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Abstract—Automotive systems must undergo a strict process
of validation before their release on commercial vehicles. The
currently-used methods are not adapted to latest autonomous
systems, which increasingly use probabilistic approaches. Fur-
thermore, real life validation, when even possible, often imply
costs which can be obstructive. New methods for validation and
testing are necessary.

In this paper, we propose a generic method to evaluate
complex automotive-oriented systems for automation (perception,
decision-making, etc.). The method is based on Statistical Model
Checking (SMC), using specifically defined Key Performance
Indicators (KPIs), as temporal properties depending on a set of
identified metrics. By feeding the values of these metrics during
a large number of simulations, and the properties representing
the KPIs to our statistical model checker, we evaluate the
probability to meet the KPIs. We applied this method to two
different subsystems of an autonomous vehicles: a perception
system (CMCDOT framework) and a decision-making system.
An overview of the two system is given to understand related
validation challenges. We show that the methodology is suited to
efficiently evaluate some critical properties of automotive systems,
but also their limitations.

I. INTRODUCTION

In the automotive industry the development and testing
of human centric-systems must follow the guidelines of the
ISO26262. In the automotive industry, this kind of testing can
be divided in two:

• Vehicle-in-the-loop platform tests interactions between a
human and the system in dangerous situation [1].

• Hardware-in-the-loop to test interactions between an em-
bedded system, such as the Active Brake Control Sys-
tems [2], and the physics of a vehicle.

For autonomous functionality higher than the level 3 as define
by the SAE, drivers will not be responsible of most of driving
decisions. As these systems will rely on machine learning and
probabilistic methods, conventional methods for validation are
not adapted. The vehicle shall operate in a various range of
scenarios as well as dangerous situations, the validation and
verification operations must be carried on simulations perform.

It allows to reduce cost and increase the coverage of system
testing.

Figure 1. Interactions between the different elements of the proposed
Validation pipeline. Dashed line represents future developments to connect
the decision-and perception

The difficulty for the validation of an autonomous system
are two-fold. First, the complexity and variety scenarios that
autonomous vehicle will face is larger than in Advanced driver
assistance systems (ADAS). Second, multiple systems will
be in constant interaction. In this study we focus on a use-
case that highlights these two difficulties: road intersection
crossing. It is one of the most dangerous part of the road
network with more than 8% of the total road fatalities in
Europe [3]. Furthermore, there exists many variations of each
scenario (number of vehicles, initial velocities, etc.). It is
challenging for the perception because of the limited view
range, partially-observed vehicles and because of the presence
of multiple vulnerable users that could be potentially at risk.
For the decision-making, the interactions between road users



are complex to consider because of wrong behaviour of other
drivers. Road intersection crossing has been identified as one
use-case addressed in the Enable-3 European project [4]. This
industry-driven project aspire to propose methods for vali-
dation and verification of automated cyber-physical systems
(ACPS). The global architecture for validation and verification
has been simplified to match our thematic and is illustrated in
figure 1.

Examples of validation for highly-autonomous systems can
be found in the aerospace domain [5], where formal methods
are used to validate the behavior of a fleet of satellites. In
the robotic domain, benchmarks allow researchers to compare
their results in the same conditions [6], [7]. However bench-
marks are often tailored for one specific kind of problem and
are not representative enough of the variety of situation that an
autonomous system may encounter to actually validate such a
system. Waymo was recently confident enough in their system
to remove the safety drivers for some tests. This was possible
with an effort of 1 billion kilometers driven in a simulated
environment [8]. Another way is to use formal methods to
ensure the safety of the vehicle [9] but it would rather complex
to do in uncertain environment.

The purpose of the paper is to demonstrate the use of a
validation method (SMC) on two different systems that have
been previously developed, namely Perception and Decision.
The requirements for the testing in simulated environment are
discussed for each system. Preliminary results for the decision-
making system are presented as well as discussions on the
challenges caused by the perception system.

Section II presents our validation approach based on sta-
tistical model checking. Section III describes the application
of our approach on the perception system and the difficulty
to find applicable metrics for its validation. Then Section IV
shows a more complete application and interprets the results
for the decision-making system.

II. STATISTICAL MODEL CHECKING

In the context of ACPS, it is not possible to afford validation
through exhaustive techniques, that is by stating a property and
checking that it holds in all reachable states. Indeed, this would
require to model and traverse all the reachable states of the
ACPS. Such a modelling is possible at a very abstract level,
but requires a huge effort to be brought at a more detailed
level. Furthermore, even if a very detailed model of the ACPS
were provided, exploring all its reachable states would not be
possible due to the very large state space. Stochastic algorithm
are complex to validate with conventional methods, thus it is
interesting to use probabilistic methods to evaluate them [10].

Statistical Model Checking (SMC) [11], [12] provides an
intermediate between test and exhaustive verification by re-
lying on statistics. In order to perform SMC, one needs an
executable model and a property to check. The executable
model is expected to be stochastic, that is, to have some
of its transition governed by probabilistic choices. Note that
most ACPS simulations are already modelled as stochastic
processes, because variations in the scenario are defined by

Figure 2. An overview of SMC

probability distributions. The property to check must be de-
cidable on a finite trace.

The execution being stochastic, some traces will satisfy the
property to check and some other will not. Therefore, we
can define the probability that a trace satisfies a property.
The main goal of SMC is to evaluate that probability. Note
that a probability of satisfying a formula gives actually more
information than a yes-or-no answer. Indeed, if the model does
not satisfy the formula, there is an evaluation of how well it
performs.

In order to perform SMC, one needs to be able to

• Generate traces of the execution of the system to validate.
These traces have to be generated according to the
probabilities in the model.

• Write the property to check as a formula that can be
decided on a finite trace, and a procedure for deciding
whether a trace satisfy the property.

We present in Figure 2 an overview of the approach. On
the left we have a simulator that provides stochastic execution
of our system. On the bottom we have the property ϕ to
check. On the top, we have some configuration for the SMC
algorithm, such as the required accuracy. The SMC algorithm
requires some simulations to the simulator. In turn the sim-
ulator provides a trace σ that is fed to the property checker.
Finally the property checker returns its verdict to the SMC
algorithm. At this point, if the SMC algorithm has enough
information to return a result that meets the required accuracy,
it does so. Otherwise, it asks for an additional simulation
and the loop is run again. We give an intuition of SMC by
illustrating it with the Monte-Carlo Algorithm. This algorithm
estimates the probability p that a system satisfies a property
P by checking P against a set of N random executions of the
system. The estimation p̂ is given by

p̂ =
1

N

N∑
1

f(ex i) wheref(ex i) =

{
1 ifex i |= P
0 otherwise

Using the formal semantics of the property language, the
property is checked against each execution trace. The trace
must be long enough to decide whether the property holds.

Of course, the larger is the set of simulations, the more
precise is the result. The confidence bounds of the estimation



are set by two positive real parameters ε and δ. The confidence
is defined by the Chernoff bound that is stated as:

Pr(|p− p̂| ≤ ε) ≥ 1− δ

Assuming that p is value of the probability we want to evaluate
and p̂ is the estimation we compute, the formula means that
the estimation error, i.e. the distance |p − p̂|, is bound by ε
with a probability 1− δ . In other words, the probability that
the error in the estimation is greater that ε is δ. Once δ and
ε have been set, we can compute the number of simulations
N necessary to enforce the above formula. The quality of the
approximation is high (and thus N is high as well) when ε and
δ are close to 0. When ε and δ increase, the estimation is more
approximate but requires less simulations to be computed.

A. Defining KPIs

In order to define and evaluate KPIs based on a set of
simulations, we proceed as follows. We first identify with
peoples in charge of developing the system some KPIs related
to system under test and scenarios. We then express the
KPIs as temporal formulas involving the identified metrics.
Temporal formulas allow a finer formulation of KPIs by taking
into account the evolution of the metrics during time. Let us
consider acceleration as a metric. A rough formulation of a
KPI concerning acceleration might be that the acceleration
should be bounded, i.e. to guarantee the comfort of the pas-
sengers [13]. A finer formulation could be that the acceleration
should generally be bounded, but the bound can be exceeded
for a short period of time.

In order to express such formulas, we rely on BLTL, a
bounded version of LTL [14]. The syntax of BLTL is as
follows: φ ::= p | φ ∨ φ | ¬φ | φU≤t φ | X≤t φ. A BLTL
formula is expressed with respect to a trace. In our case a state
is a sequence of states, one for each simulation step. Each state
contains the value of each of the metrics at that current state.
The symbol p represents a predicate expressed on the current
state, for instance a comparison between a metric and a bound.
The disjunction (∨) and the negation (¬) defined as usual.
Finally, the temporal operators until (U ) and next (X) define
properties about the time. Since we need to be able to decide
whether a property holds on a finite trace, these operators are
parameterized by a time bound t ∈ R. The formula X≤tφ
is true if φ is true in the state reached after t units of time
from the current state. The formula φ1 U≤t φ2 is true if 1)
the formula φ2 becomes true before t units of time from the
current state and 2) the formula φ1 remains true in every state
before the one where φ2 becomes true. For a formal definition
of BLTL semantics, see [15].

In practice, we often use the always (G) and eventually (F )
operators. Eventually is defined as F≤tφ = trueU≤t φ and
means that the formula φ should become true before t units
of time happen. Always is defined as G≤tφ = ¬F≤t¬φ and
means that φ must always hold for the next t units of time.

Figure 3. Data fusion in an occupancy grid. Data from each of the 2 LiDARs
are used to generate occupancy grids using sensor models, which are then
fused by Bayesian fusion.

III. A FIRST VALIDATION APPLICATION: CMCDOT
PERCEPTION SYSTEM

A. Principle of the CMCDOT

The CMCDOT Framework is a perception system, based on
environment representation through probabilistic occupancy
grids, a dense and generic representation [16], [17], and
Bayesian fusion, filtering and inference.

This type of Bayesian formalism [18] allows proper con-
fidence estimation and combination, particularly important
features when confronted with incomplete or even contra-
dictory data coming from different sensors. A major feature
of the system is its highly-parallelized design: from data
fusion, to grid filtering, velocity inference and collision risk
assessment, the methods have been designed to allow massive
parallelization of computations, and so benefit from parallel-
computing devices [19], allowing real-time performances on
embedded devices.

Sensor data is converted to occupancy estimation using
specific sensor model, sensor occupancy estimates are then
combined by Bayesian fusion in every grid cell (Fig. 3). The
Conditional Monte Carlo Dense Occupancy Tracker (CM-
CDOT) [20] itself is a generic spatial occupancy tracker,
which then infers dynamics of the scene through a hybrid
representation of the environment consisting of static and
dynamic occupancy, empty spaces and unknown areas(Fig. 4).
This differentiation enables the use of state-specific models
(classic occupancy grids for motionless components and sets
of moving particles for dynamic occupancy), as well as rele-
vant confidence estimation and management of data-less areas.
The approach leads to a compact model that dramatically
improves the accuracy of the results and the global efficiency
in comparison to previous approaches.

This method is particularly suitable for heterogeneous sen-
sor data fusion (camera, lidars, radars etc. . . ). The occupancy
of each cell over time can be estimated from various sensors
data whose specific uncertainty (noise, measurement errors)
are taken into consideration. Filtered cell estimates are thus
much more robust, leading to a more reliable global occupancy
of the environment, reducing false detections.

While most of risk estimation methods consist in detect-
ing and tracking dynamic objects in the scene [21], [22],
the risk being then estimated through a Time to Collision
(TTC) approach by projecting object trajectories to the future
[23], [24], the grid-based approach used in the CMCDOT
framework[20] instead directly computes estimations of the



Figure 4. Data representation in the CMCDOT formulation. The environment
is divided into cells, to which are associated static, dynamic, empty and
unknown coefficients. The dynamic part is allotted to weighted particles which
sample the velocity space

position in the near future of every static and dynamic part
of the grid, as well as the trajectory of the vehicle. These
estimations are iteratively computed over short time periods,
until a potential collision is detected, in which case a TTC is
associated to the cell from which the colliding element came
from (Fig. 5). In every cell, the associated TTCs are cumulated
over different time periods (1, 2, 3 seconds for example) to
estimate a cell-specific collision risk profile. Risk grids, and
global aggregated risks, are thus generated, and later used
to generate response impulses for the control system. This
strategy[25] avoids solving the complex problem of multi-
object detection and tracking, while integrating the totality of
the available information. It provides a probabilistic estimation
of the risk associated to each part of the scene.

Figure 5. Collision risk estimation over time for a specific cell. The cell
position is predicted according to its velocity, along with the mobile robot.
This risk profile is computed for every cell, and then used to integrate over
time the global collision risk.

B. Method Application

1) Simulation for perception: In this project, the simulation
relies on the use of two frameworks: Gazebo and ROS.
Gazebo allows for the representation and simulation of the
environment, the ego vehicle and its sensors, as depicted in
Figure 6. Each item in these three categories is matched with a
visual representation and physical characteristics (dimensions,
weight, friction, etc). The data acquisition and processing part
of the simulation is carried out in ROS, where the data can be
recorded, stored, and processed by the same code running on

Figure 6. Simulated scenario for the CMCDOT algorithm (top),Output of
CMCDOT (bottom)

the actual vehicle. The communication between the ROS and
Gazebo modules is carried out seamlessly thanks to the native
use of ROS messages. In order for our simulation approach
to be precise and fully exploitable, the simulation framework
must provide the following elements:

• precise volume and shape of each vehicle, and surface
reflectivity.

• atmospheric conditions which might impact the vehicles’
trajectory (wind gusts) or lidar detection (heavy rain or
snow).

• in order to establish the ground truth, a grid indicating the
position of all simulated objects. This grid must reflect
CMCDOT’s occupation grid in the following aspects:
origin position, grid direction, cell size.

Currently, each lidar is simulated with the appropriate
position on the ego vehicle, the same sampling frequency and
the same data format as the physical sensor. To match the
sensing uncertainty, a Gaussian noise can be added.

In order to be able to efficiently generate a large number
of simulated environments, we have perfected a parameter-
based approach which streamlines the process through which
the dimensions and initial position and velocity of non-ego
vehicles are specified.

Our simulation scenario aims at checking the behaviour
of cars at a four-way crossroads. The rule governing this
crossroad is that at any given moment in time, a maximum
of one simulated vehicle is present on the crossroad. To
simulate the different cases, we rely on the random generation
of parameter sets (non-ego vehicle class, initial position and
initial speed). The test cases are then run, and their results
(perception results as in Figure 6) are stored alongside the
parameter sets. The analysis of these datasets enables us to



accurately measure the efficiency of our perception and control
solution.

The strong advantage of this approach is the ease with which
a large number of simulated scenarios can be generated, ran,
and analyzed.

2) KPI definition: Contrary to most perception systems,
outputs of CMCDOT are not a direct list of detected objects,
but dynamic occupancy grid, a rich probabilistic representation
of the entire surrounding space. While object detector metrics
are already not perfectly defined, the topic of evaluation
of occupancy grids (furthermore dynamic occupancy grids,
incorporating at a cell level velocity field estimations) is an
important subject [26].

A first approach is to define a global indicator based on the
direct estimates of the grid, in comparison to the ground truth.
But if by qualitative analysis of results it is quite simple to
evaluate if an occupancy grid is correct or not, an objective
quantification of this quality is particularly complicated, each
metrics focusing on a specific aspect, ignoring others (for
example occupied / free space factor, cell by cell comparison,
convolution-based metrics, etc.).

Another approach is to focus on specific applications of the
method: the validation of the whole system itself is performed
by statistical validation of its usages. In the case of the
CMCDOT framework, a direct application of the perception
system is an automatic braking system, based on aggregated
risk estimates of the system. By comparing the difference in
response of the system and expected behavior according to
the ground truth, a partial evaluation of the system can be
accessed.

In order to assess the correctness of the CMCDOT algo-
rithm, we compare the output of the algorithm to the actual
context of the car in the simulation. We focus on the risk of
collision at 1, 2 and 3 seconds.

In order to evaluate the correctness of this output, we extract
a traces of the simulation containing the following metrics:
cmcdot_riski and real_colli for 1 ≤ i ≤ 3. The
metric cmcdot_riski indicate the probability of a collision
in i s according to the CMCDOT algorithm. The metric
real_colli is a Boolean indicating whether a collision will
occur if object continue to move with their current speed,
according to their speed and position in the simulation.

We define one KPI for each time interval, parameter-
ized by a threshold τ . We formalize our KPI through the
property G≤t(real colli ⇒ (1 − cmcdot risk) < τ) ∧
(¬real colli ⇒ cmcdot risk) < τ). This property states
that if there is a risk of collision, the probability returned by
CMCDOT must be high enough. Conversely, if there is no
risk of collision, the probability returned by CMCDOT must
be small enough.

IV. A SECOND VALIDATION APPLICATION: A
DECISION-MAKING SYSTEM

A. Principle of the POMDP based decision-making

The decision-making system is a key component of an
autonomous vehicle. Its task is to plan the movement of the

Intention

Physical state

Expectation

Physical state

A

Physical state

Expectation

Intention

Physical state

ego vehicle
t+ 1

Other vehicle

Figure 7. The POMDP represented as Bayesian network. The square node
represent the action chosen by the framework

vehicle taking into account the uncertainty in the situation
measurement as well as the uncertain consequences of its
action will have on the situation.

Partially observable Markov decision process (POMDP)
is a mathematical model that formalizes this two kind of
uncertainties and has been used for planning in stochastic
environment [27].

With recent advancement on online-Pomdp solver [28](used
in our work), complex problems such as road intersection
crossing has been addressed in [29]. The key element of our
approach [30] is to take into account the difference between
intention and expectation of drivers approaching an intersec-
tion (inspired from [31]) to enable partial cooperation. The
intention corresponds to the manoeuvre actually performed by
the drivers and could observed with the approach developed
in [32]. The expectation represent what the driver should
do regarding the current situation and traffic rules. Situation
where intention and expectation does not match could result in
risky interactions. These two variables can be inferred from the
physical state (Velocity and distance towards the intersection)
of both vehicles. Our model is represented as a Bayesian
network in Figure 7 that shows the interaction between vari-
ables. The reward function of the model is constructed to take
into account: comfort, velocity, time to collision, traffic rules
and differences between intention and expectation. The system
interacts with the environment by selecting an acceleration that
maximize the current estimations of the sum of future expected
rewards. Because of the stochastic aspect of the model and
its solvers a safe intersection crossing cannot be guaranteed.
Thus, a large number of simulations is required to validate
the model in order to ensure the safety. The two problems



is that the scenario space is large because of the different
regulations, initial speeds or different behaviours. Then, the
parameter space for the model, especially its reward function,
is as large and need to be correctly explored in order to find
the functional range of the system.

B. Method Application

1) Dedicated simulator development: The decision-making
system interacts with the simulation trough observations that
can be made on the situation and selected actions that have to
be realized in the simulated environment. Thus the fidelity, that
is how closely the simulator can generate environmental data
and model the system that are not under test, is important.
In our scenario, the micro-traffic simulation (vehicle state
and interactions between vehicles) is more important than
the macro-simulation (simulation of traffic as a group of
vehicles). As our system selects actions, it expects the other
vehicle to change its behaviour. For the ego vehicle, the
dynamic model of the vehicle does not need to have an high
fidelity but as we want, in the future, to compare results
obtained against field operational testing, the possibility of
having high fidelity model is a plus. The decision could be
of different forms (trajectory, goal points, control input), so
the communication between the system under test and the
simulation models must be adaptable. Figure 8 represents the
different scenarios that have to be tested (yield, stop controlled,
or priority). Thus the simulator must generate the appropriate
behaviour for each of the corresponding situations. Real life
scenarios could be also be imported to increase the validity
of the reproduced situation. It would require the importation
of maps and perception data from other sources. Scaner [33],
an automotive grade simulator, has been chosen to test the
decision-making systems. It has been mostly used for vehicle
in the loop testing. However, most of the features previously
described are available, at various levels of maturity. It has
simple but interactive models for road intersection crossing
and map generation. Scaner features a batch testing function,
that we found too complex to interface with the SMC.

2) KPI definition: In order to evaluate the quality of the
decision algorithm, we define some Key Performance Indica-
tors regarding the crossing of a intersection. First, we define
two areas in the intersection: a critical area, that correspond
to the actual intersection where stopped vehicles would block
all branches of the intersection and a non-critic area, that
correspond to the entry of the intersection where cars usually
stop before crossing the other road. We count the number and
total duration of stops in each area, a smaller number indicates
a better quality of the algorithm. We also measure the total
time needed to cross the intersection, where again a smaller
number indicates a better quality. We measure the acceleration
to evaluate the comfort of the passenger, where again a smaller
number indicates a better quality.

For all metrics m whose smaller value indicates a better
performance, we check whether m is bounded by a bound
b. The formula G≤tm ≤ b, with t corresponding to the time
needed to cross the intersection, states that m is always smaller

Figure 8. Simulated scenario for the decision-making. The ego vehicle (blue)
is controlled by the decision-making system and have to interact with the
other vehicle (white) with respect to the traffic rules

Table I
LIST OF VARIABLES EXTRACTED FROM THE SIMULATIONS.

Name Description Unit
t Timestamp or time elapsed s

nc stops Number of stops in the non-critical area
c stops Number of stops in the critical area

t nc stops Duration of stops in non-critical area s
t c stops Duration of stops in critical area s

acc Acceleration ms−2

crossed True if intersection is crossed

than b. Stating that the acceleration must always be smaller
than a bound might be a constraint too strong. We thus propose
a relaxed version of this KPI where the acceleration is allowed
to be above the bound for a short period of time (1s). This is
stated by the formula G≤tF≤1acc ≤ b. The previous formula
can be read as follows: at any point during the simulation, m
will be smaller than b in less than 1s. In other words, it is not
possible that m > b for more than 1s. The value of the bound
b is defined w.r.t. the metric considered.

Finally, to evaluate whether the intersection is crossed
quickly enough, we set a maximum duration d for crossing
the intersection and require that the intersection is crossed in
less than d seconds, stated by F≤dcrossed .

3) SMC application: In order to obtain results, we selected
for each metric some adequate bounds and plot the probability
that the KPI is met for each bound. The Figure 9 represents the
probability that the acceleration/deceleration remains below a
certain bound when crossing the intersection, both for the strict
(i.e. the bound is never exceeded) and the relaxed version (the
bound is never exceeded for more than 1s). We see that there
is a probability 0 that the acceleration stays below an absolute
value of 0.8m.s−2, and that it is always below 2m.s−2. It
corresponds to an acceptable range for human comfort and
shows that in every scenario the decision-making system took
actions to adapt the behaviour.

Figures 10 and 11 present the probability of respectively
having a bounded number of stops and having a bounded total
stop duration. We see that there is a probability 0.9 that the



Figure 9. Probability that the absolute value of the acceleration remains
bounded, for the strict and the relaxed version.

Figure 10. Probability of bounded occurences of stops, for critical and non-
critical zones.

car does not stop in the critical zone. With that measure it can
be said that most likely the ego vehicle will comply with the
traffic law. However for the 0.1 probability that the vehicle
stop whitin the intersection, causes for the subject to come
to a stop must be investigate in order to find if it correspond
to an emergency manoeuvre or a failure of the system. This
could be done by introducing finer KPIs that would take into
account the temporality of the problem.

In Figure 12 we show the probability to cross the intersec-
tion in less that a given duration. All this new information
tells people in charge of the validation what is the most likely
behaviour of the decision-making system. It also helps people
working on designing the decision-making to find area of
improvement in their systems.

V. CONCLUSION

In this paper we presented and demonstrated a pipeline for
the validation of different ACPS on two different automotive
use-cases. The application of our approach based on Statisti-
cal Model Checking to the decision-making system provides
useful information to the designer of the system and to the
people in charge of the validation. This valuable information

Figure 11. Probability of a stop duration below a given bound, for critical
and non-critical zones.

Figure 12. Probability of crossing the intersection in less than a given time.

is formulated through probability for our system to stay in a
certain range of KPIs.

Future works include the definition of meaningful grid-
based metrics for stating more discriminating KPIs about the
perception system. We also plan to compare results obtained
in the simulated environment with tests on proving ground
to ensure the validity of our approach. Also more KPIs for
the decision and perception could be introduced to accurately
pinpoint the cause of identified failures.
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based intention-expectation decision-making and key performance in-
dicators for road intersections crossing,” 2018, submitted to IEEE
Intelligent Vehicles Symposium (IV) 2018, under review.
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