N
N

N

HAL

open science

Service traceroute: Tracing Paths of Application Flows

Ivan Morandi

» To cite this version:

Ivan Morandi. Service traceroute: Tracing Paths of Application Flows. Networking and Internet

Architecture [cs.NI]. 2018. hal-01888618

HAL Id: hal-01888618
https://inria.hal.science/hal-01888618
Submitted on 5 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-01888618
https://hal.archives-ouvertes.fr

Service traceroute: Tracing Paths of Application Flows

Ivan Morandi
Supervisors: Renata Teixeira, Timur Friedman
Advisor: Francesco Bronzino
Inria / UPMC Sorbonne University, Paris

ABSTRACT

Traceroute is often used to help diagnose when users experi-
ence issues with Internet applications or services. Unfortu-
nately, probes issued by classic traceroute tools differ from
application traffic and hence can be treated differently by
middleboxes within the network. This paper proposes a new
traceroute tool, called Service traceroute. Service tracer-
oute leverages the idea from paratrace, which passively lis-
tens to application traffic to then issue traceroute probes that
pretend to be part of the application flow. We extend this idea
to work for modern Internet services with support for auto-
matically identifying application flows, for tracing of multi-
ple concurrent flows as well as for UDP flows. We imple-
ment command-line and library versions of Service tracer-
oute, which we release as open source. This paper also
presents a calibration and an evaluation of Service traceroute
when tracing paths traversed by Web downloads from the
top-1000 Alexa websites and by video sessions from Twitch
and Youtube. The goal of the calibration is to find the best
parameters of Service traceroute for each application. Our
evaluation shows that Service traceroute has no negative side
effect on the vast majority of downloads, but that in some
rare cases it can cause application flows to abort or increase
flow completion times. In addition, the evaluation shows
that Service traceroute obtains different paths in at least 30%
of paths when compared with a standard traceroute. Using
the same source and destination ports as the target applica-
tion flow to analyze for standard traceroute’s probes, Service
traceroute still obtains different paths in at least 7% of ana-
lyzed paths.

1. INTRODUCTION

Internet services and applications rely on highly dis-
tributed infrastructures to deliver content. When ap-
plications stop working or when their performance de-
grades, service providers and more sophisticated users
often resort to traceroute to narrow down the likely lo-
cation of the problem. Traceroute issues probes with
increasing TTL to force routers along the path towards
a destination to issue an ICMP time exceeded message
back to the source, which iteratively reveals the IP ad-
dresses of routers in the path [2].

Traceroute, however, may fail to reveal the exact path
that a given application flow traverses. For example,

Luckie et al. [7] have shown that depending on the
traceroute probing method (ICMP, UDP, and TCP) the
set of reached destinations and discovered links differ.
The authors explain these differences by the presence
of middleboxes in the path such as load balancers and
firewalls that make forwarding decisions based on flow
characteristics. These results imply that diagnosing is-
sues on application flows must ensure that traceroute
probes have the same characteristics as the application’s
packets.

This paper develops a traceroute tool, called Service
traceroute, to allow discovering the paths of individual
application flows. Service traceroute passively listens
to application traffic to then issue probes that pretend
to be part of the application flow. Some traceroute
tools (for instance, paratrace [4], TCP sidecar [10], and
Otrace [3]) already enable probes to piggyback on TCP
connections. These tools observe an active TCP con-
nection to then insert traceroute probes that resemble
retransmitted packets. TCP sidecar was developed for
topology mapping, whereas paratrace and Otrace for
tracing pass a firewall. As such, they lack of two im-
portant features in application debugging. The identi-
fication of the application flows to trace as they require
as input the destination IP address and the destination
port to detect the target application flow, and the sup-
port for tracing paths of modern application sessions,
which fetch content over multiple flows that change
dynamically over time. In addition, these tools lack
the support for tracing application flows using UDP as
transport protocol, which are increasing thanks to the
adoption of QUIC protocol [5] in new services as well
as in popular services like Youtube. Our work makes
the following contributions. First, we develop and im-
plement Service traceroute (§2), which we will release
as open source software. Service traceroute is capa-
ble of identifying application flows to probe and trac-
ing the paths of multiple concurrent flows of both TCP
and UDP flows. For example, a user may simply spec-
ify trace ‘Youtube’ and Service traceroute will identify
Youtube flows and then trace all of their paths. Ser-
vice traceroute is configurable to cover a large variety
of Internet services.

Our second contribution is the calibration of Service

traceroute for two popular Internet services: video and
web pages, in particular, the top-1000 Alexa websites as
well as Twitch and Youtube video streaming. The goal
of the calibration is to find the parameters of Service
traceroute with the best trade-off between the prob-
ing network overhead and the amount of information
gathered. The problem of Service traceroute is that ap-
plication flows may close before Service traceroute ends
the tracing, and hence middleboxes along the path may
discard Service traceroute’s probes.

We then use the configurations with the best trade-
off for the third contribution: evaluate Service tracer-
oute. We focus the evaluation on the same Internet ser-
vices used during the calibration. One issue with piggy-
backing probes with application traffic is that we may
hurt application performance. Our evaluation shows
that in the vast majority of cases, Service traceroute
has no side-effect on the target application (§5). For a
few websites, however, application flows get reset when
running with Service traceroute. This result indicates
that piggybacking traceroute probes within application
flows requires careful calibration to avoid hurting user
experience. Finally, we compare Service traceroute with
0Trace, which also embeds probes within a target appli-
cation flow, and with Paris Traceroute, which launches
a new flow for probing (§6). Our comparison with
Paris traceroute shows differences in 37% of paths with
Twitch, 9% with Youtube and 7% with web pages, even
when running Paris traceroute with the same ports as
the target application flow. We noticed that in some
paths with web pages and Youtube videos, middleboxes
discard UDP and TCP probes of Paris Traceroute be-
fore they reach the destination.

2. TOOL DESIGN AND IMPLEMENTATION

Service traceroute follows the same high-level logic
as paratrace or Otrace. Given a target application flow,
which we define as the application flow whose path
we aim to trace, Service traceroute proceeds with two
main phases. The first phase is the passive observa-
tion of a target application flow to define the content of
the probes. Then, the active injection of TTL-limited
probes within the application flow. The main difference
is that Service traceroute identifies the flows to trace
automatically and supports tracing paths traversed by
multiple application flows concurrently. The user can
either directly specify the set of target application flows
or simply describe a high-level service (e.g., Youtube).
Service traceroute will then trace paths traversed by all
the flows related to the target service. This section first
describes the two phases focusing on the new aspects of
Service traceroute to allow per service tracing and then
presents our implementation.1

!The library and command-line version of Service
traceroute is publicly-available and open source at

2.1 Observation of target application flow

Service traceroute passively observes traffic travers-
ing a network interface to search for packets with the
flow-id of the target application flows?. One novelty of
Service traceroute is that it takes a set of target applica-
tion flows as input, in contrast with previous tools which
can only trace the path traversed by one single applica-
tion flow. Users can either explicitly specify one or more
target application flows or they can simply specify a ser-
vice. Service traceroute uses a database of signatures of
known services to inspect DNS packets in real-time and
identify flows that match the target service. We release
the DB as open source, so users can contribute to add or
update the signatures in the database. We define as sig-
nature the set of IP addresses and domains correspond-
ing to a specific service. For instance, ‘google.com’ or
the corresponding IP addresses can be used in the sig-
nature to detect Google services. Our current database
has signatures for popular video streaming services such
as Netflix, Youtube, and Twitch. Web pages are not in-
cluded in the database as Service traceroute can iden-
tify web flows simply from the domain or the host name
given as input. For additional flexibility, it is possible
to easily add ad-hoc domains and IP addresses via com-
mand line parameters or through the library API.

2.2 Path tracing

Only once it identifies a packet belonging to the tar-
get application flow, Service traceroute will start the
tracing phase. This phase works as classic traceroute
implementations sending probes with increasing TTL,
but Service traceroute creates a probe that takes the
form of an empty TCP acknowledgement that copies
the 5-tuple of the flow as well as its sequence number
and acknowledgement number (similar to paratrace and
Otrace). We rely on the flow-id plus the IPID field to
match issued probes with the corresponding ICMP re-
sponses. We note this is sufficient to correctly identify
probes even when tracing multiple concurrent target ap-
plication flows. The maximum number of concurrent
target application flows varies based on the used con-
figuration as the IPID field is dynamically sliced based
on the number of probes that have to be generated.
For example, with traceroute standard parameters, i.e.
maximum distance of 32 and 3 packets per hop, Ser-
vice traceroute can trace paths of 682 target application
flows.

Service traceroute stops tracing when the target ap-
plication flow closes to avoid any issues with middle-
boxes (which may interpret probes after the end of the
connection as an attack) and also to reduce any net-

https://github.com/wontoniii/tracetcp/tree/servicetraceroute.

ZWe use the traditional 5-tuple definition of a flow (protocol,
source and destination IP, as well as source and destination
port).

work and server overhead. In contrast to prior tools
that only support TCP, we add support for UDP. In
this case, we create probes with empty UDP payload,
but with the same 5-tuple flow-id as the target appli-
cation flow. Given UDP has no explicit signal of the
end of the flow (like the FIN in TCP), we stop tracing
if the flow produces no further packet (either received
or sent) after a configurable time interval.

2.3 Implementation

We implement Service traceroute in Go and release
command-line and library versions. The command-line
version is useful for ad-hoc diagnosis, whereas the li-
brary allows easy integration within monitoring sys-
tems.

The library version of Service traceroute outputs a
json data structure that contains the discovered inter-
faces with the observed round trip time values. For the
command line version, Service traceroute shows the re-
sults of each trace in the traceroute format, i.e. the list
of hops with the corresponding round trips times.

Service traceroute is configurable to adapt to dif-
ferent applications. It includes three types of prob-
ing algorithms that capture the tradeoff between trac-
ing speed and network overhead. The first, Packey-
ByPacket, sends only one packet at a time. The sec-
ond, HopByHop, sends a configurable number of pack-
ets with the same TTL at a time (3 by default). The
third, Concurrent, sends all packets at once. Given
that Service traceroute requires the target application
flow to be active during tracing, some applications with
short flows (e.g., Web) require the higher overhead of
the third algorithm to complete all the probes within
the flow duration. Service traceroute also allows con-
figuring the number of probes for each TTL, the inter-
probe time, and inter-iteration time (i.e. the time be-
tween packets with different TTL) to further control
this tradeoff between tracing speed and overhead. Fi-
nally, Service traceroute allows to specify three types
of stop conditions: the maximum distance from the
source, the maximum number of non replying-hops, like
Paris Traceroute, or explicit stop points in the form of
IP addresses. The last stopping condition is useful when
one wants to focus the tracing. For example, one could
use bdrmap [6] to identify the borders of the origin AS
and then stop the trace at the border routers.

3. EVALUATION METHOD

We design the calibration to find the best configura-
tion of Service traceroute for two popular applications:
video and web pages. Our goal is to identify the opti-
mal parameters setting to balance the tradeoff between
completing the discovered paths and network probing
load.

We then use the configurations from the calibration,

i.e. the best trade-off for web and video, for our evalua-
tion of Service traceroute and we design the evaluation
around two questions. First, does Service traceroute af-
fect the target application flows? Service traceroute in-
jects new packets within the application flow. Although
the majority of these packets will be discarded before
they reach the servers, a few probe packets will reach
the end-host and can potentially affect the target ap-
plication flows. Second, do paths discovered with Ser-
vice traceroute differ from those discovered with other
traceroute methods? One assumption of our work is
that paths taken by classic traceroute probes may not
follow the same paths as the packets of the target appli-
cation flows. We present an evaluation to help answer
these questions, where we compare our results with that
of Paris traceroute [1].

We conduct all experiments for the calibration and
evaluation from 30 PlanetLab Europe nodes. These
were the only ones working at the time of the analy-
sis, PlanetLab US nodes were not compatible due to
the lack of updated dependencies, like glibc.

‘Web. We select the top-1000 Alexa webpages on April
14 2018 as target web flows.

Video. We focus on two popular video streaming ser-
vices: Twitch and YouTube. We select twitch videos
on their homepage where Twitch shows dynamically a
popular live streaming video. While for YouTube, we
select 20 random videos from the catalog obtained after
searching with the keyword “4K UHD”. With YouTube,
we evaluate both TCP and UDP by forcing Google
Chrome to use or not QUIC.

Comparison with Paris traceroute. We select Paris
traceroute because its Multipath Detection Algorithm
(MDA) [12] can discover with high probability all paths
between the source and the destination in case there
is a load balancer in the path. This allows us to dis-
ambiguate whether the differences we may encounter
between Paris traceroute and Service traceroute are be-
cause of load balancing or some other type of differen-
tial treatment. We evaluate Paris traceroute using two
different versions. The first is Paris traceroute with
MDA enabled using the three protocols ICMP, UDP,
and TCP. We let MDA select the ports for Paris tracer-
oute to discover multiple paths between the two end
hosts. The second is the standard Paris traceroute us-
ing the same 5 tuple as the target application flow.

Comparison with 0Trace. We select 0Trace as it
implements the idea of tracing paths of a target appli-
cation flow and it has a working implementation. How-
ever, since OTrace does not implement the DNS resolu-
tion, we used Service traceroute as a mediator to detect
the target application flows to probe. Since the version
of 0Trace we considered was released in 2007, we had to

update the library for the transmission of probes from
dnet to scapy, because it was crashing with the segmen-
tation fault error on all PlanetLab servers while it was
trying to send probes.

Experiment setup. Experiments for video and Web
are similar. We first launch Service traceroute, then
we start streaming a video or downloading a webpage,
once that is done we run the three versions of Paris
traceroute MDA back-to-back. Then, we stream again
the same video or download the same webpage without
Service traceroute. We have run a total of 459 videos,
153 for Twitch and 306 equally split between YouTube
with TCP and with QUIC, and 1000 Web experiments
during 30 days in July 2018.

Small Scale Measurement. We ran a preliminary
small scale evaluation of Service traceroute during 14
days in May 2018. In this small scale analysis, we eval-
uated Service traceroute with Netflix, Youtube and Web
pages. We used 7 PlanetLab Europe nodes as vantage
points for web pages. While, for videos we used one
laptop in a college located in Paris (France) because
Netflix only allows from one to four concurrent videos
with the same account. In this paper we omit the results
of Netflix and Youtube as they are similar to the latest
evaluation. While, we include some particular excep-
tions we encountered during the evaluation of Service
traceroute with web pages.

Data representativeness. Our European-scale eval-
uation is useful to determine whether or not Service
traceroute affects the application flows of popular ser-
vices (top-1000 Alexa as well as Twitch/Youtube). It is
also useful to shed some light on whether there are dif-
ferences between paths discovered with Service tracer-
oute and more traditional traceroute paths.

4. CALIBRATION OF Service traceroute

This section evaluates Service traceroute using dif-
ferent parameters to find the configuration with the op-
timal trade-off between the completeness of discovered
paths and the network probing load.

We vary two parameters. The probing algorithm
(PacketByPacket, HopByHop and Concurrent) and the
number of probes per hop from 1 to 9. While, we set
the other parameters to fixed values to simplify the cal-
ibration analysis. In particular, we set the maximum
distance to 32, the inter-probe time to a negligible value
of 1 micro second and the timeout to wait ICMP replies
to 2 seconds.

Calibration Setup. The setup of the calibration is
similar to the experiment setup. For each page and
video, we run all configurations back to back to pre-
serve the same network characteristics across all config-
urations.

¥ PacketByPacket(TCP) -9 HopByHop(TCP) &+ Concurrent(TCP)
PacketByPacket (UDP) HopByHop (UDP) Concurrent (UDP)
T E 3 = - - - - = -
—_— r RTTTY P Bsrarres P Aienn I P ~ e, PP, -
e i
o]
5
2 1044
<
(@]
3
E 103<
[4_,;___3----1----1""’[
(@) - et B
> 102/ '/,»E
< SEECCTL TPV ... L TTTS - I b ATTITO, S PR o
2 4 6 8

Number of probes per hop

Figure 1: Probe overhead of Service traceroute

4.1 Probe Overhead

We define probe overhead as the throughput of probes
injected into the network. We compute the probe over-
head by summing the total number of bytes transmitted
divided by the time between the first and last probe.
This metric helps us to evaluate the load that Ser-
vice traceroute is adding to the network under differ-
ent probing algorithm and number of probes per hop.
Figure 1 shows the probe overhead for all probing algo-
rithm when we vary the number of probes per hop. The
result shows that Concurrent has a constant probe over-
head of more than 100kbps irrespective of the number
of probes sent per hop. Concurrent issues all probes
without waiting for ICMP. Thus, Concurrent’s probe
overhead is only limited by the capacity of the source
host. While, for HopByHop algorithm, the probe over-
head increases from 100bps to 1kbps when we increase
from 1 to 9 probes per hop. The reason of this positive
trend is that HopByHop waits ICMP replies at the end
of the transmission of all probes with the same TTL. For
PacketByPacket, it has a slight negative trend. The rea-
son is that the number of times PacketByPacket waits
ICMP replies and timeouts is linearly increasing with
the number of probes per hop and the time to receive
the ICMP reply increases with the distance from Service
traceroute.

4.2 Completed Traceroutes

We define completed traceroutes as the number of
traceroutes where Service traceroute was able to probe
all hops in the path before the end of the target ap-
plication flow. We consider that a traceroute reached
the destination when Service traceroute does not re-
ceive replies from three consecutive hops. We compute
the ratio of completed traceroutes over the total num-
ber of traceroutes done by Service traceroute for a spe-

wn wn %]

(V] (U] Q

5 5 5

Cl0{ g --F--F T T-F-T--& ©1.0 ;---i—~——£——--§----I—---§----I----I--"I ©1.0 == ~~—.I

9 S S 3 = ITTIeq)

©0.8 II ©0.8 ®0.8

=i 1 e I = |E

206 I £ 206 206 I

g @ {] B I

£0.4 £0.4 R I £0.4

8 ~§- PacketByPacket 8 ~¥- PacketByPacket 8 ¥+ PacketByPacket I

=02 HopByHop 0.2 HopByHop 0.2 HopByHop i

o -$-- Concurrent o -$-- Concurrent o -$-- Concurrent

500 2 4 6 8 500 2 6 8 500 2 4 6 8
Number of probes per hop Number of probes per hop Number of probes per hop

(a) Twitch (b) Youtube (c) WebPages

Figure 2: Ratio of completed traceroutes

cific configuration. This metric helps us to evaluate
whether Service traceroute is able to discover all hops
in a path under different probing algorithm and number
of probes per hop. Figure 2 shows the ratio of completed
traceroutes for all probing algorithms when we vary the
number of probes per hop. Concurrent always achieves
around 100% of completed traceroutes for all analyzed
services. As expected, Concurrent is very fast on dis-
covering paths since there are no timeouts to wait for
incoming ICMP replies. HopByHop is able to reach the
distribution in almost 100% of cases when tracing paths
of Twitch and Youtube flows. For web flows however,
HopByHop can only complete tracing in 70% of tracer-
outes. This difference is caused by the short duration of
web flows and the added delay to receive ICMP replies
at the end of the transmission of packets with the same
TTL. PacketByPacket has the same problem as HopBy-
Hop but for all services. Indeed, PacketByPacket waits
the ICMP reply after the transmission of each packet,
hence the time required to discover the path increases
linearly with the number of probes per hop. Packet-
ByPacket starts to have worse performance compared
to HopByHop after 4 probes per hop for Youtube, 5
probes per hop for Twitch and 2 probes per hops for
Web pages.

4.3 Results

The choice of the probing algorithm depends on dif-
ferent factors, like the application to probe and the
added overhead on the network. For videos, like Youtube
and Twitch, the best choice for the probing algorithm
is HopByHop since the ratio of completed traceroutes
is almost good as Concurrent but with a significant
smaller probe overhead. While, for web pages, the best
choice is Concurrent as the ratio of completed tracer-
outes is 30% more than the ratio with the other algo-
rithms. The reason of this difference is that web flows
have a shorter lifetime compared to video flows, so speed
is crucial to probe all hops in the path before the end
of the target application flow. Concerning the number

of probes per hop, the best choice to maximize the in-
formation gathered by Service traceroute is 1 probe per
hop. However, congested networks may drop probes
and ICMP replies, so the packet concerning a specific
hop is lost. Thus, we decided to use the default of 3
probes per hop to increase the probability to get a re-
sponse from an interface.

Evaluation Settings. We decided to use two dif-
ferent configurations, one for videos and one for web
pages. For videos, we use the HopByHop probing algo-
rithm with a timeout of 2 seconds to wait ICMP replies.
While, for web pages, we use the Concurrent probing al-
gorithm. In both configurations, the maximum distance
is 32 and the number of probes per hop is 3. The inter-
probe time and inter-iteration time are negligible, i.e. 1
microsecond.

5. SIDE EFFECTS OF Service traceroute

This section evaluates whether Service traceroute af-
fects target application flows as firewalls or servers may
mistakenly interpret too many duplicated packets within
a flow as an attack or losses, which in turn may cause
application flows to be blocked or achieve lower through-
put. Although the idea of piggybacking traceroute probes
within application flows has been around for approxi-
mately a decade, there has been no prior evaluation of
whether it can hurt target application flows. TCP side-
car evaluates the intrusiveness of their method, but only
by measuring the number of abuse reports [10].

5.1 Metrics

We select different metrics to measure properties of
target application flows. Flow duration refers to the
time between the first and the last packet of a flow. For
TCP, we measure the time from the server SYN to the
first FIN or RST. For UDP, we measure the time from
the first and the last packet coming from the server.
We compute the average throughput of a target appli-
cation flow as the total application bytes divided by the
flow duration. In addition to these metrics, which we

can compute for both TCP and UDP flows, we have
three other TCP specific metrics: the number of resets,
which capture the number of target application flows
closed by resets; window size is the difference between
the minimum and the maximum TCP window size of
the server for an application flow; and the number of
retransmissions is the number of retransmission from
the server per application flow.

5.2 Aborted flows

We first study whether Service traceroute causes flows
to be aborted. We have seen no video sessions that
ended with resets in our experiments with 153 stream-
ing sessions of Twitch and 153 video sessions of Youtube
with TCP. Even though our analysis is only from Eu-
ropean vantage points, we believe that this result will
hold more generally for both Twitch and Youtube as
these large video providers deploy multiple versions of
the same software across servers/caches [8]. Any differ-
ences will depend on middleboxes placed either close to
the clients or in the path towards the service.

Our results for webpage downloads are also encourag-
ing, we see no aborted flows. However, in the small scale
measurement, we detected few exception. The IPs of
the servers are different to the ones obtained in the Eu-
ropean scale experiment. Five of the top-1000 websites
(kompas.com, patria.org.ve, mobile0l.com, costco.com
and softonic.com) ended with resets only for downloads
with Service traceroute. We experience the same be-
havior consistently across PlanetLab vantage points for
three of the sites, whereas for kompas we only see re-
sets for three of the vantage points. Our manual inspec-
tion of the traces shows that these three vantage points
downloaded the kompas page from one IP, whereas the
other four downloaded from another IP. This analysis
suggests that some firewall close to the website or the
web server itself is resetting the flows due to the du-
plicate packets. In the small scale experiment, we note
that for 88% of the measured websites we see the con-
tent downloaded from different IPs depending on the
vantage point, but only in one case we saw this differ-
ence in behavior across the IPs.

Takeaway. We conclude that for Twitch and Youtube
sessions as well as for most of the top-1000 Alexa web-
sites, Service traceroute causes no aborted flows. In a
few cases, however, the target application flow is aborted
when running with Service traceroute. It is hence key
to evaluate the particular target service in a controlled
setting before launching any large-scale experiments to
trace paths of user’s traffic.

5.3 Flow performance

We next evaluate whether Service traceroute affects
flow performance in terms of flow duration, through-
put, TCP window size, and retransmissions. Figure 3

presents the cumulative distribution function of the flow
duration in seconds with and without Service tracer-
oute. We present eight curves: two for video sessions
over TCP both for Twitch and Youtube, two for Youtube
sessions over UDP, and two for all web page downloads.
We see that the distributions with and without Service
traceroute are mostly the same. During the small scale
experiment, for web pages we observe one exception for
softonic.com, where with Service traceroute the flow du-
ration takes 600 seconds more. In this case, we see that
all packets trigger ICMP time exceeded. At the end,
the application flow is closed with a reset. We assume
that some middlebox in the path prevents packets with
increasing TTL.

1.0 eooot---0-00-0-0-0-0-0—0-0--0-O-0-0-0-C -0t
0.8 : e
', a B o 1
T o
"™ e
W 0.6 =T T
5 Y A I V- Youtube (with)
VA] Youtube (without)
04¥ T H —e-: Youtube UDP (with)
1 4 Youtube UDP (without)
| | saeed ..®-: Twitch (with)
021 anan-s Twitch (without)
! —e-: Webpages (with)
Webpages (without)
0 50 100 150 200 250 300
Lifetime [s]

Figure 3: Flow duration distributions of tar-
get application flows with and without Service
traceroute

Figure 4 presents the cumulative distribution of the
average throughput of target application flows in our
experiments for Web and video. Similar to flow dura-
tion, we observe that Service traceroute has no impact
on target application flow throughput, since the evo-
lution of distributions are the same without noticeable
differences.

Figure 5 presents the cumulative distribution of the
maximum difference of TCP windows size of target ap-
plication flows for both web and video. The figure shows
that Service traceroute does not affect the window size
of the receiver, hence probes which are duplicate ac-
knowledgments are not causing any reduction of the
TCP window size.

Finally, Figure 6 shows the cumulative distribution
of the number of TCP retransmissions of target appli-
cation flows. In this case, web pages and twitch have
the same distribution whether Service traceroute is used
or not. For Youtube, there is a slight difference when
Service traceroute is used but the number of cases is
limited to 1% of Youtube application flows. The dif-
ference of the number of retransmissions is limited to

1.0 7 -+v-+ Youtube (with)
Youtube (without) J
—e-: Youtube UDP (with) lJ Sy /
0.8 1 Youtube UDP (without) 7 —X 7
--e-+ Twitch (with) Yy, g ¥
Twitch (without) II “ i !
0.6 1 —e: Webpages (with) 7 5
5 Webpages (without) { /'
O Il;
041 # v
[- _’d
AN i
0.2 1 IJ '/..' d
J Al @
e
0.0 — —5 —— - ormietl-- "

0 10° 10! 102 10 10*
Average Throughput [kbps]

Figure 4: Throughput distributions of target ap-
plication flows with and without Service tracer-
oute

1.0 -
e L
o -
0.81 7/ o7
Vs
~
(]
0.6 /
w |
5 £
4
4 4]
04 o v -+v-+ Youtube (with)
| e :
/3 Youtube (without)
odP —e- Twitch (with)
0.2 P Twitch (without)
S --@-+ Webpages (with)
(et Webpages (without)
0.0 . ; ; ;
0 10° 10! 107 103

Max Window Size - Min Window Size

Figure 5: Difference of maximum and minimum
window size of target application flows with and
without Service traceroute

few application flows, so this issue may be due to some
other factors.

6. COMPARISON WITH TRACEROUTE
TOOLS

The key motivation for building Service traceroute
is that we must send probes within the target applica-
tion flow to discover the path of this flow. Although
Luckie et al. [7] have observed different paths depend-
ing on the traceroute method (UDP, ICMP, or TCP), no
prior work has studied how often piggybacking tracer-
oute probes within application flows will discover dif-
ferent paths. This section compares Service traceroute
with different traceroute probing methods using Paris
traceroute. In addition, this section compares Service
traceroute with OTrace, which also piggybacks probes

1007 e RN RN R A
T
,r" ..-‘
0.99 v'/, ;
Y
N .
0984 7 ®
S0
o S0
N
©0.97§ 1;
1
l’ +*¥++ Youtube (with)
0.96 1 H Youtube (without)
; - Tuwitch (with)
| Twitch (without)
095 —"‘ --®-: Webpages (with)
t Webpages (without)
0 2 4 6 M o 1.

Number of retransmissions

Figure 6: Number of TCP retransmissions of
target application flows with and without Ser-
vice traceroute

inside an application flow.

6.1 Maetrics

We select two metrics to compare the discovered paths.
The path length captures the distance from the source to
the last hop that replies to probes. For Paris traceroute,
we take the length of the longest path in case of multiple
paths. The path edit distance is the edit distance be-
tween the path discovered with Service traceroute and
that discovered with OTrace and with Paris traceroute
(in case Paris traceroute returns multiple paths, we se-
lect the one with the smallest edit distance). The first
metric captures whether one tool discovers more hops
than the other, whereas the second captures how much
the two outputs differ.

When we observe differences between paths, we an-
alyze where the differences are in the path: origin AS,
middle of the path, or destination AS. We map IPs to
ASes using the RIPEstat Data API [9]. The location
where the two paths diverge help us understand the
placement of middleboxes.

6.2 Path differences with Paris Traceroute

We compare Service traceroute with two versions of
Paris traceroute. The multipath detection algorithm
(MDA) enabled using TCP, ICMP, and UDP probes
and the standard Paris traceroute using the same 5-
tuple as the target application flow.

Figure 7 and Figure 8 present the cumulative distri-
bution functions of path length for each service: Web,
Twitch, and Youtube (UDP and TCP), using Paris
traceroute MDA and standard Paris traceroute respec-
tively. Figure 7 shows that for all three services, probing
with TCP and UDP discovers less hops. While, Figure 8
shows that probing with the same 5-tuple of the target
application flow discovers the same number of hops as

--¥-- Service T. (TCP)
—e— Paris T. (TCP)
—-e- Paris T. (UDP)

--¥.- Service T. (TCP)
—— Paris T. (TCP)
—-e- Paris T. (UDP)

1.0 1.0

0.8 0.8

0.6 g 06
5 S B
Coa 7/ o4

P/ --¥.. Service T. (TCP)
0.2 —.— Par?s T. (TCP) 0.2
-e- Paris T. (UDP)
0.0 AFF —— Paris T. (ICMP) 0.0
5 10 20 0 10

Path Length
(a) Web pages (TCP)

Path Length
(b) Twitch (TCP)

—— Paris T. (ICMP) 0.2 —— Paris T. (ICMP)
---- QTrace ---- OTrace
0.0
20 30 0 5 10 15 20

Path Length
(¢) Youtube (UDP and TCP)

Figure 7: Path length of paths discovered with Service traceroute, Paris Traceroute and 0Trace

1.0 "_...oo-ooo—- 1.0 ‘;V 1.0 ‘_”.“,“4-‘44«
Ve orer? -
0.8 7 0.8 ’ 0.8 :
] AR ;
L 0.6 } u 0.6 ¥ 0.6 £
fa ;g a) ! a §
o4 i o4 ! © o !
. 7 4 : 1 . f
i i
0.2 ’ 0.2] 0.2 [
'j ¥-- Service T. (TCP) H --¥.- Service T. (TCP) . A4 --¥-- Service T. (TCP)
0.0 R B AZ o —e— Paris T. (TCP) 0.0 -QW",‘ —— Paris T. (TCP) ’(ﬁ?” —— Paris T. (TCP)
. : 0.0
0 5 10 15 20 25 0 10 20 0 5 10 15 20 25

Path Length
(a) Web pages (TCP)

Path Length
(b) Twitch (TCP)

Path Length
(¢) Youtube (UDP and TCP)

Figure 8: Path length of paths discovered with Service traceroute and standard Paris Traceroute

1.0

0.8

CDF

Paris T. (TCP)

—e— Paris T. (UDP)
-e- Paris T. (ICMP)
—— QTrace

¥ Paris T. (TCP) e
—e— Paris T. (UDP) 0.6
—-e- Paris T. (ICMP)
—— OTrace

1.0 ._'_"‘_,..1"-0—0-0—0—0—0—- 1.0
Fxa
0.9 7
7
w 0.8 /.i N 0.8
o ¥4 [a)]
Q071 ;7 (@]
i 0.6
0.67, ~w. Paris T. (TCP) ’
f —e— Paris T. (UDP)
0.5y -e- Paris T. (ICMP)
0 5 10 15 0 10

Path Edit Distance
(a) Web pages (TCP)

Path Edit Distance
(b) Twitch (TCP)

20 30 0 5 10 15
Path Edit Distance

(¢) Youtube (UDP and TCP)

Figure 9: Path edit distance between Service traceroute and Paris Traceroute, and between Service

traceroute and 0Trace

Service traceroute. This result implies that firewalls
close to the destination may prevent TCP and UDP
traffic that corresponds to no active flow to reach the
destination. In addition, this result confirms Luckie et
al.[7]’s analysis from ten years ago, which showed that
UDP probes cannot reach the top Alexa web sites as
probes correspond to no active flow. ICMP and Service
traceroute probes are able to obtain longer paths for all
three services analyzed.

Figure 9 and Figure 10 compare the hops in the dis-
covered paths using the path edit distance. A path edit
distance of zero corresponds to the case when the Paris

traceroute output contains Service traceroute’s path.
Figure 9 shows that the path discovered with Service
traceroute only matches with the best path discovered
by Paris traceroute MDA in about 55% of the webpage
downloads, 50% of the Twitch sessions, and almost 75%
of the Youtube streaming sessions. For Twitch, UDP
discovers paths that are the most similar to Service
traceroute’s paths, whereas for both Web and Youtube,
ICMP leads to the most similar paths. While, Figure 10
shows that for all services, standard Paris traceroute ob-
tains the same paths of Service traceroute more often
than Paris traceroute MDA, in about 63% of the Twitch

1.001 ey poee o T SN B B
RS A R3

0.95{ ~e-ale--o=* -

S 2

r""' (
0.90 /
0.85 1 /

i /
0.80 .,.
0.75 A

/’ --¥v-- Youtube

0.701 » —&- Twitch
0 65-/ -e- Web pages

00 25 50 7.5 100 125 15.0

Path Edit Distance

Figure 10: Path edit distance between Service
traceroute and Paris Traceroute using the same
source and destination ports

streaming sessions, 91% of the Youtube video sessions
and 93% of the web downloads.

To help interpret these results we study the loca-
tion of the points where Service traceroute’s and Paris
traceroute’s paths diverge, which we call the divergence
point. Table 1 shows the fraction of experiments with
divergence points at the origin AS, the middle of the
path, and the destination AS. We first consider the di-
vergence points using Paris traceroute MDA. For Twitch,
we observe a large number of divergence points in the
middle of the path for all probing protocols. For ICMP,
we also observe few divergence points on both origin
and destination side. For Youtube, we see few diver-
gence points when probing with UDP and TCP, with
a peak of 2% on the destination side. This result, to-
gether with short path lengths and large path edit dis-
tances confirm that some hop in the path discards UDP
and TCP probes. While, using ICMP probes, most of
divergence points are on the destination side, and a few
in the origin and in the middle of the path. Finally,
for web pages, we notice a negligible numbers of diver-
gence points when probing with TCP and UDP, mostly
focused in the middle of the path. While, when probing
with ICMP we observe a large number of divergence
points on both middle (22%) and destination (20%)
side. Similarly for Youtube, the low divergence points
encountered when probing with TCP or UDP, the high
path edit distance and the low path length confirms that
sometimes probes are not able to reach the top Alexa
web sites. For standard Paris traceroute, we observe
more divergence points than Paris traceroute MDA. For
web pages, the vast majority of divergence points are fo-
cused in the origin and in the middle of the path and
fewer on the destination side. For Twitch, there is a

significant number of divergence points in the middle
of the paths, few on the origin side and a negligible
numbers on the destination side. Finally, for youtube,
there are few divergence points on both the origin and
destination side. Using the same ports as the target ap-
plication flow increases the probability to get the same
path discovered with Service traceroute. Even if the
number of divergence points is larger with the standard
version of Paris traceroute, the fact that probes are not
blocked as those of Paris traceroute MDA yields better
results in terms of path edit distance, hence standard
Paris traceroute’s paths are the most similar to Service
traceroute’s paths when compared with Paris traceroute
MDA.

Takeaway. Our analysis shows that the paths discov-
ered by piggybacking traceroutes within the target ap-
plication flow are often different by a few hops from
paths discovered by typical traceroute tools. Although
these results are for European vantage points and a
small set of applications, they agree with previous large
scale analysis of traceroute results with different meth-
ods [7]. As such, we argue that a tool like Service
traceroute is crucial for accurately debugging Internet
services.

6.3 Path differences with 0Trace

We compare Service traceroute with 0Trace. Simi-
larly with Paris Traceroute, we studied the cumulative
distribution functions of path length and path edit dis-
tance. Unfortunately, the download time for web pages
is extremely short and our script was too slow to de-
tect the target application flows and then run OTrace,
so for this comparison we focused only on Twitch and
Youtube. This experience shows that simply running
O0Trace for application debugging is not trivial and that
integrating the identification of flows with path trac-
ing as we do in Service traceroute is key for application
debugging. In the case of path length for Twitch, we ob-
serve that the distributions of path length of 0Trace and
Service traceroute are similar. While for Youtube, the
path length reaches the maximum distance of 10 hops,
which is the same as Paris Traceroute MDA with TCP
and UDP. This is quite surprising, since Service tracer-
oute and ICMP are able to discover longer paths. This
result suggests that some middleboxes near the destina-
tion discards both Paris Traceroute and OTrace probes.
From the analysis of 0Trace code, the tool copies the 5-
tuple identifier of the application flow, the sequence and
acknowledgment numbers. However, during the execu-
tion it increases the sequence number by one for each
probe and it does not update the sequence number when
newer packets are transmitted. Thus, after the first
transmitted probe from OTrace, the other probes have
a wrong sequence number compared to the target appli-
cation flow and middleboxes might detect it and drop

Web Pages (TCP) Twitch (TCP) Youtube (TCP and UDP)
Configuration | Origin | Middle | Dest. | Origin | Middle | Dest. | Origin | Middle | Dest.
MDA UDP 0.54 5.22 1.86 0.34 18.88 0.26 0.10 0.18 1.15
MDA TCP 1.02 4.98 1.26 0.32 17.31 0.26 0.15 0.15 1.89
MDA ICMP 4.86 21.94 | 19.96 | 3.43 44.31 1.54 0.68 0.56 17.94
Standard PT 4.07 5.81 2.03 6.50 18.95 1.20 4.08 1.47 8.61
0Trace - - - 6.18 39.34 | 9.87 | 3.52 48.43 8.59

Table 1: Location of divergence points [%)]

the probes for security reasons.

Considering the path edit distance, 0Trace obtains
the same paths of Service traceroute in 45% of cases
for both Youtube and Twitch. Comparing the distri-
bution of path edit distance between OTrace and Paris
Traceroute, we observe that OTrace obtains paths that
are more similar to paths obtained from Service tracer-
oute. Similarly as Paris Traceroute comparison, we
study the location of points, where Service traceroute’s
and 0Trace’s paths diverge, the divergence points. For
both Twitch and Youtube, we observe a significant num-
ber of divergence points focused in the middle of the
path (39% for Twitch and 48% for Youtube) and some
on both the origin and destination side. The reason of
these high values is that tracing paths of the same ap-
plication flows but with different 5-tuple identifiers may
yields different paths. Thus, even running the same
script for Service traceroute and 0Trace, paths might
differ at least one divergence point. Paris Traceroute
MDA’s paths have less divergence points because Paris
Traceroute MDA returns multiple paths between two
end hosts and one of these might be the one Service
traceroute discovered.

Takeaway. Our analysis shows that OTrace obtains
paths that are more similar to Service traceroute’s paths
than comparing with Paris Traceroute’s paths. How-
ever, some middleboxes detect the probes of OTrace
from the wrong sequence numbers and hence, for se-
curity reasons middleboxes discard the probes. Thus,
preserving the sequence and acknowledgment numbers
as Service traceroute does is key to reach the destina-
tion and obtain all replying hops when tracing the path
of an application flow.

7. RELATED WORK

Since Jacobson’s original traceroute tool [2], a num-
ber of new versions have emerged with different fea-
tures and with new methods for constructing probes
(e.g., Paris traceroute [1, 12] and tcptraceroute [11]).
All these traceroute versions have a drawback for the
goal of diagnosing a target application flow because
they start a new flow to send probes. As such, middle-
boxes may treat them differently than the target appli-
cation flow. Service traceroute avoids this issue by pig-

10

gybacking traceroute probes within active application
flows. This idea was first introduced in paratrace [4],
which is no longer available, and then re-implemented in
Otrace [3] with the goal of tracing through firewalls and
in TCP sidecar [10] for reducing complaints of large-
scale traceroute probing for topology mapping. Un-
fortunately, none of these tools is actively maintained.
Service traceroute adds the capability of automatically
identifying application flows to trace by a domain name,
of tracing UDP flows as well as of tracing multiple
concurrent flows that compose a service. We release
both a command-line and a library version as open
source. Furthermore, we present an evaluation of the
side-effects of piggybacking traceroute probes within
application traffic as well as of its benefit by comparing
the differences with Paris traceroute and with OTrace.
Our characterization reappraises some of the findings
from Luckie et al. [7], which show that the discovered
paths depend on the protocol used in the probes. Their
study, however, includes no traceroute tools that piggy-
back on application flows.

8. CONCLUSION

In this paper we present Service traceroute, a tool
aimed at tracing paths from multiple concurrent flows
generated by modern Internet services. Results from
an Furopean-scale evaluation performed using popular
web and video services show that in the vast major-
ity of cases, Service traceroute has no side-effect on the
target application. It obtains paths not discovered by
Paris Traceroute MDA in more than 40% of the traced
paths, up to more than 70% with Youtube. While, it
obtains paths not discovered by standard Paris tracer-
oute using probes with the same 5 tuple as the target
application flow in more than 7% of the traced paths,
up to 37% with Twitch. 0Trace has a lower path edit
distance compared with the path edit distance of Paris
traceroute MDA, but the path length is generally lower
than Service traceroute. In future work, we plan to add
the support of IPv6 to Service traceroute. We further
plan to perform a large-scale characterization of results
of Service traceroute, across a wide-variety of services
and global distributed vantage points. As part of this,
we will evaluate possible side effects on different type of
services different from video.

Acknowledgments

This work was supported by the French ANR Project
no. ANR-15-CE25- 0013-01 (BottleNet), by the In-
ria Project Lab BetterNet, and by a Google Faculty
Award.

9. REFERENCES

[1] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger,
T. Friedman, M. Latapy, C. Magnien, and
R. Teixeira. Avoiding Traceroute Anomalies with
Paris Traceroute. In Proc. IMC, 2006.

[2] V. Jacobson. traceroute, Feb 1989.

[3] Jake Edge. Tracing behind the firewall, 2007.
https://lwn.net/Articles/217076/.

[4] D. Kaminsky. Parasitic Traceroute via
Established TCP Flows & IPID Hopcount.
https://man.cx/paratrace.

[5] A. Langley, A. Riddoch, A. Wilk, A. Vicente,

C. Krasic, D. Zhang, F. Yang, F. Kouranov,

I. Swett, J. Iyengar, et al. The quic transport
protocol: Design and internet-scale deployment.
In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication,
pages 183-196. ACM, 2017.

[6] M. Luckie, A. Dhamdhere, B. Huffaker, D. Clark,
et al. Bdrmap: Inference of borders between ip
networks. In Proceedings of the 2016 Internet
Measurement Conference, pages 381-396. ACM,
2016.

[7] M. Luckie, Y. Hyun, and B. Huffaker. Traceroute
Probe Method and Forward IP Path Inference. In
Proc. IMC, Vouliagmeni, Greece, 2008.

[8] Netflix Open Connect OVerview.
https://openconnect.netflix.com/
Open-Connect-Overview.pdf.

[9] RIPEstat Data API.
https://stat.ripe.net/docs/data_api.

[10] R. Sherwood and N. Spring. Touring the internet
in a tcp sidecar. In Proceedings of the 6th ACM
SIGCOMM conference on Internet measurement,
pages 339-344. ACM, 2006.

[11] M. Torren. Tcptraceroute-a traceroute
implementation using tcp packets. man page, unix
(2001). See source code: http:
//michael.toren.net/code/tcptraceroute.

[12] D. Veitch, B. Augustin, T. Friedman, and
R. Teixeira. Failure Control in Multipath Route
Tracing. In Proc. IEEE INFOCOM, 2009.

11

