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Abstract. Food sampling programs are implemented from time to time in local 

areas or throughout the country in order to guarantee food safety and to improve 

food quality. The hidden patterns in the accumulated huge amount of data and 

their potential values are worthy to research. In this paper, Extreme learning 

machine (ELM) is employed on real data sets collected from the food safety in-

spections of China in recent two years, in order to mine the relationship be-

tween food quality and food category, manufacturing site and season, inspec-

tion site and season, and many other attributes. Experimental results indicate 

that the ELM approach has better prediction precision and generalization ability 

than Logistic regression that was adopted in preceding work. The patterns ob-

tained are helpful for making more effective food sampling plans and for more 

targeted food safety tracing. 

Keywords: food sampling inspection, big data, extreme learning machine, Lo-

gistic regression. 

1 Introduction 

Food safety issues have aroused world-wide attention since it is closely related to 

public and household health and interests [1]. Most countries have implemented sys-

tems for food safety supervision and inspection, in order to reduce the quantity, 

strength, and impact of food safety incidents, and to improve the quality of food final-

ly delivered to the end users [2]. However, food quality testing and food safety inspec-

tions are time-consuming, labor-intensive tasks, and they could sometimes be a heavy 

financial burden. Therefore, much research work has been done in order to improve 

inspection efficiency and effectiveness without increasing inspection quantity and 

strength, or even with reduced quantity and strength of food safety inspections [1, 3]. 

In China, many food safety incidents have occurred in recent years [3]. To deal 

with these problems, China government has taken a lot of measures to guarantee food 

safety and quality, and all levels of food testing laboratories in China carry out every 
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day a great deal of testing work. As a result, a large amount of food testing data is 

accordingly recorded and collected, and as a matter of fact, after years of accumula-

tion, a huge data warehouse has come into being with rich information about food 

quality and safety and with many other properties. Initially, these accumulated data 

were only a matter of recording, and gradually they were utilized for inquiry and sta-

tistical purposes. The accumulated data, however, were found to be much more valu-

able than that [3], since the obtained patterns or rules underlying the data did provide 

us useful and helpful knowledge about the relationship among the attributes, which 

are able to help us make more effective and powerful inspection plans to expose more 

food safety problems, and hence to reduce consumption of time, labor, and financial 

burden. 

Nevertheless, with the size of the data growing steadily in the course of food pro-

duction, processing distribution and trading, the huge amount of data cannot be han-

dled by conventional computing methods, which are by and by replaced by the tech-

nology of big data [4]. After the technologies of cloud computing and internet of 

things, big data technologies are another profound revolution that have penetrated into 

a variety of areas and given rise to dramatic changes in these areas. Big data is an 

abstract concept, with the characteristics of great quantity, rich variety, semi-

structured and unstructured data, fast-growing, and that the traditional database man-

agement software cannot process it pragmatically with single-node computing re-

source. Consequently, distributed computing is the core method and key means in the 

bunch of big data technologies. Reference [5] examined the potential for big data 

application in the agriculture sector, including the variety and velocity characteristics 

in the sector and the integration of data and analysis that will be needed for successful 

implementation. 

With the big data of food safety inspections accumulated, managed, preprocessed 

and analyzed, a variety of applications could be implemented, including dynamic and 

comprehensive food safety analysis, foodborne disease study, early warning and as-

sessment of food safety, and so on. Fulfillments of these applications are helpful for 

boosting food quality level and improving food safety tracking. In order to implement 

these applications, however, a bunch of approaches are needed such as data prepro-

cessing, statistical analysis, machine learning, and data mining [3, 6, 7]. 

Before applying methods mentioned above, complex processes should be taken for 

data preparation, including data cleaning, data normalization, and missing data impu-

tation. In most cases, the phenomenon of missing data is inevitable in a real data set, 

and therefore missing value imputation is an essential preprocessing step in data min-

ing and machine learning. The imputation methods of kNNI [8] in recent years have 

been widely applied because of its easy operating. The result and hence the accuracy 

of kNNI, however, are dependent of the parameter k, which means that each k should 

be tried in order to get an optimal one. Moreover, the result of kNNI is a biased esti-

mation since the neighbors of the targeted point with missing value may lie unevenly 

around the point. Two variations [9], [10] of kNNI were proposed to overcome the 

defects of previous versions and they both perform satisfactory. Only after the prepro-

cessing step, are the data sets of food safety inspections ready for further analyzing 

and mining. 
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The rest of the paper is organized as follows. Section 2 introduces research work 

related to this paper, including those on missing data imputation, Logistic regression, 

neural network, and extreme learning machine. In Section 3, the ELM framework is 

described in detail that is employed to mine the patterns hidden in the big data of food 

safety inspections. Section 4 presents the experiments on real data sets and the corre-

sponding results. And Section 5 concludes the paper. 

2 Related work 

A variety of methods and technologies have been studied, tested and/or implemented 

to analyze and utilize the data collected from food safety inspections, and many excit-

ing results and conclusions have been obtained. 

Khosa and Pasero [6], [7] used an artificial neural network (ANN) as a classifier to 

predict at an early stage of processing or manufacturing whether important food in-

gredients, pine and pistachio nuts, are healthy. X-ray images of the nuts were used, 

and texture features were extracted from the images. In that work, the texture features 

and the sample labels were used as the training data, and the texture features were 

independently used as the basis for making predictions and classifications. As a result, 

the ANN classifier achieved false negative rates of 0% and 6.8% for the pine nuts and 

pistachio nuts, respectively. The results imply that food quality has good predictabil-

ity and good describability, at least in certain cases. 

Reference [1] focused on a safety risk assessment of dairy products for a single 

corporation, also in the background of big data. That work used a classic classifier, 

the support vector machine (SVM). However, instead of using a serial algorithm for 

the SVM, a parallel cascade SVM was implemented on the platform of Apache Ha-

doop [11], which is an open-source distributed computing framework that is typically 

used to process big data by distributing the data in a large-scale cluster platform. The 

results from [1] demonstrate that when the number of cluster nodes increases steadily, 

the saved run time decreases steadily compared with the runtime for a single node. 

The SVM has been a successful classifier in many cases and in many areas due to its 

good classification accuracy, generalizability and stability. Despite this success, SVM 

does not perform satisfactorily when the positive and negative samples have more 

detailed relationships. 

Statistical methods are most frequently used to analyze the data obtained from food 

safety inspections, with [3] being a typical study. Based on the food sampling results 

of the city of Shenzhen, China, that study first investigated the annual and inter-

annual changing tendency of 11 food categories and analyzed the data using the t-test. 

Then, a logistic regression model was constructed, and the quantitative relationships 

between food quality and four attributes (namely, food origin, inspection season, sales 

site, and food packaging) were established. Instead of the result category (quali-

fied/unqualified), the concept of “exceeded percentage” was used to measure the de-

gree of unqualified food. Logistic regression is a powerful classifier that can be ap-

plied to both continuous and discrete variables. Although that work is a good applica-

tion of logistic regression to predict which food products are most likely to be unqual-
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ified, the data for both training and testing are simulated data sets, not real data sets, 

which indicates that the work remains unsatisfactory. 

Logistic regression, like many other regression methods, is essentially linear re-

gression; it is aided by some nonlinear transformations, and it can capture the nonlin-

ear relationships between the dependent variable and causative (independent) varia-

bles. The ANNs in [1], [7] used a considerable number of nonlinear transformations 

to capture more detailed relationships. However, as demonstrated earlier, the learning 

speed of feed-forward ANNs is considerably slower than that of regression learning 

algorithms, which take the least squares method (LSM) as the core technique. Con-

sidering both the speed advantage of the LSM and the nonlinearity advantage of the 

ANN, Huang et al. proposed the ELM with a single layer of hidden nodes in their two 

pioneering works [12], [13]. Compared with its predecessor learning techniques, the 

ELM improves the training speed by hundreds of times by randomly setting the 

weights between the input nodes and hidden nodes and by computing the weights 

between the hidden nodes and output nodes using the LSM. Other researchers have 

supported their work, particularly the random assignment of weights, by mathematical 

proofs, such as in [14], which provides a geometric perspective. 

After these pioneering studies, a variety of variations and improvements in the 

ELM were presented. Reference [15] proposed an inverse-free ELM that further im-

proved the computational speed of the training process, as computing the inverse of a 

square matrix is the most time-consuming part of the LSM. Accounting for the archi-

tecture of the sub-network nodes, Y. Yang and Q. M. Jonathan Wu designed a varia-

tion of the ELM, ML-ELM, that exhibits competitive accuracy and speed compared 

with other conventional feature learning methods with sub-network nodes [16], [17]. 

The ELM has a notable defect, namely, that the number of hidden nodes must be 

manually assigned or assigned by other state-of-the-art methods. In fact, the optimal 

number of hidden nodes plays a decisive role in the ELM, as an insufficient number 

of hidden nodes could lead to underfitting, whereas an excessive number of hidden 

nodes could cause overfitting. Based on this observation, [18] presented an adaptive 

and automatic selection algorithm that can obtain a suitable or even an optimal num-

ber of hidden nodes for each learning case. This method can markedly reduce the 

degree of artificial participation and hence reduce the burden of human operators. 

In addition, there are many applications of the ELM to different types of domains. 

The ELM was applied to predict soil moisture in an apple orchard [19], taking both 

the weather factors and the time series of the soil moisture as inputs. Compared to the 

conventional method of the SVM, the ELM exhibits a higher prediction accuracy over 

a larger forecast range with a higher speed. Reference [20] proposed a new classifica-

tion algorithm for food classification based on both spectroscopy and the ELM, and 

the experimental results indicated that the ELM is typically more precise and robust 

than its competitors, including k-nearest neighbor, partial least-squares discriminant 

analysis, back propagation ANNs, and least-squares support SVMs. 



5 

3 ELM approach specification 

In this section, we will present in detail the ELM-based classifier for predicting 

whether a sample food to be inspected is qualified or not. Firstly, in sub-section 3.1, 

the cause variables are selected according to whether it is likely to affect the food 

quality. And then data preprocessing techniques are presented in sub-section 3.2. 

After that in Sub-section 3.3, the main framework of the ELM method is described 

based on the discussion of the former two sub-sections. 

3.1 Selecting relevant factors 

According to the food safety inspection data, the result variable that we are most in-

terested in is quite simple: it has binary values for whether the food is qualified or not. 

However, the causative variables are more complex and involve many factors. We 

eliminate the factors that are not related to the ability to predict the food quality, such 

as the sampling number and name of the manufacturer. After the elimination opera-

tion, 9 causative variables are retained, as listed in Table I. 

Table 1. Causative (Dependent) Variables Selected for the Model*. 

SELECTED FACTOR / 

VARIABLE 

Meaning of the variable 

Food category There are 6 categories* in the inspection data 

Manufacturing date The date when the product was manufactured 

Manufacturing site The place where the product was manufactured 

Inspection date The date when the product was sampled and inspected 

Inspection site The place where the product was sampled and inspected 

* The 6 categories are T0, dairy products; T1, aquatic products; T2, infant formula; 

T3, meat products; T4, liquor; T5: edible oil. 

3.2 Preprocessing technique 

When all the factor variables are determined, the data are processed to eliminate the 

noise data. The missing values are completed with the imputation techniques pro-

posed in [10] while considering the representative point and the densities of the points 

in each quadrant compared to the targeted point for the missing values. 

New causative variables can be generated based on the variables listed in Table I. 

For example, from the manufacturing date and inspection date, a new variable, the 

elapsed days, can be generated; this variable refers to the time span between the man-

ufacturing time and inspection time. Another example is “Whether in the same prov-

ince”, which is generated from the two variables “Manufacturing site” and “Inspec-

tion site”; this variable indicates whether the two sites are in the same province or not. 

To date, certain variables have not yet been useful for the models of either logistic 

regression or ELM, as they are category variables, not numeric variables. For exam-
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ple, the manufacturing date appears to be a numeric variable, but in fact, it is more 

likely to be a categorical variable because it implies the seasonal information of the 

manufacturing time. Thus, we transform the variable “Manufacturing date” into four 

variables, namely, “Spring”, “Summer”, “Autumn” and “Winter”, with each having 

binary values of true or false. The four new variables are called dummy variables, and 

they are generated in the same manner as described in [21]. 

After the preprocessing stage, the data are ready for training, testing, and predict-

ing using both the ELM method and its competitors. 

3.3 Framework of ELM method 

In this paper, we also use one-hidden-layered nodes, as shown in [18]- [20]. The 

structure of the network is illustrated in Fig. 1. 

Input

Random
Weights

Learned
Weights

Output

 

Fig. 1. Structure of the ELM. There is only one hidden layer and only one output node. 

Each input node in Fig. 1 represents a causative variable. The causative variables 

selected and the variables generated by them are each represented by an input node. 

There are considerably more hidden nodes than input nodes; but it is not a fixed num-

ber. Instead, it varies according to the number of inputs and the structure of the train-

ing data based on the adaptive strategy given in [18]. As described in [13], the 

weights between the input nodes and the hidden nodes are set to random values (see 

Fig. 1), which implies that the output value of one hidden nodes may be proportional 

(or nearly proportional) to that of another hidden node. Therefore, at least one of them 

is useless to capture the relationship between the input and the output. The optimiza-

tion algorithm in [18] first generates a large number of hidden nodes and then selects 

the nodes one by one, making the newly selected one least linear-correlated to the 

previously selected node. By taking into account the input data and the output data an 

optional number of hidden nodes can be obtained. We employ this optimization 

method to form the structure of ELM. The single output node represents the result of 

a record, which means whether a food sample is qualified. 
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The weights between the input nodes and hidden nodes are assigned randomly as 

described in [12], [13], and they are all set to be in the range [-1, 1]. However, all 

weights between the hidden nodes and output node are obtained by learning and com-

puting based on the training data. 

Suppose that the number of input nodes is n and the number of hidden nodes is h, 

the input of the jth hidden node is calculated as follows: 





n

i
jij wG

1
,                                               (1) 

where β is a parameter that will be discussed later, jiw ,

 

is the weight between the 

ith input node and the jth hidden node. 

Each hidden node processes its input by the following equation and then outputs 

the following: 

                                                (2) 

Hi will always lie between -1 and 1, which makes its value distribution approxi-

mately symmetric about the y-axis. Equation (2) is often called the activation func-

tion, which is a highly nonlinear function. All activation functions in the hidden nodes 

together make the system capable of approximating nearly any nonlinear relationship 

between the input nodes and output node. 

Parameter β in Equation (1) will affect the effectiveness of the system. If β is not 

sufficiently large, the relationship between the input and output will degenerate to a 

linear relationship. However, if β is excessively large, all the inputs of the hidden 

nodes will be transformed by the activation function into either -1 or 1. Thus, we set 

parameter β in this paper according to the following empirical formula: 

n

10


                                                         (3) 

where n is the number of input nodes. 

In the step of the LSM for calculating the weights between the hidden nodes and 

output node, the inverse of a square matrix must be computed, which will not be exe-

cutable if the matrix is irreversible. If this problem occurs, we will change the square 

matrix slightly and make it reversible by using the method suggested in [22], which 

overcomes a significant shortcoming of the ELM. 

The overall framework of the ELM approach is shown in Fig. 2. 

1
1

2





 iGi
e

H
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Selecting relevant cause variables

Data preprocessing

Constructing ELM

Randomly selecting weights

Applying LSM

Matrix reversible?

Calculating the weights between hidden and output nodes

Testing and Predicting

Ridge regression

Yes

No

 

Fig. 2. Overall framework of the ELM approach. 

4 Experiments and results 

The data sets used are publicly available from the State Food and Drug Admin-

istration of China. For these samples, the manufacturing date ranges from November 

26, 2014 to September 1, 2016, whereas the inspection date ranges from October 29, 

2015 to September 9, 2016. 

The two methods applied to the data sets are logistic regression presented in [3] and 

the ELM. The variable selection and data preprocessing are same for the two methods. 

For each category of food, all data are partitioned into training data and testing data. 

The training set and testing set are identical for the two methods. The testing results 

are listed in Table II. 

Table 2. Comparison of Experimental Results. 

CATEGORY Number 

of testing 

cases 

Number 

of correct 

cases for 

LR 

Number 

of correct 

cases for 

ELM 

Accuracy 

of LR (%) 

Accuracy 

of ELM (%) 

T0 1376 1196 1212 86.9 88.1 

T1 873 777 791 89.0 90.6 

T2 1403 1260 1310 89.8 93.4 

T3 4058 3633 3656 89.5 90.1 

T4 2730 2615 2618 95.8 95.9 

T5 2063 1785 1798 86.5 87.2 
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The data listed in Table II are shown in Fig. 3. 

 

Fig. 3. Comparison of the experimental results from logistic regression and the ELM. The black 

bar represents the accuracy percentage of the logistic regression, whereas the white bar repre-

sents that of the ELM. 

Fig. 3 shows that the ELM has better accuracy than logistic regression for all food 

categories, although they perform nearly the same for certain categories, such as T4. 

5 CONCLUSIONS 

ELM is employed in this paper to describe the big data collected from the food safety 

inspections of China in recent two years. The trained model is used to predict the food 

quality and it performs better than Logistic regression that was implemented and test-

ed on simulated data sets. Results from a series of experiments show that ELM is 

better in accuracy than Logistic regression for each of the 6 food categories. And both 

of the methods run very fast because they all take the advantage of optimized calcu-

lating steps. The success of the ELM owes much to the large number of hidden nodes 

and the nonlinear activation functions in them are able to capture the nonlinear com-

ponents in the relationship between the inputs and the outputs. 

With the ELM model and the according prediction system, food samples can be 

taken no longer randomly; on the contrary, food products could be filtered by the 

prediction system and only those with least qualification probabilities will be selected 

for sampling test. Therefore, aided by the ELM prediction and classification system, 

more effective inspection plans can be made which mean less labor input and more 

food safety problems exposed. 



10 

ACKNOWLEDGMENTS 

This work was supported by the National Science & Technology Pillar Program of 

China (2015BAK36B01), the National Natural Science Foundation of China 

(61402436), Shanghai Engineering Research Center of Product Traceability. 

References 

1. Y. Ma, Y. Hou, Y. Liu, and Y. Xue, "Research of food safety risk assessment methods 

based on big data," in 2nd IEEE Int. Conf. Big Data Anal., Beijing, China 2017, pp. 1-5. 

2. B. Antunovic, A. Mancuso, K. Capak, V. Poljak, and T. Florijančić, "Background to the 

preparation of the Croatian food safety strategy," Food Control, vol. 19, no. 11, pp. 1017–

1022, Nov. 2008. 

3. L. He, and Z. Wang, et al. "The method of food safety sampling inspection based on dy-

namic weight," Math. Modeling Its Appl., vol. 2, no. 3–4, pp. 4–12, 2013. 

4. F. Li, Y. Lv, Q. Zhu, and X. Lin, "Research of food safety event detection based on multi-

ple data sources," in Int. Conf. Cloud Comput. Big Data, Shanghai, 2015, pp. 213–216. 

5. S. Sonka, "Big data and the ag sector: More than lots of numbers," Int. Food Agribusiness 

Manage. Rev., vol. 17, no. 1, pp. 1–20, Oct. 2014. 

6. I. Khosa, and E. Pasero, "Defect detection in food ingredients using multilayer perceptron 

neural network," in 2014 World Symp. Comput. Appl. Res., Sousse, 2014, pp. 1–5. 

7. I. Khosa, and E. Pasero, "Artificial neural network classifier for quality inspection of nuts," 

in Int. Conf. Robot. Emerg. Allied Technol. Eng., Islamabad, 2014, pp. 103–108. 

8. Y.-H. Kung, P.-S. Lin, and C.-H. Kao, "An optimal -nearest neighbor for density estima-

tion," Statist. Probability Lett., vol. 82, no. 10, pp. 1786–1791, Oct. 2012. 

9. S. Zhang, "Shell-neighbor method and its application in missing data imputation," J. Ap-

plied Intelligence, vol. 35, pp. 123-133, 2011. 

10. J. Wang, Z. Zhang, Z. Chen, and Q. Yuan, "Imputation missing values with distance- and 

density-weighted and quadrant-based nearest neighbors " J. Comput. Inform. Syst.,[1] vol. 

11, no. 18, pp. 6605–6613, Sep. 2015. 

11. D. Singh, and C. K. Reddy, "A survey on platforms for big data analytics," J Big Data, vol. 

2, no. 1, p. 8, Jul. 2015. 

12. G. B. Huang, L. Chen, and C. K. Siew, "Universal approximation using incremental con-

structive feedforward networks with random hidden nodes," IEEE Trans. Neural Netw., 

vol. 17, no. 4, pp. 879–892, Jul. 2006. 

13. G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, "Extreme learning machine: Theory and applica-

tions," Neurocomputing, vol. 70, no. 1–3, pp. 489–501, Dec. 2006. 

14. C. Cervellera, and D. Maccio, "Low-discrepancy points for deterministic assignment of 

hidden weights in extreme learning machines," IEEE Trans. Neural Netw. Learn. Syst., 

vol. 27, no. 4, pp. 891–896, Apr. 2016. 

15. S. Li, Z. H. You, H. Guo, X. Luo, and Z. Q. Zhao, "Inverse-free extreme learning machine 

with optimal information updating," IEEE Trans. Cybern., vol. 46, no. 5, pp. 1229–1241, 

May. 2016. 

16. Y. Yang, and Q. M. Wu, "Extreme learning machine with subnetwork hidden nodes for re-

gression and classification," IEEE Trans. Cybern., vol. 46, no. 12, pp. 2885–2898, Dec. 

2016. 



11 

17. Y. Yang, and Q. M. J. Wu, "Multilayer extreme learning machine with subnetwork nodes 

for representation learning," IEEE Trans. Cybern., vol. 46, no. 11, pp. 2570–2583, Nov. 

2016. 

18. D.P.P. Mesquita, J.P.P. Gomes, et al. "Pruning extreme learning machines using the suc-

cessive projections algorithm," IEEE Latin Amer. Trans., vol. 13, no. 12, pp. 3974–3979, 

Dec. 2015. 

19. Y. Liu, L. Mei, and S. K. Ooi, "Prediction of soil moisture based on extreme learning ma-

chine for an apple orchard," in IEEE 3rd Int. Conf. Cloud Comput. Intell. Syst., Shenzhen, 

2014, pp. 400–404. 

20. W. Zheng, X. Fu, and Y. Ying, "Spectroscopy-based food classification with extreme 

learning machine," Chemometrics Intell. Laboratory Syst., vol. 139, no. pp. 42–47, Sep. 

2014. 

21. P. Changpetch, and D. K. J. Lin, "Model selection for poisson regression via association 

rules analysis," Int. J. Statist. Probability, vol. 4, no. 2, pp. 1–9, Mar. 2015. 

22. G. Li, and P. Niu, "An enhanced extreme learning machine based on ridge regression for 

regression," Neural Comput. Appl., vol. 22, no. 3, pp. 803–810, Mar. 2013. 


