
HAL Id: hal-01888607
https://inria.hal.science/hal-01888607

Submitted on 5 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Helping and Stacks
Vitalii Aksenov, Petr Kuznetsov, Anatoly Shalyto

To cite this version:
Vitalii Aksenov, Petr Kuznetsov, Anatoly Shalyto. On Helping and Stacks. The International Con-
ference on Networked Systems, May 2018, Essaouira, Morocco. �hal-01888607�

https://inria.hal.science/hal-01888607
https://hal.archives-ouvertes.fr


On Helping and Stacks

Vitaly Aksenov1,2, Petr Kuznetsov3, and Anatoly Shalyto1

1 ITMO University, Russia
2 Inria Paris, France

3 LTCI, Télécom ParisTech, Université Paris-Saclay

Abstract. A concurrent algorithm exhibits helping when one process
performs work on behalf of other processes. More formally, helping is
observed when the order of some operation in a linearization is fixed
by a step of another process. In this paper, we show that no wait-free
linearizable implementation of a stack using read, write, compare&swap
and fetch&add operations can be help-free, correcting a mistake in an
earlier proof by Censor-Hillel et al.

1 Introduction

In a wait-free data structure, every process is guaranteed to make progress in its
own speed, regardless of the behavior of other processes [8]. It has been observed,
however, that achieving wait-freedom typically involves some helping mechanism
(e.g., [6,14,7,13]). Informally, helping means that a process may perform addi-
tional work on behalf of other processes.

Censor-Hillel et al. [5] proposed a natural formalization of the concept of
helping, based on the notion of linearization: a process p helps an operation of
a process q in a given execution if a step of p determines that an operation of q
takes effect, or linearizes, before some other operation in any possible extension.
It was claimed in [5] that helping is required for any wait-free linearizable im-
plementation of an exact order data type in a system provided with read, write,
compare&swap and fetch&add shared memory primitives. Informally, a sequen-
tial data type is exact order if for some operation sequence, every change in the
relative order of two operations affects the result of some other operations. As
examples of exact order data types, Censor-Hillel et al. gave (FIFO) queue and
(LIFO) stack.

We observe, however, that the stack data type is not exact order. As we show,
in any sequential execution on stack, we can reorder any two operations op and
op′ in such a way that no other operation will see the difference. Hence, the
proof of help-free impossibility for exact order types given in [5] does not apply
to stack.

In this paper, we propose a direct proof that stack does not have help-free
implementations. At first, we show the result for implementations using read,
write and compare&swap operations in systems with at least three processes,
and, then, extend the proof to those additionally using fetch&add in systems
with at least four proccesses. The structure of the proofs generally follows the
structure from the paper by Censor-Hillel et al. [5], but the underlying reasoning



2 Vitaly Aksenov, Petr Kuznetsov, and Anatoly Shalyto

is novel. Unlike their approach our proofs argue about the order of operations
given their responses only after we empty the data structure. As a result, certain
steps of the proof become more technically involved.

The paper is organized as follows. In Section 2 we present a computational
model and necessary definitions. In Section 3 we recall the definition of helping
and highlight the mistake in [5]. In Section 4 we give our direct proof. In Section 5
we discuss the related work. And, finally, we conclude in Section 6.

2 Model and definitions

We consider a system of n processes p1, . . . , pn communicating via invocations
of primitives on a shared memory. We assume that primitives are read, write
and compare&swap. In our second technical contribution, we consider one more
primitive fetch&add.

A compare&swap primitive takes a target location, an expected value and a
new value. The value stored in the location is compared to the expected value.
If they are equal, then the value in the location is replaced with the new value
and true is returned (we say that the operation is successful). Otherwise, the
operation fails (i.e., the operation is failed) and returns false.

A fetch&add primitive takes a target location and an integer value. The
primitive augments the value in the location by the provided value and returns
the original value.

A high-level concurrent object or a data type is a tuple (Φ, Γ,Q, q0, θ), where
Φ is a set of operations, Γ is a set of responses, Q is a seq of states, q0 is an
initial state and a transition function θ ⊂ Q × Φ ×Q × Γ , that determines, for
each state and each operation, the set of possible resulting states and produced
responses.

In this paper, we concentrate on a stack data type (further, we omit “data
type” and simply refer to it as “stack”). It exports two methods push(·) and
pop(). A push(x) operation pushes an element at the top of the stack. A pop()
operations withdraws and returns the element from the top of the stack, or
returns ⊥, if the stack is empty.

An implementation (or, simple object) of a high-level object O is a distributed
algorithm A consisting of local state machines A1, . . . , An. Ai specifies the prim-
itives pi needs to execute to return a response to an invoked operation on O.
For simplicity, all implementations considered in this paper are deterministic.
Nevertheless, as we pursue impossibility results, the proofs easily extend to ran-
domized implementations. For the rest of the section we fix some implementation
of stack.

A program of a process specifies a sequence of operations calls on an object.
The program may include local computations and can choose which operation
to execute depending on the results of the previous operations.

A history is a finite or infinite sequence of primitive steps. Each step is cou-
pled with a specific operation that is being executed by the process performing
this step. The first step of an operation always comes with the input parame-
ters of the operation, and the last step of an operation is associated with the



On Helping and Stacks 3

return of the operation. Given two histories h1 and h2 we denote by h1 ◦ h2 the
concatenation of h1 and h2.

A schedule is a finite or infinite sequence of process ids. Given a schedule, an
implementation and programs provided to the processes, one can unambiguously
determine the corresponding history. And vice versa, given a history one can
always build a schedule by substituting the steps of history to the process that
performed it. Assuming a fixed program for each process (these programs will be
clear from the context), and a history h, we denote by h ◦ pi the history derived
from scheduling process pi to take the next step (if any) following its program
immediately after h.

The set of histories H induced by an implementation consists of all possible
histories induced by all possible processes’ programs with all possible schedules.
Note that, by the definition, H is prefix- and limit-closed [10].

A history defines a partial order on the operations: op1 precedes op2 in a
history h (denoted: op1 ≺h op2) if op1 is completed before op2 begins. A lin-
earization L of a history h is a sequence of operations such that 1) L consists
of all the completed operations and, possibly, some started but incompleted in
h; 2) the operations have the same input and same output as corresponding
operations in h; 3) L consistent with the data type; 4) for every two operations
op1 ≺h op2 if op2 is included in L, then op1 preceds op2 in L (op1 ≺L op2).

An implementation of a data type is linearizable if each history from the
set of histories has a linearization. A linearization function defined over a set of
linearizable histories H maps every history in H to a linearization. Note that a
linearizable implementations may have multiple linearization functions defined
on the set of its histories.

An implementation is wait-free if every process completes its operation in a
finite number of steps.

3 Helping and Exact Order Types

In this section, we recall the definitions of helping and exact order type in [5]
and show that stack is not exact order.

Definition 1 (Decided before). For a history h in a set of histories H, a
linearization function f over H, and two operations op1 and op2, we say that
op1 is decided before op2 in h with respect to f and H, if there exists no extension
s ∈ H of h such that op2 ≺f(s) op1.

Definition 2 (Helping). A set of histories H with a linearization function f
over H is help-free if for every h ∈ H, every two operations op1, op2, and a
single computation step γ such that h ◦ γ ∈ H it holds that if op1 is decided
before op2 in h ◦ γ and op1 is not decided before op2 in h then γ is a step in the
execution of op1.

An implementation is help-free, if there exists a linearization function f such
that the set of histories of this implementation with f is help-free.

Following the formalism of [5], if S is a sequence of operations, we denote by
S(n) the first n operations in S, and by Sn the n-th operation of S. We denote



4 Vitaly Aksenov, Petr Kuznetsov, and Anatoly Shalyto

by (S + op?) the set of sequences that contains S and all sequences that are
similar to S, except that a single operation op is inserted somewhere between
(or before, or after) the operations of S.

Definition 3 (Exact Order Types). An exact order type is a data type for
which there exists an operation op, an infinite sequence of operations W , and a
(finite or an infinite) sequence of operations R, such that for every integer n ≥ 0
there exists an integer m ≥ 1, such that for any sequence A from W (n + 1) ◦
(R(m)+op?) and any sequence B from W (n)◦op◦ (R(m)+Wn+1?) at least one
operation in R(m) has different results in A and B, where ◦ is a concatenation
of sequences.

It is shown in [5] that exact order types require helping, when implemented
with read, writes, and compare&swap primitives. The paper also sketches the
proof of a more general result for systems that, additionally, use fetch&add.
Further, it is claimed in [5] that stack and queue are exact order types. Indeed,
at first glance, if you swap two subsequent operations, further operations have
to acknowledge this difference. However, the definition of an exact order type
is slightly more complicated, as it allows not only to swap operations but also
move them. This relaxation does not affect queue, but, unfortunately, it affects
stack.

Theorem 1. Stack is not an exact order type.

Proof. We prove that for any fixed op, W , R and n there does not exist m that
satisfies Definition 3. Note that the claim is stronger than what is needed to
prove the theorem: it would be sufficient to prove that for all op, W and R, the
condition does not hold for some n. In a sense, this suggests that stack is far
from being exact order.

Suppose, by contradiction, that there exists m that satisfies Definition 3 for
fixed op, W , R and n. There are four cases for op and Wn+1: pop-pop, push-
pop, pop-push or push-push. For each of these cases, we find two sequences
from W (n+ 1) ◦ (R(m) + op?) and W (n) ◦ op ◦ (R(m) +Wn+1?) for which all
operations in R(m) return the same results.

– op = pop, Wn+1 = pop. Then, W (n+ 1) ◦ op ◦R(m) and W (n) ◦ op ◦Wn+1 ◦
R(m) satisfy, since Wn+1 ◦ op and op ◦Wn+1 perform two pop operations.

– op = push(a), Wn+1 = pop. For the first sequence we take A = W (n + 1) ◦
op◦R(m). Now, we choose the second sequence B from W (n)◦op◦ (R(m) +
Wn+1?). Let Wn+1 pop in A the x-th element from the bottom of the stack.
We extend W (n) ◦ op in B with operations from R(m) until some operation
op′ tries to pop the x-th element from the bottom. Note that all operations
R(m) up to op′ (not including op′) return the same results in A and B. If
such op′ does not exist then we are done. Otherwise, we insert Wn+1 right
before op′, i.e., pop this element. Subsequent operations in R(m) are not
affected, i.e., results of operations in R(m) are the same in A and B.

– op = pop, Wn+1 = push(b). This case is symmetric to the previous one.



On Helping and Stacks 5

– op = push(a), Wn+1 = push(b). For the first sequence, we take A = W (n+
1)◦op◦R(m). Now, we build the second sequence B from W (n)◦op◦(R(m)+
Wn+1?). Let Wn+1 push in A the x-th element from the bottom of the stack.
Let us perform W (n) ◦ op in B and start performing operations from R(m)
until some operation op′ pops the x-th element (again, this should eventually
happen, otherwise a contradiction is established). Note that all operations
R(m) up to op′ (including op′) return the same results in A and B. If such
op′ does not exist then we are done. Otherwise, right after op′ we perform
Wn+1, i.e., push the element b in its proper position. Subsequent operations
in R(m) are not affected and, thus, the results of all operations in R(m) are
the same in A and B.

The contradiction implies that stack is not an exact order type.

4 Wait-free stack cannot be help-free

In this section, we prove that there does not exist a help-free wait-free imple-
mentation of stack in a system with reads, writes, and compare&swaps. We then
extend the proof to the case when a system has one more primitive fetch&add.

4.1 Help-free stacks using reads, writes and compare&swap

Suppose that there exists such a help-free stack implementation Q using read,
write, and compare&swap primitives. We establish a contradiction by present-
ing a history h in which some operation takes infinitely many steps without
completing.

We start with three observations that immediately follow from the definition
of linearizability.

Observation 1 In any history h:

1. Once an operation is completed it must be decided before all operations that
have not yet started;

2. If an operation is not started it cannot be decided before any operation of a
different process.

Lemma 1 (Transitivity). For any linearization function f and finite history
h, if an operation op2 is completed in h, an operation op1 is decided before op2
in h and op2 is decided before an operation op3 in h then op1 is decided before
op3 in h.

Proof. Suppose that op1 is not decided before op3 in h then there exists a ex-
tension s of h for which op3 ≺f(s) op1. Since op2 is linearized in f(s) and op1
is decided before op2 then op1 ≺f(s) op2. Together, op3 ≺f(s) op1 ≺f(s) op2
contradicting with op2 being decided before op3 in h.

Lemma 2. For any linearization function f and finite history h, if an operation
op1 of a process p1 is decided before an operation op2 of a process p2, then op1
must be decided before any operation op that has not started in h.



6 Vitaly Aksenov, Petr Kuznetsov, and Anatoly Shalyto

Proof. Consider h′, the extension of h, in which p2 runs solo until op2 completes.
Such an extension exists, as Q is wait-free. By Observation 1 (1), op2 is decided
before op in h′, and, consequently, by Transitivity Lemma 1, op1 is decided before
op in h′.

Since in h′, only p2 takes steps starting from h, op1 must be decided before
op in h — otherwise, h′ has a prefix h′′ such that op1 is not decided before op in
h′′ and op1 is decided before op in h′′ ◦p2 — a contradiction with the assumption
that Q is help-free.

Now we build an infinite history h in which p1 executes infinitely many failed
compare&swap steps, yet it never completes its operation. We assume that p1, p2
and p3 are assigned the following programs: p1 tries to perform op1 = push(1);
p2 applies an infinite sequence of operations push(2), push(3), push(4), . . .; and
p3 is about to perform an infinite sequence of pop() operations.

The algorithm for constructing this history is given in Listing 1.1. Initially,
p1 invokes op1 = push(1) and, concurrently, p2 invokes op2 = push(2). Then we
interleave steps of p1 and p2 until a critical history h is located: op1 is decided
before op2 in h ◦p1 and op2 is decided before op1 in h ◦p2. We let p2 and p1 take
the next step and, then, run op2 after h◦p2 ◦p1 until it completes. We will show
that op1 cannot complete and that we can reiterate the construction by allowing
p2 to invoke concurrent operations push(3), push(4), etc. In the resulting infinite
history, p1 takes infinitely many steps without completing op1.

1 h ← ε
2 op1 ← push(1)

3 id2 ← 2
4 while true: // outer loop

5 op2 ← push(id2)
6 while true: // inner loop

7 if op1 is not decided before op2 in h ◦ p1:
8 h← h ◦ p1
9 continue

10 if op2 is not decided before op1 in h ◦ p2:
11 h← h ◦ p2
12 continue

13 break

14 h← h ◦ p2
15 h← h ◦ p1
16 while op2 is not completed

17 h← h ◦ p2
18 id2 ← id2 + 1

Listing 1.1: Constructing the history for the proof of Theorem 2

To ensure that at each iteration op1 is not completed, we show that, at the
start of each iteration of the outer loop (Line 5), the constructed history satisfies
the following two invariants:

– op1 is not decided before op2 or before any operation of p3;
– the operations of p2 prior to op2 are decided before op1.



On Helping and Stacks 7

At the first iteration, the invariants trivially hold, since neither op1 nor op2 is
started.

Observation 2 The order between op1 and op2 cannot be decided during (and
right after) the inner loop (Lines 6-13).

Observation 3 Process p3 never takes a step in h.

Lemma 3. During (and right after) the execution of the inner loop (Lines 6-13)
op1 and op2 cannot be decided before any operation of p3.

Proof. Suppose that during an execution of the inner loop op1 or op2 is decided
before some operation of p3.

Before entering the inner loop, neither op1 nor op2 is decided before any
operation of p3: op1 is not decided because of the first invariant, while op2 is
not started (Observation 1 (2)). Thus, at least one step is performed by p1 or p2
during the execution of the inner loop.

Let us execute the inner loop until the first point in time when op1 or op2
is decided before an operation of p3. Let this history be h. Note, that because
Q is help-free only one of op1 and op2 is decided before an operation of p3 in
h. Suppose, that op1 is decided before some op3 of p3, while op2 is not decided
before any operation of p3. (The case when op2 is decided before some op3 is
symmetric)

Now, p3 runs pop operations until it completes operation op3 and then, fur-
ther, until the first pop operation returns ⊥, i.e., the stack gets empty. Let the
resulting extension of h be h′.

Recall that op2 is not decided before any operation of p3 in h and, since Q
is help-free and only p3 takes steps after h, op2 cannot be decided before any
operation of p3 in h′. Hence, none of the completed operations of p3 can return
id2, the argument of op2 due to the fact that all push operations have different
arguments. Because the operations of p3 empty the stack op2 has to linearize
after them, making op3 to be decided before op2 in h′. By Transitivity Lemma 1,
op1 is decided before op2 in h′. Finally, since Q is help-free and only p3 takes
steps after h op1 has to be decided before op2 in h, contradicting Observation 2.

Lemma 4. op1 and op2 cannot be completed after the inner loop (Lines 6-13).

Proof. Suppose the contrary. By Observation 1 (1), op1 has to be decided before
all operations of p3, contradicting Lemma 3.

Lemma 5. The execution of the inner loop (Lines 6-13) is finite.

Proof. Suppose that the execution is infinite. By Lemma 4, neither of op1 and
op2 is completed in h. Thus, in our infinite execution either op1 or op2 takes
infinite number of steps, contradicting wait-freedom of Q.

Lemma 6. Just before Line 14 the following holds:

1. The next primitive step by p1 and p2 is to the same memory location.



8 Vitaly Aksenov, Petr Kuznetsov, and Anatoly Shalyto

2. The next primitive step by p1 and p2 is a compare&swap.
3. The expected value of the compare&swap steps of p1 and p2 is the value that

appears in the designated address.
4. The new values of the compare&swap steps of p1 and p2 are different from

the expected value.

Proof. Suppose that the next primitive steps by p1 and p2 are to different loca-
tions. Consider two histories: h′ = h ◦ p1 ◦ p2 ◦ complete op1 ◦ complete op2 and
h′′ = h ◦ p2 ◦ p1 ◦ complete op1 ◦ complete op2. Let us look at the first two pop()
operations by p3. Executed after h′ they have to return id2 then 1, since op1 is
decided before op2 in h′ and both of them are completed. While executed after
h′′ they have to return 1 then id2. But the local states of p3 and shared memory
states after h′ and h′′ are identical and, thus, two pops of p3 must return the
same values — a contradiction. The same argument will apply when both steps
by p1 and p2 are reads.

Suppose that the next operation of p1 is a write. (The case when the next
operation of p2 is write is symmetric) Consider two histories: h′ = h ◦ p2 ◦ p1 ◦
complete op1 and h′′ = h ◦ p1 ◦ complete op1. Let the process p1 perform two
pop() operations (op′1 and op′′1) and p2 complete its operation after h′: op′1 and
op′′1 have to return 1 and id2, correspondingly, since op1 and op2 are completed
and op2 is decided before op1 in h′. Again, since the local states of p1 and the
shared memory states after h′ and h′′ are identical, op′1 and op′′1 performed by
p1 after h′′ must return 1 and id2. Hence, op2 has to be decided before op′′1 in
h̃ = h′′ ◦ perform op′1 ◦ perform op′′1 and, by Lemma 2, op2 has to be decided
before any operation of p3 in h̃. Since only p1 performs steps after h in h̃ and Q
is help-free, op2 has to be decided before any operation of p3 at h, contradicting
Lemma 3. Thus, both primitives have to be compare&swap.

By the same argument both compare&swap steps by p1 and p2 have the
expected value that is equal to the current value in the designated memory
location, and the new value is different from the expected. If it does not hold,
either the local states of p1 and the shared memory states after h◦p1 and h◦p2◦p1
are identical or the local state of p2 and the shared memory states after h ◦ p2
and h ◦ p1 ◦ p2 are identical.

Observation 4 The primitive step of p2 in Line 14 is a successful compare&swap,
and the primitive step of p1 in Line 15 is a failed compare&swap.

Observation 5 Immediately after Line 14 op2 is decided before op1.

Lemma 7. Immediately after Line 15 the order between op1 and any operation
of p3 is not decided.

Proof. By Lemma 3, the order between op1 and any operation of p3 is not decided
before Line 14. BecauseQ is help-free the steps by p2 cannot fix the order between
op1 and any operation of p3. Thus, the only step that can fix the order of op1
and some operation of p3 is a step by p1 at Line 15, i.e., a failed compare&swap.



On Helping and Stacks 9

Suppose that op1 is decided before some operation op′3 of p3 after Line 15.
Let h be the history right before Line 14. Consider two histories h′ = h ◦ p2 ◦ p1
and h′′ = h ◦ p2. Let p3 to solo run pop operations after h′ until it completes
operation op′3 and then, further, until pop operation returns ⊥, i.e., the stack is
empty. Since op1 is decided before op′3, some completed operation op′′3 of p3 has
to return 1: if we now complete op1 it should be linearized before op′3. Now, let
p3 to perform after h′′ the same number of operations as it did after h′. Since the
local states of p3 and the shared memory states after h′ and h′′ are identical (p1
makes the failed compare&swap), op′′3 after h′′ has to return 1 as after h′. Thus,
op1 is decided before op′′3 in h′′. Since Q is help-free and p1 does not take steps
after h in h′′, op1 has to be decided before op′′3 before Line 14, contradicting
Lemma 3.

Lemma 8. At the end of the outer loop (Line 18) the order between op1 and
next op2 = push(id2 + 1) is not yet decided.

Proof. The operation op2 is not started, thus, it cannot be decided before op1
by Observation 1 (2).

Suppose that op1 is decided before op2. By Lemma 2 op1 has to be decided
before all operations of p3, contradicting Lemma 7.

Thus after this iteration of the loop the two invariants hold (Observation 5
and Lemmas 7 and 8), and p1 took at least one primitive step.

This way we build a history in which p1 takes infinitely many steps, but op1
is never completed. This contradicts the assumption that Q is wait-free.

Theorem 2. In a system with at least three processes and primitives read, write
and compare&swap there does not exist a wait-free and help-free stack implemen-
tation.

4.2 Adding Fetch&Add

Now suppose that the implementation is allowed to additionally use fetch&add
primitives. We prove that there is no wait-free and help-free stack implementa-
tion in a system with at least four processes.

Again, by contradiction, suppose that such an implementation Q exists. We
build an infinite history h in which either p1 or p2 executes infinitely many failed
compare&swap steps, yet it never completes its operation, contradicting wait-
freedom. In h, processes p1, p2, p3 and p4 follow the following programs: for
1 ≤ i ≤ 2, pi tries to perform opi = push(i); p3 applies an infinite sequence of
operations push(3), push(4), push(5), . . .; and p4 is about to perform an infinite
sequence of pop() operations. The algorithm for constructing this history is given
in Listing 1.2.

1 h ← ε
2 for i in 1..2:

3 opi ← push(i)

4 id3 ← 3



10 Vitaly Aksenov, Petr Kuznetsov, and Anatoly Shalyto

5 while true: // outer loop

6 op3 ← push(id3)
7 while true: // inner loop

8 moved ← False

9 for i in 1..3:

10 if opi is not decided before any opj in h ◦ pi:
11 h← h ◦ pi
12 moved ← True

13 if not moved:

14 break

15

16 h← h ◦ p3
17 // let pk be the process whose next primitive is compare&swap

18 h← h ◦ pk
19 while op3 is not completed:

20 h← h ◦ p3
21 id3 ← id3 + 1

Listing 1.2: Constructing the history for the proof of Theorem 3

Similar to the proof of Theorem 2, we show that the following two invariants
hold at the beginning of each iteration of the outer loop (Line 6):

– the order between any two operations among op1, op2 and op3 is not decided;
– op1 and op2 are not decided before any operation of p4;
– all the operations of p3 prior to op3 are decided before op1 and op2.

At the beginning of the first iteration, the invariants hold trivially, since none of
opi is started.

Observation 6 The order between opi and opj for 1 ≤ i 6= j ≤ 3 cannot be
decided during (and right after) the inner loop (Lines 7-14).

Proof. From the first invariant, opi cannot be decided before opj prior to the
inner loop (Lines 7-14). Since Q is help-free, during the inner loop opi can become
decided before opj only after a step by pi which is impossible due to the check
in Line 10.

Observation 7 Process p4 never takes a step in h.

Lemma 9. During (and right after) an execution of the inner loop (Lines 7-14)
op1, op2 and op3 cannot be decided before any operation of p4.

Proof. Suppose that during an execution of the inner loop op1, op2 or op3 is
decided before some operation of p4.

At the beginning of the loop, none of op1, op2 and op3 is decided before any
operation of p4: op1 and op2 are not decided because of the second invariant,
while op3 is not yet started. Suppose that during the execution of the inner loop
some opi becomes decided before some operations of p4.



On Helping and Stacks 11

Let us look at the execution and find the first point in time when some opk
by pk is decided before some operation op4 of p4. Using the same argument as
in the proof of Lemma 3, we can show that opk has to be decided before any
other opj contradicting Observation 6: we let p4 run until the operation op4 is
completed and, further, while stack is not empty; op4 becomes decided before
opj ; by Transitivity Lemma 1, opk is decided before opj .

The proofs of the following two lemmas are identical to those of Lemmas 4
and 5.

Lemma 10. For each i, 1 ≤ i ≤ 3, opi cannot be completed after the inner loop
(Lines 7-14).

Lemma 11. The execution of the inner loop (Lines 7-14) is finite.

Lemma 12. For all i, j, 1 ≤ i 6= j ≤ 3, opi is decided before opj in h ◦ pi.

Proof. Consider an operation of process i. At the end of the inner loop opi should
be decided before some opk in h ◦ pi, otherwise, pi can make at least one more
step during the inner loop. Thus, by Lemma 2 opi should be decided before op4,
the first operation of p4. Let p4 run pop operations until one of them returns ⊥,
i.e., the stack is empty. Let this history be h′.

By Lemma 9, opj is not decided before any operation of p4 in h. Since Q
is help-free and only pi and p4 takes steps in h′ after h, opj cannot be decided
before any operation of p4 in h′, and, consequently, operations of p4 cannot
pop an argument of opj . Since the operations of p4 empty the stack, opj must
be linearized after them. Thus, op4 is decided before opj in h′. By Transitivity
Lemma 1, opi is decided before opj in h′. Finally, since Q is help-free and only
p4 takes steps in h′ after h ◦ pi, opi is decided before opj in h ◦ pi.

Lemma 13. Immediately before Line 16 the following holds:

1. The next primitive step by pi for 1 ≤ i ≤ 3 is to the same memory location.
2. The next primitive step by pi for 1 ≤ i ≤ 3 is fetch&add with a non-zero

argument or compare&swap for which the expected value is the value that
appears in the designated location and the new value is different from the
expected one.

Proof. Suppose, that for some pair pi and pj the next steps are to different
memory locations. We consider two histories h′ = h ◦ pi ◦ pj ◦ complete opi ◦
complete opj and h′′ = h◦pj◦pi◦complete opi◦complete opj . By Lemma 12, after
h′, the two subsequent pop operations by p4 should return first the argument
of opj and then the argument of opi, while after h′′ they should return the two
values in the opposite order. This is impossible, since the local states of p4 and
the shared memory states after h′ and h′′ are identical. The same argument will
apply if the next steps of some pair of processes are read primitives.

Suppose that the next primitive step of some pi is a write. We take any
other process pj and build two histories: h′ = h ◦ pj ◦ pi ◦ complete opi and h′′ =



12 Vitaly Aksenov, Petr Kuznetsov, and Anatoly Shalyto

h◦pi◦complete opi. As in the proof of Lemma 6, pi performs two pop operations
(op′i and op′′i ) and pj completes its operation after h′: by Lemmas 1 and 12 op′i
and op′′i have to return the argument of opi and the argument of opj , respectively.
The local states of pi and the shared memory states after h′ and h′′ are identical,
thus, op′i and op′′i after h′′ should return opi and opj . Hence, opj has to be decided

before op′′i in h̃ = h′′ ◦ perform op′i ◦ perform op′′i . By Lemma 2, opj is decided

before any operation of p4 in h̃. And, finally, since Q is help-free and pj does

not take steps in h̃ after h, opj has to be decided before any operation of p4 in
h, contradicting Lemma 9.

A similar argument applies to the case when the next primitive step of some
pi is fetch&add with argument zero or compare&swap which expected value
differs from the value in the designated location or the new value is equal to
the expected. We take any other process pj (1 ≤ j ≤ 3) and build two histories
h′ = h ◦ pi ◦ pj ◦ complete pj and h′′ = h ◦ pj ◦ complete pj . The proof for the
previous case applies except that now the roles of pi and pj are swapped.

Lemma 14. At most one out of p1 and p2 can have fetch&add as their next
primitive step.

Proof. Suppose that p1 and p2 have fetch&add as their next primitive step.
Consider two histories h′ = h ◦ p1 ◦ p2 and h′′ = h ◦ p2 ◦ p1. From Lemma 12
op1 is decided before op2 in h′, thus, by Lemma 2 op1 is decided before the first
operation op4 of p4. After h′ p4 performs k′ pop operations until one of them
returns ⊥, i.e., the stack is empty. One pop has to return 1, because if we now
complete op1 it has to be linearized before op4. The same with h′′: p4 performs
k′′ pops until one of them returns ⊥. Since, the local states of p4 and the shared
memory states after h′ and h′′ are the same: two pop operations pop1() and
pop2() of k′(= k′′) operations of p4 after h′ and h′′ return 1 and 2.

Now, we show that op1 and op2 are decided before op3 in h′. The same can
be shown for h′′. Consider a history h̃: h′ continued with k′ pop operations by
p4. By Lemma 12 op1 is decided before op3 in h′. From Lemma 9 and two facts
that Q is help-free and op3 does not make any steps after h in h̃, it follows that
op3 cannot be decided before any operation of p4 in h̃ and, consequently, the
operations of p4 cannot pop an argument of op3. Since k pops of op4 empty the
stack, op3 has to linearize after them, making operation pop2() to be decided
before op3. Since pop2() returns 2 it has to be decided after op2. By Transitivity
Lemma 1, op2 is decided before op3 in h̃. Q is help-free and only p4 takes steps
after h′, thus, op2 is decided before op3 in h′.

Now consider two histories h′ ◦ complete op3 and h′′ ◦ complete op3. In both
of these histories, op1 and op2 are decided before op3. After the first history let
p4 perform three pop operations and p1 and p2 complete push(1) and push(2):
the three pops return id3, 2 and 1, respectively. Analougously, after the second
history three pop return id3, 1 and 2. This is impossible, since the local states
of p4 and the memory states after these two histories are identical.

Observation 8 From the previous lemma we know that the next primitive step
of at least one process p1 or p2 is compare&swap. Let it be process pk. By al-



On Helping and Stacks 13

gorithm, p3 takes a step at Line 16 changing the memory location either by
fetch&add or by a successful compare&swap, thus, the next step of pk at Line 18
should be a failed compare&swap.

Observation 9 Immediately after Line 16, op3 is decided before op1 and op2.

Lemma 15. Immediately after Line 18, op1 and op2 are not decided before any
operation of p4.

Proof. We prove the claim for op1, the case of op2 is similar.

If p2 took a step at Line 18, then by Lemma 9 and the fact that the steps
by p2 or p3 cannot fix the order between op1 and any operation of p4 due to
help-freedom, op1 is not decided before any operation of p4.

If p1 took a step at Line 18, then by Lemma 9 and the fact that the steps by
p3 cannot fix the order between op1 and any operation of p4 due to help-freedom,
the only step that could fix the order is a step by p1 at Line 18, i.e., a failed
compare&swap. Suppose that op1 is decided before some op′4 of p4 after Line 18.
We consider two histories h′ = h ◦ p3 ◦ p1 and h′′ = h ◦ p3. Let p4 run solo
after h′ until it completes op′4, and then further until some of its pop operations
returns ⊥, i.e., the stack becomes empty. Since op1 is decided before op′4, some
completed operation op′′4 of p4 has to return 1: if we now complete op1 it has to
be linearized before op′4. Now, let p4 to run the same number of pop operations
after h′′. Since the local states of p4 and the shared memory states after h′ and
h′′ are identical, op′′4 returns 1. Thus, op1 is decided before op′′4 in h′′. As Q is
help-free and p1 does not take steps after h in h′′, op1 has to be decided before
op′′4 in h, contradicting Lemma 9.

Lemma 16. At the end of the outer loop (Line 21), the order between any two
operations among op1, op2 and the next op3 = push(id3 + 1) is not yet decided.

Proof. The operation op3 is not yet started, thus, it cannot be decided before
opi, i = 1, 2, by Observation 1 (2).

Suppose that opi, i = 1, 2, is decided before opj , then by Lemma 2 opi has
to be decided before all operations of p4, contradicting Lemma 15.

We started with three invariants that hold before any iteration of the loop.
By Observation 9 and Lemmas 15 and 16) the invariants hold after the iteration,
and at least one of p1 and p2 made at least one primitive step.

This way we build a history in which one of op1 and op2 never completes
its operation, even though it takes infinitely many steps. This contradicts the
assumption that Q is wait-free.

Theorem 3. In a system with at least four processes and primitives read, write,
compare&swap and fetch&add, there does not exist a wait-free and help-free stack
implementation.



14 Vitaly Aksenov, Petr Kuznetsov, and Anatoly Shalyto

5 Related work

Helping is often observed in wait-free (e.g., [6,14,7,13]) and lock-free implemen-
tations (e.g., [3,12,9,11]): operations of a slow or crashed process may be finished
by other processes. Typically, to benefit from helping, an operation should regis-
ter a descriptor (either in a dedicated “announce” array or attached in the data
items) that can be used by concurrent processes to help completing it.

We are aware of three alternative definitions of helping: (1) linearization-
based by Censor-Hillel et al. [5] considered in this paper, (2) valency-based by
Attiya et al. [4] and (3) universal by Attiya et al. [4].

Valency-based helping [4] captures helping through the values returned by
the operations, which makes it quite restrictive. In particular, for stack, the
definition cannot capture helping relations between two push operations. They
distinguish trivial and non-trivial helping: for non-trivial helping, the operation
that is being helped should return a data-structure-specific non-trivial (e.g.,
non-empty for stacks and queues) value. It is shown in [4] that any wait-free
implementation of queue has non-trivial helping, while there exists a wait-free
implementation of stack without non-trivial helping. This is an interesting result,
given notorious attempts of showing that queue is in Common2 [2], i.e., that they
can be implemented using reads, writes and 2-consensus objects, while stack has
been shown to be in Common2 [1].

Attiya et al. [4] also introduce a very strong notion of helping — universal
helping — which essentially boils down to requiring that every invoked operation
eventually takes effect. This property is typically satisfied in universal construc-
tions parameterized with object types. But most algorithms that involve helping
in a more conventional (weaker) sense do not meet it, which makes the use of
universal helping very limited.

Linearization-based helping [5] considered in this paper is based on the order
between two operations in a possible linearization. Compared to valency-based
definitions, this notion of helping operates on the linearization order and, thus,
can be applied to all operations, not only to those that return (non-trivial)
values. By relating “helping” to fixing positions in the linearization, this definiton
appears to be more intuitive: one process helps another make a “progress”, i.e.,
linearize earlier. Censor-Hillel et al. [5] also introduce two classes of data types:
exact order types (queue as an example) and global view types (snapshot and
counter as examples). They showed that no wait-free implementation of data
types from these two classes can be help-free. By assuming stack to be exact
order, they deduced that this kind of helping is required for wait-free stack
implementations. In this paper, we show that stack is in fact not an exact order
type, and give a direct proof of their claim.

6 Concluding remarks

In this paper, we give a direct proof that any wait-free implementation of stack
in a system with read, write, comare&swap and fetch&add primitives is subject
to linearization-based helping. This corrects a mistake in the indirect proof via
exact order types in [5].



On Helping and Stacks 15

Let us come back to the original intuition of helping as a process performing
work on behalf of other processes. One may say that linearization-based helping
introduced by Censor-Hillel et al. and used in our paper does not adequately
capture this intuition. For example, by examining the wait-free stack imple-
mentation by Afek et al. [1], we find out that none of the processes explicitly
performs work for the others: to perform pop() a process goes down the stack
from the current top until it reaches some value or the bottom of the stack;
while to perform push(x) a process simply increments the top of the stack and
deposits x there. But we just showed that any wait-free stack implementation
has linearization-based helping, and indeed this algorithm has it. So we might
think that valency-based helping is superior to linearization-based one, since
the algorithm by Afek et al. does not have non-trivial valency-based helping.
Nevertheless, the aforementioned algorithm has trivial valency-based helping,
and, thus, the (quite unnatural) distinction between trivial and non-trivial help-
ing seems to be chosen specifically to allow the algorithm by Afek et al. to be
help-free.

A very interesting challenge is therefore to find a definition of linearization-
based helping that would naturally reflect help-freedom of the algorithm by Afek
et al., while queue does not have a wait-free and help-free implementation.

References

1. Yehuda Afek, Eli Gafni, and Adam Morrison. Common2 extended to stacks and
unbounded concurrency. Distributed Computing, 20(4):239–252, 2007.

2. Yehuda Afek, Eytan Weisberger, and Hanan Weisman. A completeness theorem
for a class of synchronization objects. In PODC, pages 159–170, 1993.

3. Maya Arbel-Raviv and Trevor Brown. Reuse, dont recycle: Transforming lock-free
algorithms that throw away descriptors. In DISC, volume 91, pages 4:1–4:16, 2017.

4. Hagit Attiya, Armando Castañeda, and Danny Hendler. Nontrivial and universal
helping for wait-free queues and stacks. In OPODIS, volume 46, 2016.

5. Keren Censor-Hillel, Erez Petrank, and Shahar Timnat. Help! In PODC, pages
241–250. ACM, 2015.

6. Panagiota Fatourou and Nikolaos D Kallimanis. A highly-efficient wait-free uni-
versal construction. In SPAA, pages 325–334. ACM, 2011.

7. Steven Feldman, Pierre Laborde, and Damian Dechev. A wait-free multi-word
compare-and-swap operation. IJPP, 43(4):572–596, 2015.

8. Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst.,
13(1):123–149, 1991.

9. Shane V Howley and Jeremy Jones. A non-blocking internal binary search tree.
In SPAA, pages 161–171. ACM, 2012.

10. Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
11. Maged M Michael. High performance dynamic lock-free hash tables and list-based

sets. In SPAA, pages 73–82. ACM, 2002.
12. Aravind Natarajan and Neeraj Mittal. Fast concurrent lock-free binary search

trees. In ACM SIGPLAN Notices, volume 49, pages 317–328. ACM, 2014.
13. Yaqiong Peng and Zhiyu Hao. Fa-stack: A fast array-based stack with wait-free

progress guarantee. IEEE Transactions on Parallel and Distributed Systems, 2017.
14. Shahar Timnat, Anastasia Braginsky, Alex Kogan, and Erez Petrank. Wait-free

linked-lists. In OPODIS, pages 330–344. Springer, 2012.


	On Helping and Stacks

