) as non-stationary measurement noise as:

ẋ(t) = Fcx(t) +Bcv(t) (6a)
y(t) = Hcx(t) +Dcv(t) +w(t) (6b)

Fc, Bc, Hc and Dc are time dependent state, input, mea-
surement and direct transmission matrices respectively de-
fined in continuous time domain. Details of all the matrices
are given in the following.

x(t) = {q(t) q̇(t)}T and Fc =
[

0 I
−M−1K −M−1C

]
;

Bc =
[

0
M−1

]
,Hc =

[
−M−1K −M−1C

]
,and Dc = M−1

Since discrete measurements will be used for the esti-
mation, the discrete time formulation of equation 6 can
be presented with xk, yk, F, B, H, D, vk and wk as
the discrete time counterparts against their corresponding
continuous time entities.
The system under consideration is, however, time-varying
and thus its model is defined with time-varying state
matrix Fk and measurement matrix Hk. These system ma-
trices are functions of a time-invariant mass matrix M and
time-varying physical system matrices Kk and Ck which
in turn depend on the component level health parameters
θk. Accordingly, the mass matrix and its dependents, i.e.,
B and D are assumed to be constant and known from now
on.

xk = F(θk)xk−1 +Bvk (7a)
yk = H(θk)xk+{Dvk+wk} (7b)

where Fk = F(θk) and Hk = H(θk). The problem assumes
that the stochastic properties of process and measurement
noises i.e., vk and wk are not known but can be modeled as
WGN with unknown covariance Qk and Rk respectively.

4. PRESENT APPROACH

It should be noted that with the typical filtering based
SHM problems, the state (system response) evolves in
time through a linear process equation and thus KF can
be a good approach for such state estimation. However,
the relationship between unobserved parameter states and
its corresponding observation i.e., the measurements, is
always nonlinear. Bayesian belief propagation requires
an explicit analytical integration for the entire domain
of states which is to be however straightforward if the
problem is linear and the states are assumed Gaussian. On
the contrary, the current problem is nonlinear for which



explicit analytical integration over the entire parameter
space is not possible. Particle filter (PF) can approximate
this analytical integration by a numerical one and thus
can be considered to be a potential approach for nonlinear
system estimation.
Nevertheless, PF is computationally expensive and KF
cannot be used for estimation of both states and pa-
rameters. Employing two different filters for states and
parameters, precision along with computational economy
can although be achieved. With this in view, IPKF based
algorithm given by Zghal et al. (2014) has been employed
in his article that employs PF for parameter estimation
while KF is used for linear state estimation.
Within IPKF, a set of KF (for state estimation) runs
within an envelope of a PF (for parameter estimation).
In this article, a modification has been proposed on the
existing IPKF targeting damage estimation in presence
of varying noise statistics and/or large outliers in the
measured signal. In the proposed algorithm, the KF is
replaced with MCC based KF or MCC-KF. An additional
module for noise estimation is augmented to recursively
update the noise statistics. This methodology in detail is
discussed in the following.

4.1 IPKF algorithm

IPKF algorithm, developed by Zghal et al. (2014) and
further improved for computational efficiency by Sen et al.
(2018) is an efficient approach to handle parameter estima-
tion for a time-varying system. The strategy of decoupling
the estimation of states and parameters and employment
of two different filter types for each of them enhances
the stability property of the algorithm while ensuring
computational efficiency. In turn, this facilitates employing
relatively less expensive linear KF for linear state estima-
tion while the costly PF is employed only for parameter
estimation. Clearly, IPKF has two parts: i) a PF envelop
to estimate the parameters as particles within which ii) a
set of nested KFs estimates the states and both the parts
are detailed in the following.

Envelop Particle filter: PF attempts a particle
approximation of the Chapman-Kolmogorov integration
by propagating the system uncertainty through a cloud of
N independent parameter particles Ξk = [ξ1

k, ξ
2
k, · · · , ξNk ].

Thus no consideration on Gaussianity of the parameter
states is enforced in the algorithm. The temporal evolution
of the system dynamics is defined by the evolution of
the particle set in time. At any arbitrary time step k,
the evolution of an arbitrary ith particle ξik is basically
a random perturbation around its current position ξik−1:

ξik = ξik−1 +N(δξk;σξk) (8)
where a Gaussian blurring is performed on ξik−1 with a
shift δξk and a spread of σξk.
In IPKF, the state estimation is performed using a bank of
KFs within the PF environment where each of the KFs is
associated to one instance of the corresponding parameter
particles for which the state estimation is performed. Thus
the KF is employed to estimate the states xk while the PF
estimates the parameters θk. For each particle, the nested

KF thus provides an optimal state estimates conditioned
on the assumed parameter particle. Finally, based on the
innovation and its covariance produced by each of the KFs
associated to each of the parameter particles, the particles
are weighted. The weights are subsequently used to update
the prior statistics of the particles. In the following, details
of the nested KFs are described.

Nested Kalman filters: Each of the evolved param-
eter particles is used to follow the system matrices as
Fik = F(θk = ξik) and Hi

k = H(θk = ξik). The estimation
procedure involves propagating the current state estimate
xik−1|k−1

1 , through the system conditioned on current
parameter particles in order to predict xik|k−1. Predicted
estimate is subsequently improved using current measure-
ment yk to obtain the posterior estimate xik|k specific
to the particle estimate. This process is repeated for all
particles yielding a set of posterior estimate for states
{xik|k; for all i= 1,2, · · · ,N}.

The prediction and correction steps of the KF for an
arbitrary ith particle at kth time step are described in the
following.

Prediction
xik|k−1 = Fikxik−1|k−1 (9a)

Pi
k|k−1 = FikPi

k−1|k−1Fik
T +BQ̂k−1BT (9b)

Innovation
εik = yk−Hi

kxik|k−1 (9c)
Correction

xik|k = xik|k−1 +Ki
kε
i
k (9d)

Pi
k|k = (I−Ki

kHi
k)Pi

k|k−1 (9e)

where Ki
k is the gain matrix. Pi

k1|k2
is the estimate for

state error covariance at kth1 time step given measurement
upto kth2 instance. The process noise Q̂k−1 is denoted here
with a •̂ operator that defines that the process noise is
not known apriori. Instead, it is estimated in parallel to
IPKF (but outside the particle filter) and Q̂k−1 signifies
the available best current estimate for process noise Qk.

4.2 MCC-KF

Izanloo et al. (2016) developed a Kalman filter based on
MCC criterion where they instead of considering the error
covariance for the gain calculation, employed maximum
correntropy criterion for the gain formulation. In order to
make a robust noise adaptive MCC based KF that can
handle measurement outliers, MCC-KF algorithm defines
a cost function that incorporates correntropy information
instead of error covariances. In the proposed algorithm,
the KF within the IPKF filter is replaced by the MCC-
KF was given by Cinar and Pŕıncipe (2012). A detailed
description is presented in the Appendix A.
For MCC-KF algorithm, the cost function, for the well
known weighted least square approach for KF formulation
1 xi|j represents estimate of the random variable x at the ith time
instant provided the measurement including and upto time instant
j.



targeting minimum variance in the estimates, is modified
as:

J i = 1
σ2Gσ

(
||ε(x)i

k||Pi
k|k−1

−1

)
+ 1
σ2Gσ

(
||ε(y)i

k||R̂−1
k−1

)
(10)

where ε(x)i
k = xik|k−Fikxik−1|k−1, ε(y)i

k = yk−Hi
kxik|k and,

||•||w signifies the argument within the norm operator is
weighted by index w. To minimize this objective function
presented in equation (10), its gradient with respect to
xik|k is equated to zero and a subsequent restructuring
yields a Kalman like equation for state estimate update
as:

xik|k = xik|k−1 +Ki
k

{
yk−Hi

kxik|k−1

}
(11)

Pi
k|k = (I−Ki

kHi
k)Pi

k|k−1 (12)
A detailed and generalized derivation for the Kalman gain
and other relevant description is presented in Appendix A.

4.3 Adaptive estimation of noise

Targeting optimal estimates for health parameters, the
proposed algorithm additionally estimates the noise pro-
cesses recursively. After each iteration of the IPKF, the
particle approximations for states xk|k and parameters θk
are obtained as:

x̄k|k =
N∑
i

w(ξik)xik|k and, θ̄k =
N∑
i

w(ξik)θik; (13)

where N is the number of particles and w(ξik) is the weight
of ith particle. This approximated estimates are further
used to define the particle approximation for the system
matrices Fik and Hi

k. Matrix B and D being particle
independent can be used directly.

F̄k =
N∑
i

w(ξik)Fik; and, H̄k =
N∑
i

w(ξik)Hi
k; (14)

The current process noise is further observed based on
these particle approximated entities. For this, the devia-
tion between predicted output and actual output i.e., δyk
is computed first as:

δyk = yk− H̄kxk|k (15)
This deviation δyk is due to uncertainty in state estimates
and noise processes in process and measurement. With
the prior estimates of state error covariance P̄k|k (particle
approximated) and measurement noise covariance R̂k−1,
a measure for the process noise covariance can be observed
from the innovation as:

cov(ε̂k) = δykδyTk − H̄kP̄k|kH̄T
k − R̂k−1 (16)

This measure is further mapped in the domain of state xk
and process noise Qk. This provides an observation of the
instantaneous estimate of the process noise as:

Q∗k = (H̄kB+D)†cov(ε̂k)(H̄kB+D)†T (17)
Here ∗ signifies that an observation has been made on
process noise Qk at time step k. This observation is then
combined with the previous estimate in a moving average
sense as following:

Q̂k = Q̂k−1 + 1
LQ

(Q∗k− Q̂k−1) (18)

Fig. 1. Numerical test setup
LQ is the window length variable that controls how fast
new estimates are adapted with the prior estimates. In
turn, this defines how new data is adapted in to the current
estimates of the noise processes. A high value ensures
smooth and stable estimate of the noise covariance, while a
low value puts significant weight on the new measurement.
A compromise between rapid update and stable estimation
should thus be desired.
Subsequently, an estimate v̂k for the process noise vk is
obtained as:

v̂k = (H̄kB+D)†δyk (19)
With this estimate, current state estimate is updated as:

x∗k|k = xk|k+Bv̂k (20)
Correspondingly, the output can be predicted as:

y∗k|k = H̄kx∗k|k+Dv̂k (21)
Thus, the deviation between actual measurement and the
updated measurement prediction y∗k|k can be attributed
to measurement noise. Evidently, an observation can be
made about the current measurement noise as:

R∗k = δy∗k|kδy
∗
k|k

T (22)
where δy∗k|k = yk − y∗k|k. Finally, similar to the process
noise, the measurement noise estimate is updated as:

R̂k = R̂k−1 + 1
LR

(R∗k− R̂k−1) (23)

Again, LR is the window parameter defining the window
for the moving averaging of measurement noise estimate.
As it has been previously discussed, this work intends
to estimate a system for which abrupt change in noise
statistics is possible. During the transition from one noise
statistics to the other, the observations for the process and
measurement noise should be assimilated with caution. In
this attempt, the correntropy information is employed to
define a weight for the update based on current observa-
tion. To obtain this weight, a particle approximation for
all Lik corresponding to nested MCC-KFs is obtained as:

L̄k =
N∑
i=1

w(ξik)Lik (24)

The weights LQ and LR for the moving averaging window
can then be defined based on this weight L̄k as:

LQ = L̄kLQ0 and LR = L̄kLR0 (25)
where LQ0 and LR0 are the base values for the window.
This ensures that if the data correntropy is severely
poor, the algorithm puts significantly less belief on the
new observations and consequently less update. On the
other hand, if the data correntropy is high, the current
observation is assimilated with more belief.

5. NUMERICAL EXPERIMENTS

Three sets of numerical experiments are undertaken: i)
first one with a varying process noise, ii) second one with



a varying measurement noise and iii) the third one with
process and measurement noises varying simultaneously.
For each of the cases, the system has been induced with
a damage. The proposed IP-MCC-KF is then employed
to detect the damage while estimating the noise statistics
simultaneously.
The numerical experiments detailed in the following deal
with an eight degrees-of-freedom mass-spring-damper sys-
tem (see Fig. 1). The springs are considered to be of
stiffness 8000N/m while the dampers are assumed to be
of 8N − s/m. The mass blocks are assumed to be of 10kg
each. Damage is introduced in the third and fourth springs
and their stiffness values are reduced to 2000N/m. The
system is excited with an ambient vibration at all its free
nodes. This ambient vibration has been considered in this
formulation as process noise. Finally, the system is simu-
lated for time series length of 3072 sampled measurements
collected at a sampling frequency of 50 Hz. The simulated
acceleration response is collected as measurements which
are further contaminated with a Gaussian white noise as
a replication of the sensor noise contamination. A value of
1000 has been assumed as the bandwidth of the Gaussian
kernel (i.e. σ). Also, based on our previous experience with
IPKF, a set of 2000 particles are employed for the PF for
all case studies in this article. Further details pertaining
to each example case are presented in the following.

5.1 Case 1: Varying process noise

The first case discusses a system for which the process
noise is varying with time. For the first 10.24 seconds, the
process noise is assumed to be a zero-mean Gaussian white
noise with a standard deviation of 100 N. This standard
deviation is further changed to four and eight folds of its
initial value. The assumed process noise is presented in
Fig. 2. The initial weight for the moving averaging window
i.e., LQ0, has been assumed to be 0.01. The measurement
noise statistics is considered to be stationary and known. A
value of 5m/s2 has been selected as the standard deviation
of the zero mean Gaussian white noise and employed as the
measurement noise.
The results for the parameter estimation are presented
in Fig. 3 where it can be observed that the parameter
estimation and damage detection as prompt and precise.
The parallel estimation of the process noise statistics is
also presented in Fig. 4. It can be seen that the initial
estimates are to some extent turbulent. This is due to
the error in the estimates of the parameter for which the
innovation uncertainty contained the uncertainty due to
inexact parameter estimates. However, once the parameter
estimates converged to their true value, the turbulence in
the process noise estimates settled down and become more
stable.
The correntropy index for this estimation is also presented
in Fig. 5. It should be noticed that whenever the system
underwent a change in process noise statistics, the corren-
tropy index decreased in a sense to reduce the effect of
the measurement in the parameter update. This, in turn,
damps the effect of the sudden change in the system and
facilitates a smooth and stable estimation.

Fig. 2. Assumed process noise variation

Fig. 3. Case study 1: Parameter estimation

Fig. 4. Case study 1: Estimation of process noise statistics

5.2 Case 2: Varying measurement noise

For the second case, the process noise statistics are kept
constant with a standard deviation of 100 N as before.
However, the measurement noise is kept changing up to 5
to 10 folds of its initial value. The initial value of standard
deviation for the measurement noise has been assumed for
this case study as 5m/s2. The measurement noise used for
this case study is presented in Fig. 6. In a similar way,
the initial weight for the moving averaging window for
measurement noise estimation i.e., LR0, has been assumed
to be 0.01.
The results for the parameter estimation are presented in
Fig. 7 where again it can be observed that the parameter



Fig. 5. Case study 1: Correntropy evolution

Fig. 6. Assumed measurement noise variation

estimates are stable and prompt. The estimation of the
measurement noise statistics is presented in Fig. 8. It can
be seen that estimation of measurement noise statistics
is not as accurate as for the process noise. This can be
attributed to the very small magnitude of the measure-
ment noise. Both process and measurement noise statis-
tics are estimated from the innovation uncertainty in a
process that might be termed as a systematic reduction of
uncertainty. In this process, the process noise uncertainty
is first removed followed by reduction of uncertainty due
to the improper state estimates. Finally, the residual un-
certainty is mapped to the measurement space in order
to estimate the measurement uncertainty. Obviously, all
these uncertainties are different in their scales and there
is a wide possibility that the smallest of them will suffer a
loss of information. This will obviously cause the estimate
of measurement noise statistics to be poorer than the
other two, i.e., process and state estimates. However, the
current proposal can successfully identify the change in the
measurement noise and the estimate of the measurement
noise statistics is sufficiently accurate.

5.3 Case 3: Varying process and measurement noise

For the third case study, both the measurement and
process noise are allowed to vary simultaneously. The
variation assumed for this particular experiment is the
same as the ones that have been used in the earlier case
studies. LQ0 and LR0 are assumed to be 0.01 for this case
study.

Fig. 7. Case study 2: Parameter estimation

Fig. 8. Case study 2: Estimation of measurement noise
statistics

For this case study, the results for the parameter es-
timation is presented in Fig. 9. Also, in this case, the
parameter estimates are sufficiently accurate and stable.
The estimates for process and measurement noise statistics
are presented in Fig. 10 and Fig. 11. It has been found
that while both measurement and process noise statistics
are estimated simultaneously, the estimation result for
the measurement noise statistics is interestingly better.
However, due to the scale effect of the process noise in the
innovation uncertainty, the measurement noise estimates
are influenced by the process uncertainty. While in the
previous case studies, the measurement uncertainty is sig-
nificantly underestimated, estimation for the current case
study is precision wise much better. This is due to the fact
that with no flexibility in the process uncertainty, the state
estimates are sometimes over fitted which often underesti-
mates measurement uncertainty. Simultaneous estimates,
on the other hand, balance the estimation of process and
measurement uncertainty which cause the measurement
estimates to be better.
Finally, we experimented with a case where the noise
statistics are actually varying over time but not estimated
in the process of parameter estimation. The parameter
evolution for this case study has been demonstrated in
Fig. 12 where it can be seen that with inaccurate noise
model values, the parameter estimates are very turbulent
and it ultimately diverges resulting failed estimation. It
can also be noticed that at some point in time the esti-
mates even went below zero stiffness. The system model
employed in this article is simplistic for which simulation is



Fig. 9. Case study 3: Parameter estimation

Fig. 10. Case study 3: Estimation of process noise statistics

Fig. 11. Case study 3: Estimation of measurement noise
statistics

still proceeded without any hindrance. However, for costly
and complicated system models, such abnormal parameter
estimates will stop the parameter estimation. On the con-
trary, the same data-set when put through the proposed
IP-MCC-KF algorithm yielded perfect estimation of the
parameters for the third case study (cf. Fig. 9). This
establishes the relevance of noise estimation in parallel to
the parameter estimation.

6. CONCLUSION

In this article, a novel methodology has been presented
based on IPKF filter in which the Kalman filter compo-
nent of IPKF filter has been replaced with correntropy

Fig. 12. Parameter estimation without noise estimation
based Kalman filter (MCC-KF) that helps to stabilize the
estimation in presence of an abrupt change in the system
due to damage or noise statistics. Numerical experiments
established that incorporation of MCC-KF facilitates im-
parting less updates in cases of high mismatch between
predicted and actual measurement caused due to either
damage or change in noise statistics. It has also been ob-
served that measurement noise statistics when estimated
solely underestimates the noise covariance. However, when
the statistics of measurement noise are estimated along-
side the statistics of the process noise, the estimates are
much better than that with the solo estimation strategy.
Eventually, this simultaneous estimation strategy for noise
statistics bettered the parameter estimation. In turn, this
strategy enhanced the robustness of the proposed IP-
MCC-KF algorithm.
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Appendix A. DERIVATION OF MCC-KF

Of the many formulations through which the Kalman
filter can be derived, the one that uses optimization based
approach is relevant in the derivation of MCC-KF. The
derivation of the MCC-KF presented in the following is
followed for each MCC-KF filter nested within the PF. The
particle indices (•i) for each MCC-KF and the variables
involved are however dropped here in this appendix for
the sake of simplicity. For MCC-KF, a quadratic cost
function needs to be set up prior to a recursive estimation
to minimize it,

(A.1)J = 1
σ2Gσ

(
||yk −Hkxk||R−1

k

)
+ 1
σ2Gσ

(
||xk − x̃k||P−1

k

)
where x̃k = Fkxk−1 is the prediction on xk. Pk is the co-
variance of error between actual state xk and its prediction
x̃k. Theoretically, this cost function needs to be minimized
with xk as the argument. Finally, xk|k will be obtained as
an estimate of xk:

x̂k|k = argminxkJ(xk) (A.2)
The required gain matrix Kk can be derived by analyti-
cally solving ∂J(xk)

∂xk
= 0 which yields the following equa-

tion:

− 1
σ2Gσ

(
||yk −Hkxk||R−1

k

)
HT
kR−1

k (yk −Hkxk)

+ 1
σ2Gσ

(
||xk − x̃k||P−1

k

)
P−1
k (xk − x̃k) = 0

(A.3)

Upon simplification, this equation demonstrates the in-
terrelation between state error covariance and the corren-
tropy information as:

(A.4)
P−1
k (xk − x̃k)

=
Gσ

(
||yk −Hkxk||R−1

k

)
Gσ

(
||xk − x̃k||P−1

k

) HT
kR−1

k (yk −Hkxk)

Plugging in the best estimates available for xk, x̃k and Pk

as xk|k, xk|k−1 and Pk|k−1, the estimate of the states can
be restated as:

P−1
k|k−1xk|k = P−1

k|k−1xk|k−1

+
Gσ

(
||yk −Hkxk|k||R−1

k

)
Gσ

(
||xk|k − xk|k−1||P−1

k|k−1

)HT
kR−1

k

(
yk −Hkxk|k

)
(A.5)

The update equation is therefore further simplified as:
P−1
k|k−1xk|k = P−1

k|k−1xk|k−1 +LkHT
kR−1

k

(
yk−Hkxk|k

)
(A.6)

where Lk =
Gσ

(
||yk−Hkxk|k||R−1

k

)
Gσ

(
||xk|k−xk|k−1||P−1

k|k−1

) .

As it can be seen from the expression of Lk, that the index
has xk|k term in its denominator which makes the esti-
mation of Lk an implicit problem and to be solved using
costly optimization problem. Chen et al. (2017) employed a
fixed point algorithm to solve for the posterior which is al-
though accurate but increases the computational expense.
Since the proposed approach itself is recursive in nature,
we incorporated a little modification in the algorithm by
replacing xk|k by its best available estimate before the
measurement correction, i.e., xk|k−1 (similar to Cinar and
Pŕıncipe (2012)). Thus the correntropy can be calculated
as:

Lk =Gσ

(
||yk−Hkxk|k−1||R−1

k

)
(A.7)

This, in turn, make the problem explicit and therefore less
computationally expensive.
Finally, to give this update equation a Kalman like
appearance we proceed with adding and subtracting
LkHT

kR−1
k Hkxk|k−1 in the right hand sides of equation

A.6: (
P−1
k|k−1 +LkHT

kR−1
k Hk

)
xk|k =

P−1
k|k−1xk|k−1 +LkHT

kR−1
k yk

+LkHT
kR−1

k Hkxk|k−1−LkHT
kR−1

k Hkxk|k−1

(A.8)

which when arranged gives:

(A.9)

(
P−1
k|k−1 + LkHT

kR−1
k Hk

)
xk|k =(

P−1
k|k−1 + LkHT

kR−1
k Hk

)
xk|k−1

+ LkHT
kR−1

k

(
yk −Hkxk|k−1

)
or in compact form:

(A.10)xk|k = xk|k−1 + Kk(yk −Hkxk|k−1)

where Kk =
(
P−1
k|k−1 +LkHT

kR−1
k Hk

)−1
LkHT

kR−1
k . The

corresponding update equation for the error covariance
Pk|k−1 can be derived as:

Pk|k = (I−KkHk)Pk|k−1(I−KkHk) +KkRkKT
k

(A.11)
This is the generalized expression for update equations
(also called as Joseph’s form). However, if the Kalman gain
Kk is optimal, this form takes even a simpler description
(see Kulikova (2017) for the alternative form) as:
Kk = Pk|k−1LkHk

T (HkPk|k−1LkHk
T +Rk)−1 (A.12)

and corresponding error covariance update equation can
be given as:

Pk|k = (I−KkHk)Pk|k−1 (A.13)


