J. Machowski, J. Bialek, and J. Bumby, Power system dynamics: stability and control, 2008.

P. Kundur, Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions, IEEE Trans. on Power Systems, vol.19, issue.3, pp.1387-1401, 2004.

P. Kundur, Power system stability and control, 1994.

W. Winter, K. Elkington, G. Bareux, and J. Kostevc, Pushing the limits: Europe's new grid: Innovative tools to combat transmission bottlenecks and reduced inertia, IEEE Power and Energy Magazine, vol.13, issue.1, pp.60-74, 2015.

A. Arapostathis, S. Sastry, and P. Varaiya, Global analysis of swing dynamics, IEEE Trans. on Circuits and Systems, vol.29, issue.10, pp.673-679, 1982.

M. Pavella, D. Ernst, and D. Ruiz-vega, Transient stability of power systems: a unified approach to assessment and control, 2012.

H. Chang, C. Chu, and G. Cauley, Direct stability analysis of electric power systems using energy functions: theory, applications, and perspective, Proceedings of the IEEE, vol.83, issue.11, pp.1497-1529, 1995.

T. L. Vu and K. Turitsyn, Lyapunov functions family approach to transient stability assessment, IEEE Trans. on Power Systems, vol.31, issue.2, pp.1269-1277, 2016.

F. Dörfler and F. Bullo, Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators, SIAM Journal on Control and Optimization, vol.50, issue.3, pp.1616-1642, 2012.

J. Baillieul and C. Byrnes, Geometric critical point analysis of lossless power system models, IEEE Trans. on Circuits and Systems, vol.29, issue.11, pp.724-737, 1982.

S. Caliskan and P. Tabuada, Compositional transient stability analysis of multimachine power networks, IEEE Trans. on Control of Network Systems, vol.1, issue.1, pp.4-14, 2014.

V. Natarajan and G. Weiss, Almost global asymptotic stability of a constant field current synchronous machine connected to an infinite bus, CDC, pp.3272-3279, 2014.

, A method for proving the global stability of a synchronous generator connected to an infinite bus, 28th Convention of Electrical & Electronics Engineers in Israel, pp.1-5, 2014.

N. Barabanov, J. Schiffer, R. Ortega, and D. Efimov, Almost global attractivity of a synchronous generator connected to an infinite bus, CDC, pp.4130-4135, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01461606

, Conditions for almost global attractivity of a synchronous generator connected to an infinite bus, IEEE Trans. on Aut. Control, vol.62, issue.10, pp.4905-4916, 2017.

J. Schiffer, D. Efimov, R. Ortega, and N. Barabanov, An input-to-state stability approach to verify almost global stability of a synchronousmachine-infinite-bus system, Philosophical Trans. of the Royal Society of London. A, pp.1887-1895, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01483463

D. Efimov and J. Schiffer, A new criterion for boundedness of solutions for a class of periodic systems, ECC, pp.1642-1647, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01755084

, On boundedness of solutions of periodic systems: a multivariable cell structure approach, Available online at HAL-Inria, 2018.

G. Leonov, On the boundedness of the trajectories of phase systems, Siberian Mathematical Journal, vol.15, issue.3, pp.491-495, 1974.

, Nonlinear Systems: Frequency and Matrix Inequalities, 2008.

E. J. Noldus, New direct Lyapunov-type method for studying synchronization problems, Automatica, vol.13, issue.2, pp.139-151, 1977.

A. Van-der-schaft, L2-gain and passivity techniques in nonlinear control, 2000.

F. Dörfler and F. Bullo, Synchronization in complex networks of phase oscillators: A survey, Automatica, vol.50, issue.6, pp.1539-1564, 2014.

F. A. Rodrigues, T. K. Peron, P. Ji, and J. Kurths, The Kuramoto model in complex networks, Physics Rep, vol.610, pp.1-98, 2016.

Y. Tang, F. Qian, H. Gao, and J. Kurths, Synchronization in complex networks and its application-a survey of recent advances and challenges, Annual Reviews in Ctrl, vol.38, issue.2, pp.184-198, 2014.

J. Schiffer, D. Zonetti, R. Ortega, A. M. Stankovi´cstankovi´c, T. Sezi et al., A survey on modeling of microgrids-from fundamental physics to phasors and voltage sources, Automatica, vol.74, pp.135-150, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01633758

H. Chiang, F. Wu, and P. Varaiya, A BCU method for direct analysis of power system transient stability, IEEE Trans. on Power Systems, vol.9, issue.3, pp.1194-1208, 1994.

P. Anderson and A. Fouad, , 2002.

J. Schiffer, R. Ortega, A. Astolfi, J. Raisch, and T. Sezi, Conditions for stability of droop-controlled inverter-based microgrids, Automatica, vol.50, issue.10, pp.2457-2469, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01262877

M. Arcak, Passivity as a design tool for group coordination, IEEE Trans. on Aut. Control, vol.52, issue.8, pp.1380-1390, 2007.

T. Stegink, C. D. Persis, and A. Van-der-schaft, A unifying energybased approach to stability of power grids with market dynamics, IEEE Trans. on Aut. Control, vol.62, issue.6, pp.2612-2622, 2017.

S. Trip, M. Bürger, and C. De-persis, An internal model approach to (optimal) frequency regulation in power grids with time-varying voltages, Automatica, vol.64, pp.240-253, 2016.

A. Araposthatis, S. Sastry, and P. Varaiya, Analysis of power-flow equation, International Journal of Electrical Power and Energy Systems, vol.3, issue.3, pp.115-126, 1981.

D. Mehta, N. S. Daleo, F. Dörfler, and J. D. Hauenstein, Algebraic geometrization of the kuramoto model: Equilibria and stability analysis, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.25, issue.5, p.53103, 2015.

J. Löfberg, YALMIP : a toolbox for modeling and optimization in MATLAB, IEEE International Symposium on Computer Aided Control Systems Design, sept, pp.284-289, 2004.